Two-loop corrections to the Higgs trilinear coupling in models with extended scalar sectors

Johannes Braathen

based on Phys. Lett. B796 (2019) 38–46 with Shinya Kanemura

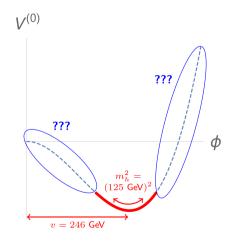
Scalars 2019 University of Warsaw, Poland September 13, 2019

Investigating the Higgs trilinear coupling λ_{hhh}

Probing the shape of the Higgs potential

- Since the Higgs discovery, the existence of the Higgs potential is confirmed, but at the moment we only know:
 - \rightarrow the location of the EW minimum: $v \simeq 246 \text{ GeV}$
 - \rightarrow the curvature of the potential around the EW minimum: $m_h \simeq 125 \; {\rm GeV}$

However what we still don't know is the **shape** of the Higgs potential, which **depends on** λ_{hhh}



Investigating the Higgs trilinear coupling λ_{hhh}

Alignment with or without decoupling

- ▶ Aligned scenarios already seem to be favoured → Higgs couplings are SM-like at tree-level
- Non-aligned scenarios (e.g. in 2HDMs) could be almost entirely excluded in the close future using synergy of HL-LHC and ILC! [c.f. Prof. Kanemura's talk on Wednesday]
 - → Alignment through decoupling? or alignment without decoupling?
- ▶ If alignment without decoupling, Higgs couplings like λ_{hhh} can still exhibit large deviations from SM predictions because of BSM loop effects
- ▶ Current best limit (at 95% CL): $-3.2 < \lambda_{hhh}/\lambda_{hhh}^{\rm SM} < 11.9$ [ATL-PHYS-PUB-2019-009]

Future measurement prospects

- \triangleright HL-LHC with 3 ab⁻¹ could reach $0.1 < \lambda_{hhh}/\lambda_{hhh}^{\sf SM} < 2.3$
- \triangleright ILC-250 cannot measure λ_{hhh} , but 500-GeV and 1-TeV extensions could obtain measurements with precisions of 27% and 10% respectively
- \triangleright CLIC 1.4 TeV + 3 TeV \rightarrow 20% accuracy
- \triangleright 100-TeV hadron collider with $30~{\rm ab}^{-1} \rightarrow$ 5-7% accuracy

see e.g. [Di Vita et al. 1711.03978], [Fujii et al. 1506.05992, 1710.07621, 1908.11299], [Gonçalves et al. 1802.04319], [Chang et al. 1804.07130], etc.

RADIATIVE CORRECTIONS TO THE HIGGS TRILINEAR COUPLING AND NON-DECOUPLING EFFECTS

The Two-Higgs-Doublet Model (2HDM)

- lacktriangle CP-conserving 2HDM, with softly-broken \mathbb{Z}_2 symmetry $(\Phi_1 o \Phi_1, \Phi_2 o -\Phi_2)$ to avoid tree-level FCNCs
- ▶ 7 free parameters in scalar sector: m_3^2 , λ_i $(i=1\cdots 5)$, $\tan\beta \equiv \langle \Phi_2^0 \rangle / \langle \Phi_1^0 \rangle$ $(m_1^2, m_2^2 \text{ eliminated with tadpole equations, and } \langle \Phi_1^0 \rangle + \langle \Phi_2^0 \rangle = v^2 = (246 \text{ GeV})^2)$
- ▶ Doublets expanded in terms of mass eigenstates: h, H: CP-even Higgses, A: CP-odd Higgs, H[±]: charged Higgs
- \blacktriangleright λ_i $(i=1\cdots 5)$ traded for mass eigenvalues $m_h, m_H, m_A, m_{H^{\pm}}$ and CP-even mixing angle α
- $ightharpoonup m_3^2$ replaced by a soft-breaking mass scale $M^2=2m_3^2/s_{2eta}$

Non-decoupling effects in λ_{hhh} at one loop

First studies of the one-loop corrections to λ_{hhh} in the 2HDM in [Kanemura, Kiyoura, Okada, Senaha, Yuan '02] and [Kanemura, Okada, Senaha, Yuan '04]

