Minimal linear σ-model for the Goldstone Higgs

Planck 2017, 22-27 May 2017, Warsaw

S. Rigolin

Università degli Studi di Padova and INFN Padova
elusi bes

Contents

~The (Higgs) Hierarchy Problem;

- The Higgs as a (p)NGB of a global symmetry breaking;
* The Linear σ-model for a NGB-Higgs;
- A "Minimal" linear SO(5)/SO(4) breaking realisation: bosonic and fermionic sectors;
it Linear vs non-Linear realisation (if time);
- Integrating out the heavy scalar d.o.f;
¿Conclusions \& Outlooks

The Higgs Hierarchy Problem

- If the resonance found @LHC is the SM Higgs then some NP@TeV should be present to stabilise its mass

$$
V(H)=-\mu^{2} H^{\dagger} H+\lambda\left(H^{\dagger} H\right)^{2}
$$

The Higgs Hierarchy Problem

- If the resonance found @LHC is the SM Higgs then some NP@TeV should be present to stabilise its mass

The Higgs Hierarchy Problem

- If the resonance found @LHC is the SM Higgs then some NP@TeV should be present to stabilise its mass

$$
V(H)=-\mu^{2} H^{\dagger} H+\lambda\left(H^{\dagger} H\right)^{2}
$$

- The Higgs mass receives quadratically divergent contributions from loop corrections:

$$
\mu^{2}=\mu_{t r e e}^{2}+\sum_{i} \delta \mu_{i}^{2} \quad \searrow \frac{\delta \mu_{i}^{2}}{\mu^{2}} \simeq \pm \frac{g_{i}^{2}}{16 \pi^{2}}\left(\frac{\Lambda_{i}^{2}}{\mu^{2}}\right)
$$

The Higgs as a (p)NG Boson

[Georgi, Kaplan (1985), Agashe, Contino, Pomarol (2005)]

The Higgs as a (p)NG Boson

[Georgi, Kaplan (1985), Agashe, Contino, Pomarol (2005)]

The Higgs as a (p)NG Boson

[Georgi, Kaplan (1985), Agashe, Contino, Pomarol (2005)]

The Higgs as a (p)NG Boson

[Georgi, Kaplan (1985), Agashe, Contino, Pomarol (2005)]

Global Symmetry $-G \longrightarrow$ Unbroken sector - \because

$$
\text { Spontaneous Breaking }-f \longrightarrow \begin{aligned}
& \operatorname{dim}(G / \mathcal{H}) \mathrm{m}=0 \mathrm{GBs} \\
& \pi=\left(h, \varphi_{1}, \varphi_{2}, \varphi_{3}, \ldots\right)
\end{aligned}
$$

Explicit breaking $-\xi=v^{2} / f^{2}$

SM Gauge and Fermions

The Higgs as a (p)NG Boson

[Georgi, Kaplan (1985), Agashe, Contino, Pomarol (2005)]

Global Symmetry $-G \longrightarrow$ Unbroken sector - \because

The Higgs as a (p)NG Boson

[Georgi, Kaplan (1985), Agashe, Contino, Pomarol (2005)]

Global Symmetry $-G \longmapsto$ Unbroken sector - 7

HIERARCHY PROBLEM SOLVED

The Higgs as a (p)NG Boson

The Composite Higgs framework (but not only ...)

- Several coset configurations (4 or plus pGBs): SO(5)/SO(4), $S U(5) / S O(5), S O(6) / S O(5), S U(4) / S p(4), S U(4) / S U(3), \ldots ;$
- Often in the context of non-linear (HEFT) realisation of the symmetry breaking: [Contino (2011), Panico (2012), Redi (2012), Carena (2014), Carmona (2014), ...]
(Mostly) Model Independent approach, providing a parameterisation of all possible UV completions;

Contains polynomial dependence on GBs, non renormalisable: limited energy validity;

Following chiral QCD example it may be enlightening to analyse a renormalisable (Minimal) Linear σ-model

The Minimal SO(5) Linear σ-model

The Minimal SO(5) Linear σ-model

General feature of our Minimal SO(5) Linear σ-model:

The Minimal SO(5) Linear σ-model

General feature of our Minimal SO(5) Linear σ-model:

- Real scalar field in the fundamental of SO(5):

$$
\phi=\left(\pi_{1}, \pi_{2}, \pi_{3}, h, \sigma\right)
$$

The Minimal SO(5) Linear σ-model

General feature of our Minimal SO(5) Linear σ-model:

