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Introduction

 At least 1 Higgs boson exists.
 It shows SU(2)L doublet nature. 
 Its mass is 125 GeV. 

 Why the Higgs boson mass is such small with respect to NP scale?
 What is the true shape of the Higgs sector?

From LHC results

Questions

 Higgs is a pseudo Nambu-Goldstone boson (pNGB). 
 Higgs sector has a multi-doublet structure (many motivations). 

(Possible) answer

Letʼs combine pNGB Higgs and multi-Higgs structure! 
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Introduction to pNGB Higgs

 Suppose there is a global symmetry G at scale above f (~TeV), 

which is spontaneously broken down into a subgroup H. 

 The structure of the Higgs sector is determined by the coset G/H.

 H should contain the custodial SO(4) ≃ SU(2)L×SU(2)R symmetry. 

 The number of NGBs (dimG-dimH) should be 4 or lager. 

G

H
Gsm

f

v
EM 2



 Suppose there is a global symmetry G at scale above f (~TeV), 

which is spontaneously broken down into a subgroup H. 

 The structure of the Higgs sector is determined by the coset G/H.

 H should contain the custodial SO(4) ≃ SU(2)L×SU(2)R symmetry. 

 The number of NGBs (dimG-dimH) should be 4 or lager. 
G

H
Gsm

f

v
EM

Table from Mrazek, Pomarol, Rattazi, Redi, Serra, Wulzer NPB 853 (2011) 1-48

Introduction to pNGB Higgs

2



 Suppose there is a global symmetry G at scale above f (~TeV), 

which is spontaneously broken down into a subgroup H. 

 The structure of the Higgs sector is determined by the coset G/H.

 H should contain the custodial SO(4) ≃ SU(2)L×SU(2)R symmetry. 

 The number of NGBs (dimG-dimH) should be 4 or lager. 
G

H
Gsm

f

v
EM

1 Doublet: Minimal Composite Higgs Model
Agashe, Contino, Pomarol (2005)
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Gripaios, Pomarol, Riva, Serra (2009)
Redi, Tesi (2012)
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2 Doublets Mrazek, Pomarol, Rattazi, Redi, Serra, Wulzer (2011)
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 Suppose there is a global symmetry G at scale above f (~TeV), 

which is spontaneously broken down into a subgroup H. 

 The structure of the Higgs sector is determined by the coset G/H.

 H should contain the custodial SO(4) ≃ SU(2)L×SU(2)R symmetry. 

 The number of NGBs (dimG-dimH) should be 4 or lager. 

We consider 2 Higgs doublets as pNGB from SO(6)  SO(4)×SO(2)
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Construction of 2 pNGB Doublets

 15 SO(6) generators: (A=1-15, a=1-3, a=1-4)^

6 SO(4)    1 SO(2)  8 Broken 
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Construction of 2 pNGB Doublets

 15 SO(6) generators: (A=1-15, a=1-3, a=1-4)^

 pNGB matrix: 

U is transformed non-linearly under SO(6):

6 SO(4)    1 SO(2)  8 Broken 

 Linear rep. Σ(15): 15 = (6,1) ⊕ (4,2) ⊕ (1,1) under SO(4)×SO(2)

Σ is transformed linearly under SO(6): Σ  g Σ g-1 
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Higgs Potential

 The potential becomes 0 because of the shift symmetry of the NGB.  
 Higgs mass also becomes 0. 
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 Non-zero potential appears at 1-loop level via the CW mechanism.

(1) Spurion method,                 (2) Explicit model  
Mrazek, Pomarol, Rattazi, Redi, Serra, Wulzer



Explicit Model 

Elementary Sector Strong Sector

Mixing

Based on the 4DCHM, De Curtis, Redi, Tesi, JHEP04 (2012) 042
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Explicit Model 

Elementary Sector Strong Sector

Mixing

+ Σ-(ρ, W) interaction
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Explicit Model 

Elementary Sector Strong Sector

Mixing

+ Σ-(ρ, W) interaction

C2 symmetry
(to avoid FCNCs)
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Based on the 4DCHM, De Curtis, Redi, Tesi, JHEP04 (2012) 042

C2 = diag(1,1,1,1,1,-1)



Explicit Model 

Elementary Sector Strong Sector

Mixing

Embeddings into SO(6) multiplets︓
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Based on the 4DCHM, De Curtis, Redi, Tesi, JHEP04 (2012) 042



Effective Lagrangian

 Integrating out the heavy degrees of freedom (ρA and ψ6), 
we obtain the effective low energy Lagrangian

≔ G ≔ K
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 After int. and expansion by Φ1,2, we can extract the potential parameters.  
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Matching  Conditions 

We need to reproduce the top mass and the weak boson mass. 

g2 vsm
2 = [sqrt(2) GF]-1

Yt
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Typical Prediction of Mass Spectrum

mh

mH

mA

mH+

f

mψ, mρ

Y1: C2 breaking term
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★f    ∞ : All extra Higgses are decoupled
 (elementary) SM limit

★To get M≠0, we need C2 breaking      
(Yukawa alignment is required ). 

E



Correlation b/w f and M 

tanβ = 2, ｍρ = f, mt = 173 GeV, 124 < mh < 126 GeV
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Correlation b/w tanβ and m(extra) 

f = 1.2 TeV, mρ = f, mt = 173 GeV, 124 < mh < 126 GeV

mH±

mA

mH
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Correlation b/w extra Higgs masses 

mH+ > mA > mH〜 〜

f = 1.2 TeV, mρ = f, mt = 173 GeV, 124 < mh < 126 GeV
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Correlation b/w mA and mψ
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f = 1.2 TeV, mρ = f, mt = 173 GeV, 124 < mh < 126 GeV



Summary

 Higgs as pNGB scenario gives natural explanation for a light Higgs.

Taking a lager global sym., we obtain a multi-Higgs structure. 

 Giving the strong sector Lagrangian, we can explicitly calculate all the 

potential parameters in terms of the strong parameters.

 We found a strong/characteristic prediction for the Higgs mass spectrum 

and a correlation to the mass of heavy fermion resonance.   

13



Spurion Method

1

 The Higgs potential is calculated only by using the spurion VEV Δψ and U.  

Merit: Quite General (but still we need to assume fermion rep. )

Demerit: Losing the correlation, O(1) uncertainties in pot. parameters. 

UTU
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Spurion Method

 Fermionic contribution assuming r = 6-plet of SO(6). 

 Arbitral O(1) parameters appear in front of each operator.  

Mrazek, Pomarol, Rattazi, Redi, Serra, Wulzer NPB 853 (2011) 1-48



tanβ = 1.5, f = 800 GeV, mρ = f, 
mt = 173 GeV, 124 < mh < 126 GeV

mH±

mA

mH