▶ Leading one-loop corrections to λ_{hhh} (for $s_{\beta-\alpha}=1$)

$$\delta^{(1)}\lambda_{hhh} = \underbrace{-\frac{48m_t^4}{v^3}}_{\text{SM-like}} + \underbrace{\sum_{\Phi=H,A,H^\pm}}_{\Phi=H,A,H^\pm} \underbrace{\frac{4n_\Phi m_\Phi^4}{v^3} \left(1 - \frac{M^2}{m_\Phi^2}\right)^3}_{\text{BSM}}$$

$$\cdots \underbrace{ \left(\text{recall } \lambda_{hhh}^{(0)} = 3m_h^2/v \right)}_{\text{CPC}}$$

- Masses of additional scalars $\Phi=H,A,H^\pm$ in 2HDM can be written as $m_\Phi^2=M^2+\tilde{\lambda}_\Phi v^2$ $(\tilde{\lambda}_\Phi\colon \text{some combination of }\lambda_i)$
- ightharpoonup Power-like dependence of BSM terms $\propto m_\Phi^4$, and

$$\left(1 - \frac{M^2}{m_{\Phi}^2}\right)^3 \to \begin{cases} 0, \text{ for } M^2 \gg \tilde{\lambda}_{\Phi} v^2 \\ 1, \text{ for } M^2 \ll \tilde{\lambda}_{\Phi} v^2 \end{cases}$$

Non-decoupling effects in λ_{hhh} at one loop

First studies of the one-loop corrections to λ_{hhh} in the 2HDM in [Kanemura, Kiyoura, Okada, Senaha, Yuan '02] and [Kanemura, Okada, Senaha, Yuan '04]

▶ Leading one-loop corrections to λ_{hhh} (for $s_{\beta-\alpha}=1$)

$$\delta^{(1)}\lambda_{hhh} = \underbrace{-\frac{48m_t^4}{v^3}}_{\text{SM-like}} + \underbrace{\sum_{\Phi=H,A,H^\pm} \frac{4n_\Phi m_\Phi^4}{v^3} \left(1 - \frac{M^2}{m_\Phi^2}\right)^3}_{\text{BSM}}$$
 (recall $\lambda_{hhh}^{(0)} = 3m_h^2/v$)

- Masses of additional scalars $\Phi=H,A,H^\pm$ in 2HDM can be written as $m_\Phi^2=M^2+\tilde{\lambda}_\Phi v^2$ ($\tilde{\lambda}_\Phi$: some combination of λ_i)
- lacktriangle Power-like dependence of BSM terms $\propto m_\Phi^4$, and

$$\left(1 - \frac{M^2}{m_{\Phi}^2}\right)^3 \to \begin{cases} 0, \text{ for } M^2 \gg \tilde{\lambda}_{\Phi} v^2 \\ 1, \text{ for } M^2 \ll \tilde{\lambda}_{\Phi} v^2 \end{cases}$$

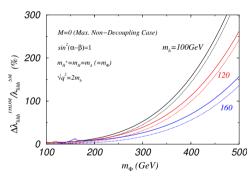


figure from [Kanemura, Okada, Senaha, Yuan '04]

► Huge deviations possible, without violating unitarity! → non-decoupling effects

State-of-the-art calculations of λ_{hhh}

At one loop

- ▷ Complete diagrammatic, OS-scheme, calculations been performed for a number of BSM models with extended sectors (with singlets, doublets, triplets)
- One-loop calculations available for 2HDMs, HSM, IDM in program H-COUP [Kanemura, Kikuchi, Sakurai, Yagyu '17], [Kanemura, Kikuchi, Mawatari, Sakurai, Yagyu '19]

Non-decoupling effects found for a range of BSM models at one loop ⇒ what happens at two loops?