- Real scalar field in the fundamental of SO(5):

$$
\phi=\left(\pi_{1}, \pi_{2}, \pi_{3}, h, \sigma\right)
$$

- Two types of heavy vector-like fermions in the 5 and 1 of SO(5) (top and bottom partners) and massless SM quarks:

$$
\begin{array}{lll}
\psi \sim 5 & \rightarrow & M_{5} \\
\chi \sim 1 & \rightarrow & M_{1}
\end{array}
$$

$$
\underset{\left(t_{R}, b_{R}\right)}{q_{L}} \quad \rightarrow \quad m_{t, b}=0
$$

The Minimal SO(5) Linear σ-model

General feature of our Minimal SO(5) Linear σ-model:

- Real scalar field in the fundamental of SO(5):

$$
\phi=\left(\pi_{1}, \pi_{2}, \pi_{3}, h, \sigma\right)
$$

- Two types of heavy vector-like fermions in the 5 and 1 of SO(5) (top and bottom partners) and massless SM quarks:

$$
\begin{array}{lll}
\psi \sim 5 & \rightarrow & M_{5} \\
\chi \sim 1 & \rightarrow & M_{1}
\end{array} \quad \begin{gathered}
q_{L} \\
\left(t_{R}, b_{R}\right)
\end{gathered} \rightarrow \quad m_{t, b}=0
$$

- SO(5) invariant proto-Yukawa couplings:

$$
y_{1} \bar{\psi}_{L} \phi \chi_{R}+y_{2} \bar{\psi}_{R} \phi \chi_{L}
$$

The Minimal SO(5) Linear σ-model

General feature of our Minimal SO(5) Linear σ-model:

- Real scalar field in the fundamental of SO(5):

$$
\phi=\left(\pi_{1}, \pi_{2}, \pi_{3}, h, \sigma\right)
$$

- Two types of heavy vector-like fermions in the 5 and 1 of SO(5) (top and bottom partners) and massless SM quarks:

$$
\begin{array}{ccc}
\psi \sim 5 & \rightarrow & M_{5} \\
\chi \sim 1 & \rightarrow & M_{1}
\end{array}
$$

$$
\begin{gathered}
q_{L} \\
\left(t_{R}, b_{R}\right)
\end{gathered} \rightarrow \quad m_{t, b}=0
$$

- SO(5) invariant proto-Yukawa couplings:

$$
y_{1} \bar{\psi}_{L} \phi \chi_{R}+y_{2} \bar{\psi}_{R} \phi \chi_{L}
$$

- Partial compositeness heavy-SM fermion couplings (breaks explicitly global SO(5)): [Kaplan'91]

$$
\Lambda_{1}\left(\bar{q}_{L} \Delta_{2 \times 5}\right) \psi_{R}+\Lambda_{2} \bar{\psi}_{L}\left(\Delta_{5 \times 1} t_{R}\right)+\Lambda_{3} \bar{\chi}_{L}\left(\Delta_{1 \times 1} t_{R}\right)
$$

The Minimal SO(5) Linear σ-model

General feature of our Minimal SO(5) Linear σ-model:

- Real scalar field in the fundamental of SO(5):

$$
\phi=\left(\pi_{1}, \pi_{2}, \pi_{3}, h, \sigma\right)
$$

- Two types of heavy vector-like fermions in the 5 and 1 of SO(5) (top and bottom partners) and massless SM quarks:

$$
\begin{array}{ccc}
\psi \sim 5 & \rightarrow & M_{5} \\
\chi \sim 1 & \rightarrow & M_{1}
\end{array}
$$

$$
\begin{gathered}
q_{L} \\
\left(t_{R}, b_{R}\right)
\end{gathered} \rightarrow \quad m_{t, b}=0
$$

- SO(5) invariant proto-Yukawa couplings:

```
y}\mp@subsup{\overline{\psi}}{L}{}\phi\mp@subsup{\chi}{R}{}+\mp@subsup{y}{2}{}\mp@subsup{\overline{\psi}}{R}{}\phi\mp@subsup{\chi}{L}{
```

- Partial compositeness heavy-SM fermion couplings (breaks explicitly global SO(5)): [Koplan'91]

$$
\Lambda_{1}\left(\bar{q}_{L} \Delta_{2 \times 5}\right) \psi_{R}+\Lambda_{2} \bar{\psi}_{L}\left(\Delta_{5 \times 1} t_{R}\right)+\Lambda_{3} \bar{\chi}_{L}\left(\Delta_{1 \times 1} t_{R}\right)
$$