At two loops

Model [ref.]	Included Corrections	Eff. pot. approx.	Typical size
MSSM [Brucherseifer, Gavin, Spira '14]	$\mathcal{O}(\alpha_s \alpha_t)$	Yes	$\mathcal{O}(\sim 10\%)$
NMSSM [Mühlleitner, Nhung, Ziesche '15]	$\mathcal{O}(\alpha_s \alpha_t)$	Yes	$\mathcal{O}(\sim 10\%)$
IDM [Senaha '18]	$\mathcal{O}(\lambda_{\Phi}^3)$ (partial)	Yes	$\mathcal{O}(\sim 2\%)$

We also want to investigate the fate of non-decoupling effects at two loops \Rightarrow we derive dominant two-loop corrections to λ_{hhh} in a 2HDM [J.B., Kanemura 1903.05417]

Our two-loop calculation of λ_{hhh} in the Two-Higgs-Doublet Model

Setup of our effective-potential calculation

Step 1: calculate
$$\underbrace{V_{\text{eff}}}_{\overline{\text{MS}}} \rightarrow \text{Step 2: } \underbrace{\lambda_{hhh} = \frac{\partial^3 V_{\text{eff}}}{\partial h^3} \bigg|_{\text{min.}}}_{\overline{\text{MS}}} \rightarrow \text{Step 3: convert from } \overline{\text{MS}} \text{ to OS scheme}$$

 $ightharpoonup \overline{\mathrm{MS}}$ -renormalised two-loop effective potential is

$$V_{\rm eff} = V^{(0)} + \kappa V^{(1)} + \kappa^2 V^{(2)} \qquad \qquad \left(\kappa \equiv \frac{1}{16\pi^2}\right)$$

 $ightharpoonup V^{(2)}$: 1PI vacuum bubble diags., and we want to study the leading two-loop BSM corrections from additional scalars and top quark, so we only need

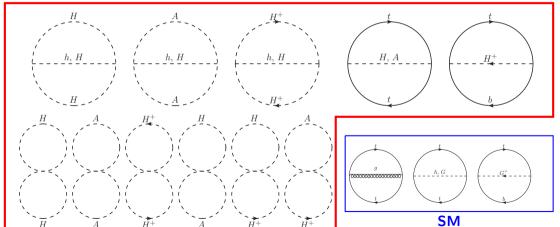
- ▶ Also, we **neglect subleading contributions** from h, G, G^{\pm} , and light fermions \Rightarrow no need to specify type of 2HDM + greatly simplifies the $\overline{\mathrm{MS}} \rightarrow \mathrm{OS}$ scheme conversion (*details in backup*)
- ▶ Scenarios without mixing: aligned 2HDM $(s_{\beta-\alpha}=1)$ ⇒ evade exp. constrains! (loop-induced deviations from alignment also neglected)

λ_{hhh} at two loops in the 2HDM

In [JB, Kanemura '19], we considered for the first time $\lambda_{hhh}^{(2)}$ in the 2HDM:

ightarrow 15 new BSM diagrams appearing in $V^{(2)}$ in the 2HDM w.r.t. the SM case

2HDM

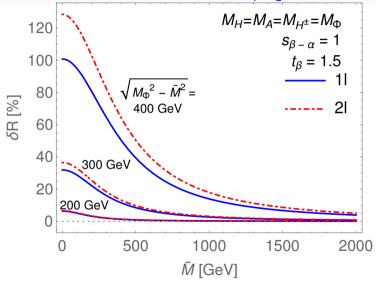


Numerical results

In the following we show results for the BSM deviation δR :

$$\delta R \equiv \frac{\lambda_{hhh}^{2\text{HDM}}}{\lambda_{hhh}^{\text{SM}}} - 1 = \frac{\Delta \lambda_{hhh}^{2\text{HDM}}}{\lambda_{hhh}^{\text{SM}}}$$

Decoupling behaviour

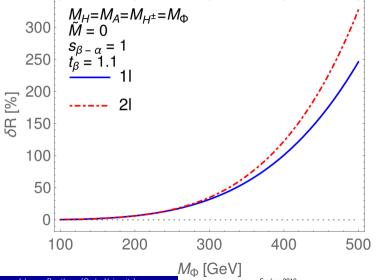


 \triangleright δR size of BSM contributions to λ_{hhh} :

$$\delta R \equiv \frac{\lambda_{hhh}^{2\mathsf{HDM}}}{\lambda_{hhh}^{\mathsf{SM}}} - 1$$