The scalar potential

The most general renormalisable scalar potential SO(4) invariant contains 8 parameters, but only 4 are needed at 1-loop level:

$$
V(h, \sigma)=\lambda\left(\underset{\substack{\text { sO(5) invariant term } \\ \text { induces } S B \text { to SO(4) }}}{\left.h^{2}+\sigma^{2}-f^{2}\right)^{2}}+\underset{\substack{\text { Explicit SO(5) breaking } \\ \text { induced by fermionic loops }}}{\alpha f^{3} \sigma-\beta f^{2} h^{[B a r b i e r i(2007)]}}\right.
$$

One obtains the following expressions for vevs:

$$
v_{\sigma}^{2}=f^{2} \frac{\alpha^{2}}{4 \beta^{2}} \quad, \quad v_{h}^{2}=f^{2}\left(1-\frac{\alpha^{2}}{4 \beta^{2}}+\frac{\beta}{2 \lambda}\right)
$$

and masses for the physical light and heavy scalar states ($\tilde{h}, \tilde{\sigma}$)

$$
m_{h, \sigma}^{2}=4 \lambda f^{2}\left\{\left(1+\frac{3}{4} \frac{\beta}{\lambda}\right) \mp\left[1+\frac{\beta}{2 \lambda}\left(1+\frac{\alpha^{2}}{4 \beta^{2}}+\frac{\beta}{8 \lambda}\right)\right]^{1 / 2}\right\}
$$

rotated with respect to the original fields (h, σ) :

$$
\binom{h}{\sigma}=\binom{\tilde{h} \cos \gamma+\tilde{\sigma} \sin \gamma}{\tilde{\sigma} \cos \gamma-\tilde{h} \sin \gamma} \quad \tan 2 \gamma=\frac{4 v_{h} v_{\sigma}}{3 v_{\sigma}^{2}-v_{h}^{2}-f^{2}}
$$

The SO(5)/SO(4) scalar-gauge sector

Setting the notation useful in the next slides:

$$
\begin{array}{ll}
H=\frac{(h+v)}{\sqrt{2}} \mathbf{U}\binom{0}{1}, \longrightarrow \mathbf{U}(x)=e^{i \frac{\pi(x)}{f}} \\
\mathbf{D}_{\mu} \mathbf{U}(x) \equiv \partial_{\mu} \mathbf{U}+i \frac{g}{2} W_{\mu}^{a} \sigma_{a} \mathbf{U}-i \frac{g^{\prime}}{2} B_{\mu} \mathbf{U} \sigma_{3} \longrightarrow & \mathbf{V}_{\mu}=\left(\mathbf{D}_{\mu} \mathbf{U}\right) \mathbf{U}^{\dagger}
\end{array}
$$

The $\mathrm{SO}(5) / \mathrm{SO}(4)$ scalar-gauge sector reads (σ is a SM singlet)

$$
\begin{aligned}
\mathcal{L}_{g, s} \equiv\left(D_{\mu} H\right)^{\dagger}\left(D_{\mu} H\right) & \supset \frac{v_{h}^{2}}{4}\left\langle\mathbf{V}_{\mu} \mathbf{V}^{\mu}\right\rangle+\frac{v_{h}}{2}(\tilde{h} \cos \gamma+\tilde{\sigma} \sin \gamma)\left\langle\mathbf{V}_{\mu} \mathbf{V}^{\mu}\right\rangle \\
& +\frac{1}{4}\left(\tilde{h}^{2} \cos ^{2} \gamma+2 \tilde{h} \tilde{\sigma} \sin \gamma \cos \gamma+\tilde{\sigma}^{2} \sin ^{2} \gamma\right)\left\langle\mathbf{V}_{\mu} \mathbf{V}^{\mu}\right\rangle
\end{aligned}
$$

- The first term identify the Gauge Boson masses:

$$
M_{W}^{2}=\frac{g^{2} v_{h}^{2}}{4} \quad, \quad M_{Z}^{2}=\frac{\left(g^{2}+g^{\prime 2}\right) v_{h}^{2}}{4} \quad \rightarrow \quad v_{h} \equiv v=246 \mathrm{GeV}
$$

- The scalar-gauge couplings are "SM like" but with a $\cos \gamma$ suppression for \tilde{h} (and a $\sin \gamma$ suppression for $\tilde{\sigma}$)