- ho \tilde{M} : "OS" version of M, defined so as to ensure proper decoupling for $M_{\Phi}^2 = \tilde{M}^2 + \tilde{\lambda}_{\Phi} v^2$ and $\tilde{M} \to \infty$
- $\begin{tabular}{ll} Radiative corrections from additional scalars + top quark indeed decouple properly for $\tilde{M} \to \infty$ \end{tabular}$

Non-decoupling effects



$$\delta R \equiv \frac{\lambda_{hhh}^{2\mathsf{HDM}}}{\lambda_{hhh}^{\mathsf{SM}}} - 1$$

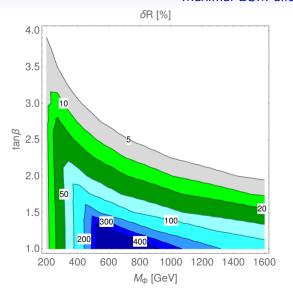
▶ Other limit of interest: $M=0 \rightarrow \text{maximal}$ non-decoupling effects

$$\triangleright \ \delta^{(1)} \hat{\lambda}_{hhh} \to \propto M_{\Phi}^4$$

$$\triangleright \ \delta^{(2)} \hat{\lambda}_{hhh} \to \propto M_{\Phi}^6$$

ightharpoonup For $\tilde{M}=0$, $\tan\beta=1.1$, tree-level unitarity is lost around $M_{\Phi} \approx 600 \text{ GeV}$ [Kanemura, Kubota, Takasugi '93]

Maximal BSM allowed deviations



$$\delta R \equiv \frac{\lambda_{hhh}^{2\mathsf{HDM}}}{\lambda_{hhh}^{\mathsf{SM}}} - 1$$

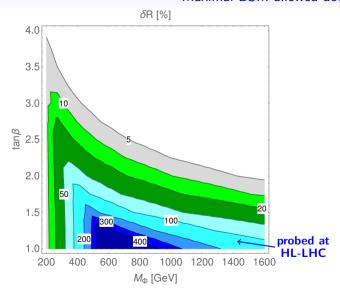
ho Here: Maximal deviation δR (1 ℓ +2 ℓ) while fulfilling perturbative unitarity, in $(aneta,M_{\Phi})$ plane

$$M_{\Phi}^2 = \tilde{M}^2 + \tilde{\lambda}_{\Phi} v^2$$

- $\, \triangleright \,$ One cannot take $M_\Phi \to \infty$ with $\tilde{M}=0$ without breaking unitarity
- $\begin{tabular}{l} $ \triangleright$ At some point \tilde{M} must be non-zero \\ \rightarrow reduction factor \\ \end{tabular}$

$$\left(1-\frac{\tilde{M}^2}{M_\Phi^2}\right)^n<1$$

Maximal BSM allowed deviations



$$\delta R \equiv \frac{\lambda_{hhh}^{2\mathsf{HDM}}}{\lambda_{hhh}^{\mathsf{SM}}} - 1$$

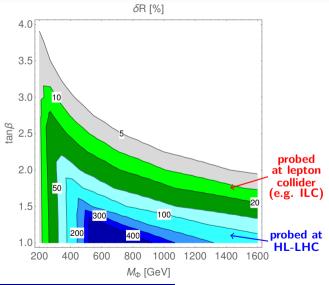
ightharpoonup Here: Maximal deviation δR (1 ℓ +2 ℓ) while fulfilling perturbative unitarity, in $(aneta,M_{\Phi})$ plane

$$M_{\Phi}^2 = \tilde{M}^2 + \tilde{\lambda}_{\Phi} v^2$$

- ho One cannot take $M_{\Phi}
 ightarrow \infty$ with $ilde{M} = 0$ without breaking unitarity
- $\begin{tabular}{l} \triangleright At some point \tilde{M} must be non-zero \\ \rightarrow reduction factor \\ \end{tabular}$

$$\left(1-\frac{\tilde{M}^2}{M_\Phi^2}\right)^n<1$$

Maximal BSM allowed deviations



$$\delta R \equiv \frac{\lambda_{hhh}^{2\mathsf{HDM}}}{\lambda_{hhh}^{\mathsf{SM}}} - 1$$

ho Here: Maximal deviation δR (1 ℓ +2 ℓ) while fulfilling perturbative unitarity, in $(aneta,M_{\Phi})$ plane

$$M_{\Phi}^2 = \tilde{M}^2 + \tilde{\lambda}_{\Phi} v^2$$

- $\, \triangleright \,$ One cannot take $M_\Phi \to \infty$ with $\tilde{M}=0$ without breaking unitarity
- > At some point $ilde{M}$ must be non-zero o reduction factor

$$\left(1-\frac{\tilde{M}^2}{M_\Phi^2}\right)^n<1$$

Summary

- ▶ First two-loop calculation of λ_{hhh} in 2HDM, in a scenario with alignment
- ▶ Two-loop corrections to λ_{hhh} remain smaller than one-loop contributions, at least as long as perturbative unitarity is maintained \rightarrow typical size 10-20% of one-loop contributions
- ⇒ non-decoupling effects found at one loop are **not drastically changed**
- \Rightarrow in the future perspective of a precise measurement of λ_{hhh} , computing corrections beyond one loop will be **necessary**
- ▶ Precise calculation of Higgs couplings (λ_{hhh} , etc.) can allow distinguishing aligned scenarios with or without decoupling

THANK YOU FOR YOUR ATTENTION!

BACKUP

Investigating the Higgs trilinear coupling λ_{hhh}

Current experimental limits

 \triangleright Current limits on $\kappa_{\lambda} \equiv \lambda_{hhh}/\lambda_{hhh}^{SM}$ are (at 95% CL)

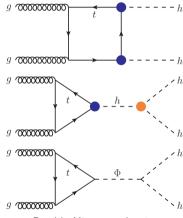
$$-3.2 < \kappa_{\lambda} < 11.9$$
 (ATLAS) and $-11 < \kappa_{\lambda} < 17$ (CMS)

see [ATL-PHYS-PUB-2019-009] (ATLAS), [CMS-HIG-17-008] (CMS)

Future prospects

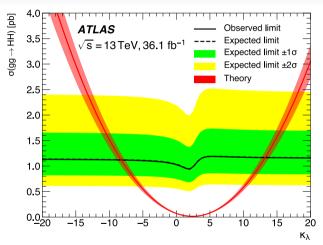
- $\,\vartriangleright\,$ HL-LHC with $3~{\rm ab}^{-1}$ could reach $0.1<\kappa_\lambda<2.3,$ and a 27-TeV HE-LHC with $15~{\rm ab}^{-1}~0.58<\kappa_\lambda<1.45$
- \triangleright ILC-250 cannot measure λ_{hhh} , but 500-GeV and 1-TeV extensions could obtain measurements with precisions of 27% and 10% respectively
- hd CLIC 1.4 TeV + 3 TeV o 20% accuracy
- riangleright 100-TeV hadron collider with $30~{
 m ab}^{-1}
 ightarrow$ 5-7% accuracy

see e.g. [Di Vita et al. 1711.03978], [Fujii et al. 1506.05992, 1710.07621], [Gonçalves et al. 1802.04319], [Chang et al. 1804.07130]



Double Higgs production

An example of experimental limits on λ_{hhh}



Example of current limits on κ_{λ} from the ATLAS search of $hh\to b\bar b\gamma\gamma$ (taken from [ATLAS collaboration 1807.04873])

Radiative corrections to the Higgs trilinear coupling

- ▶ Higgs three-point function, $\Gamma_{hhh}(p_1^2, p_2^2, p_3^2)$, requires a diagrammatic calculation, with non-zero external momentum
- ▶ Instead it is much more convenient to work with an effective Higgs trilinear coupling λ_{hhh}

$$\mathcal{L} \supset -rac{1}{6}\lambda_{hhh}h^3 \quad
ightarrow \underbrace{\lambda_{hhh} = rac{\partial^3 V_{ ext{eff}}}{\partial h^3}igg|_{ ext{min.}}}_{ ext{MS result}}$$

 $p_1 = \Gamma_{hhh}(p_1^2, p_2^2, p_3^2)$

 $V_{\rm eff} = V^{(0)} + \Delta V_{\rm eff}$: effective potential (calculated in $\overline{\rm MS}$ scheme)

 \blacktriangleright In effective-potential calculations, one should usual fix conditions for the lower derivatives of $V_{\rm eff}$

$$\frac{\partial V_{\rm eff}}{\partial h} \bigg|_{\rm min.} = 0, \qquad \qquad [M_h^2]_{V_{\rm eff}} = \frac{\partial^2 V_{\rm eff}}{\partial h^2} \bigg|_{\rm min.} - \frac{1}{v} \frac{\partial V_{\rm eff}}{\partial h} \bigg|_{\rm min.}$$
 curvature mass of the Higgs

Using these, we obtain

$$\lambda_{hhh} = \frac{3[M_h^2]_{V_{\rm eff}}}{v} + \mathcal{D}_3 \Delta V_{\rm eff} \Big|_{\rm min.}, \quad \text{ with } \mathcal{D}_3 \equiv \frac{\partial^3}{\partial h^3} - \frac{3}{v} \left[-\frac{1}{v} \frac{\partial}{\partial h} + \frac{\partial^2}{\partial h^2} \right]$$

Radiative corrections to the Higgs trilinear coupling (detailed)

 $ightharpoonup \Gamma_{hhh}$ and λ_{hhh} can be related as

$$-\Gamma_{hhh}(0,0,0) = \underbrace{\hat{\lambda}_{hhh}}_{\text{OS result}} = \left(\frac{Z_h^{\text{OS}}}{Z_h^{\overline{\text{MS}}}}\right)^{3/2} \underbrace{\lambda_{hhh}}_{\overline{\text{MS result}}} = \left(1 + \frac{3}{2} \frac{d}{dp^2} \Pi_{hh}(p^2)\big|_{p^2 = M_h^2}\right) \lambda_{hhh}$$

 $\delta Z_h^{{
m OS},\overline{
m MS}}=Z_h^{{
m OS},\overline{
m MS}}-1$: wave-function renormalisation counterterms in ${
m OS}/\overline{
m MS}$ scheme, $\Pi_{hh}(p^2)$: finite part of Higgs self-energy at ext. momentum p^2

- ▶ Taking $\Gamma_{hhh}(p_1^2, p_2^2, p_3^2) \simeq \Gamma_{hhh}(0, 0, 0)$ is a good approximation
 - ightarrow shown for λ_{hhh} at one loop in [Kanemura, Okada, Senaha, Yuan '04] (difference is only a few %)
 - → no study including external momentum exists at two loops, but in the case of two-loop Higgs mass calculations, momentum effects are known to be subleading

Setup of our effective-potential calculation (detailed)

OS result is obtained as

$$\hat{\lambda}_{hhh} = \underbrace{\left(\frac{Z_h^{\rm OS}}{Z_h^{\overline{\rm MS}}}\right)^{3/2}}_{\text{inclusion of WFR}} \times \underbrace{\lambda_{hhh}}_{\overline{\rm MS} \text{ parameters}}$$
 translated to OS ones

▶ Let's suppose (for simplicity) that λ_{hhh} only depends on one parameter x, as

$$\lambda_{hhh} = f^{(0)}(x^{\overline{\mathrm{MS}}}) + \kappa f^{(1)}(x^{\overline{\mathrm{MS}}}) + \kappa^2 f^{(2)}(x^{\overline{\mathrm{MS}}}) \qquad \left(\kappa = \frac{1}{16\pi^2}\right)$$

and

$$x^{\overline{\mathrm{MS}}} = X^{\mathrm{OS}} + \kappa \delta^{(1)} x + \kappa^2 \delta^{(2)} x$$

then in terms of OS parameters

$$\lambda_{hhh} = f^{(0)}(X^{\text{OS}}) + \kappa \left[f^{(1)}(X^{\text{OS}}) + \frac{\partial f^{(0)}}{\partial x}(X^{\text{OS}})\delta^{(1)}x \right]$$
$$+ \kappa^2 \left[f^{(2)}(X^{\text{OS}}) + \frac{\partial f^{(1)}}{\partial x}(X^{\text{OS}})\delta^{(1)}x + \frac{\partial f^{(0)}}{\partial x}(X^{\text{OS}})\delta^{(2)}x + \frac{\partial^2 f^{(0)}}{\partial x^2}(X^{\text{OS}})(\delta^{(1)}x)^2 \right]$$

Setup of our effective-potential calculation

OS result is obtained as

$$\hat{\lambda}_{hhh} = \underbrace{\left(\frac{Z_h^{\rm OS}}{Z_h^{\overline{\rm MS}}}\right)^{3/2}}_{\text{inclusion of WFR}} \times \underbrace{\lambda_{hhh}}_{\overline{\rm MS} \text{ parameters}}$$
 replaced by OS ones

▶ Let's suppose (for simplicity) that λ_{hhh} only depends on one parameter x, as

$$\lambda_{hhh} = f^{(0)}(x^{\overline{MS}}) + \kappa f^{(1)}(x^{\overline{MS}}) + \kappa^2 f^{(2)}(x^{\overline{MS}})$$
 $\left(\kappa = \frac{1}{16\pi^2}\right)$

and

$$x^{\overline{\text{MS}}} = X^{\text{OS}} + \kappa \delta^{(1)} x + \kappa^2 \delta^{(2)} x$$

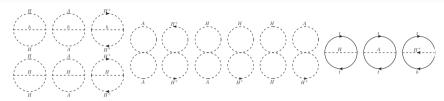
then in terms of OS parameters

$$\lambda_{hhh} = f^{(0)}(X^{\text{OS}}) + \kappa \left[f^{(1)}(X^{\text{OS}}) + \frac{\partial f^{(0)}}{\partial x} (X^{\text{OS}}) \delta^{(1)} x \right]$$

$$+ \kappa^2 \left[f^{(2)}(X^{\text{OS}}) + \frac{\partial f^{(1)}}{\partial x} (X^{\text{OS}}) \delta^{(1)} x + \frac{\partial f^{(0)}}{\partial x} (X^{\text{OS}}) \delta^{(2)} x + \frac{\partial^2 f^{(0)}}{\partial x^2} (X^{\text{OS}}) \delta^{(1)} x^2 \right]$$

because we neglect m_h in the loop corrections and $\lambda_{hhh}^{(0)} = 3m_h^2/v$ (in absence of mixing)

λ_{hhh} at two loops in the 2HDM



ightharpoonup In the $\overline{\rm MS}$ scheme

$$\begin{split} \delta^{(2)}\lambda_{hhh} &= \frac{16m_{\Phi}^4}{v^5} \left(4 + 9\cot^2 2\beta \right) \left(1 - \frac{M^2}{m_{\Phi}^2} \right)^4 \left[-2M^2 - m_{\Phi}^2 + (M^2 + 2m_{\Phi}^2) \overline{\log} \, m_{\Phi}^2 \right] \\ &+ \frac{192m_{\Phi}^6 \cot^2 2\beta}{v^5} \left(1 - \frac{M^2}{m_{\Phi}^2} \right)^4 \left[1 + 2\overline{\log} \, m_{\Phi}^2 \right] \\ &+ \frac{96m_{\Phi}^4 m_t^2 \cot^2 \beta}{v^5} \left(1 - \frac{M^2}{m_{\Phi}^2} \right)^3 \left[-1 + 2\overline{\log} \, m_{\Phi}^2 \right] + \mathcal{O}\left(\frac{m_{\Phi}^2 m_t^4}{v^5} \right) \end{split}$$

(Recall: aligned scenario, degenerate masses, dominant corrections only)

Decoupling behaviour of the $\overline{\mathrm{MS}}$ expressions

➤ Seeing whether corrections from additional BSM states decouple if said state is taken to be very massive is a good way to check the consistency of the calculation

$$\delta^{(2)}\lambda_{hhh} = \frac{16m_{\Phi}^4}{v^5} \left(4 + 9\cot^2 2\beta\right) \left(1 - \frac{M^2}{m_{\Phi}^2}\right)^4 \left[-2M^2 - m_{\Phi}^2 + (M^2 + 2m_{\Phi}^2)\overline{\log}m_{\Phi}^2\right]$$

$$\delta^{(1)}\lambda_{hhh} = \frac{16m_{\Phi}^4}{v^3} \left(1 - \frac{M^2}{m_{\Phi}^2}\right)^3 + \frac{192m_{\Phi}^6\cot^2 2\beta}{v^5} \left(1 - \frac{M^2}{m_{\Phi}^2}\right)^4 \left[1 + 2\overline{\log}m_{\Phi}^2\right]$$

$$+ \frac{96m_{\Phi}^4 m_t^2 \cot^2 \beta}{v^5} \left(1 - \frac{M^2}{m_{\Phi}^2}\right)^3 \left[-1 + 2\overline{\log}m_{\Phi}^2\right] + \mathcal{O}\left(\frac{m_{\Phi}^2 m_t^4}{v^5}\right)$$

where $m_\Phi^2 = M^2 + \tilde{\lambda}_\Phi v^2$

- ▶ To have $m_{\Phi} \to \infty$, then we must take $M \to \infty$, otherwise the quartic couplings grow out of control
- ▶ Fortunately all of these terms go like

$$(m_\Phi^2)^{n-1} \left(1 - \frac{M^2}{m_\Phi^2}\right)^n \underset{m_\Phi^2 = M^2 + \tilde{\lambda}_\Phi v^2}{=} \frac{(\tilde{\lambda}_\Phi v^2)^n}{M^2 + \tilde{\lambda}_\Phi v^2} \xrightarrow{\tilde{\lambda}_\Phi v^2 \text{ fixed}} 0$$

Decoupling behaviour and $\overline{\mathrm{MS}}$ to OS scheme conversion

▶ To obtain $\hat{\lambda}_{hhh} = -\Gamma_{hhh}(0,0,0)$, we must express our results in terms of physical parameters

$$\overline{\rm MS} \; \text{scheme:} \left\{ \underbrace{m_H, m_A, m_{H^\pm}}_{m_\Phi}, m_t, v \right\} \longrightarrow {\sf OS} \; \text{scheme:} \left\{ \underbrace{M_H, M_A, M_{H^\pm}}_{M_\Phi}, M_t, v_{\sf phys} = (\sqrt{2}G_F)^{-1/2} \right\}$$

- ▶ A priori, M is still renormalised in $\overline{\rm MS}$ scheme, because it is difficult to relate to physical observable ... but then, two-loop expressions do not decouple for $M_\Phi^2 = M^2 + \tilde{\lambda}_\Phi v^2$ and $M \to \infty$!
- ▶ This is because we should relate M_{Φ} , renormalised in OS scheme, and M, renormalised in $\overline{\rm MS}$ scheme, with a **one-loop relation** \to then the two-loop corrections decouple properly
- ▶ We give a new "OS" prescription for the finite part of the counterterm for M be requiring that the decoupling of $\delta^{(2)}\hat{\lambda}_{hhh}$ (in OS scheme) is apparent using a relation $M_{\Phi}^2 = \tilde{M}^2 + \tilde{\lambda}_{\Phi}v^2$

$$\begin{split} \delta^{(2)} \hat{\lambda}_{hhh} &= \frac{48 M_{\Phi}^6}{v_{\text{phys}}^5} \left(1 - \frac{\tilde{M}^2}{M_{\Phi}^2} \right)^4 \left\{ 4 + 3 \cot^2 2\beta \left[3 - \frac{\pi}{\sqrt{3}} \left(\frac{\tilde{M}^2}{M_{\Phi}^2} + 2 \right) \right] \right\} + \frac{576 M_{\Phi}^6 \cot^2 2\beta}{v_{\text{phys}}^5} \left(1 - \frac{\tilde{M}^2}{M_{\Phi}^2} \right)^4 \\ &+ \frac{288 M_{\Phi}^4 M_t^2 \cot^2 \beta}{v_{\text{phys}}^5} \left(1 - \frac{\tilde{M}^2}{M_{\Phi}^2} \right)^3 + \frac{168 M_{\Phi}^4 M_t^2}{v_{\text{phys}}^5} \left(1 - \frac{\tilde{M}^2}{M_{\Phi}^2} \right)^3 - \frac{48 M_{\Phi}^6}{v_{\text{phys}}^5} \left(1 - \frac{\tilde{M}^2}{M_{\Phi}^2} \right)^5 + \mathcal{O}\left(\frac{M_{\Phi}^2 M_t^4}{v_{\text{phys}}^5} \right) \end{split}$$