Parameters renormalisation

The 4 parameters appearing in the scalar Lagrangian can be expressed in terms of the following $2+2$ observables:

$$
\left\{G_{F} \equiv\left(\sqrt{2} v^{2}\right)^{-1}, \quad m_{h}, \quad m_{\sigma}, \quad \sin ^{2} \gamma\right\}
$$

by the following exact relation:

$$
\begin{aligned}
\lambda & =\frac{\sin ^{2} \gamma m_{\sigma}^{2}}{8 v^{2}}\left(1+\cot ^{2} \gamma \frac{m_{h}^{2}}{m_{\sigma}^{2}}\right) \\
\frac{\beta}{4 \lambda} & =\frac{m_{h}^{2} m_{\sigma}^{2}}{\sin ^{2} \gamma m_{\sigma}^{4}+\cos ^{2} \gamma m_{h}^{4}-2 m_{h}^{2} m_{\sigma}^{2}} \\
\frac{\alpha^{2}}{4 \beta^{2}} & =\frac{\sin ^{2}(2 \gamma)\left(m_{\sigma}^{2}-m_{h}^{2}\right)^{2}}{4\left(\sin ^{2} \gamma m_{\sigma}^{4}+\cos ^{2} \gamma m_{h}^{4}-2 m_{h}^{2} m_{\sigma}^{2}\right)} \\
f^{2} & =\frac{v^{2}\left(\sin ^{2} \gamma m_{\sigma}^{4}+\cos ^{2} \gamma m_{h}^{4}-2 m_{h}^{2} m_{\sigma}^{2}\right)}{\left(\sin ^{2} \gamma m_{\sigma}^{2}+\cos ^{2} \gamma m_{h}^{2}\right)^{2}}
\end{aligned}
$$

Th-available parameter space

Th-available parameter space

Exp-available parameter space

Higgs coupling to gauge bosons + effective coupling to gluons give bounds on the mixing angle γ

$$
\begin{aligned}
& \sin ^{2} \gamma<0.18 \text { at } 2 \sigma \\
& \cos ^{2} \gamma>0.82 \text { at } 2 \sigma \\
& \left(\kappa_{F}=\frac{g_{h F F}}{g_{H F F}^{S H}} \quad \kappa_{V}=\frac{g_{h V V}}{g_{H V V}^{S N V}}\right)
\end{aligned}
$$

Available parameter space

Available parameter space

Bounds from Precision © LEP

Lower m_{σ} is better, but fermion can always compensate

Precision Bounds and Zbb

LHC Bounds on σ

Integrating out the heavy scalar

LHC bounds are going to push higher and higher the σ scale, so it may useful to integrate out the heavy field;
The mass of the heavy scalar is controlled by the self coupling λ

$$
\begin{aligned}
& m_{\sigma}^{2}=8 \lambda f^{2}+O\left(\lambda^{0}\right) \\
& m_{h}^{2}=2 \beta v^{2}+O(1 / \lambda)
\end{aligned} \quad \longrightarrow \quad \frac{m_{h}^{2}}{m_{\sigma}^{2}} \simeq \frac{\beta \xi}{4 \lambda}
$$

It is useful to redefine the scalar fields in "polar" coordinates:

$$
\begin{aligned}
\sigma & =\rho \cos \varphi \\
h & =\rho \sin \varphi
\end{aligned} \longrightarrow \quad \begin{aligned}
\rho & =\langle\rho\rangle+\sigma \\
\varphi & =\langle\varphi\rangle+h
\end{aligned}
$$

Solving perturbatively the ρ equation of motion:

$$
\rho=\rho_{0}+\rho_{1} / \lambda+\rho_{2} / \lambda^{2}+\ldots
$$

gives the effective Lagrangian exapanded in powers of $1 / \lambda$

$$
\mathcal{L}=\mathcal{L}_{0}+\mathcal{L}_{1} / \lambda+\mathcal{L}_{2} / \lambda^{2}+\ldots
$$

Integrating out the heavy scalar

- The LO Lagrangian is the 2∂ custodial preserving $\mathrm{SO}(5) / \mathrm{SO}(4)$ HEFT Lagrangian ($V_{\mu}=\left(D_{\mu} U\right) U^{\dagger}$) with the SSB breaking potential term induced by α and β parameters: [Agashe, Contino, Pomarol (2005)]

$$
\mathcal{L}_{0}=\frac{1}{2}\left(\partial_{\mu} \varphi\right)\left(\partial^{\mu} \varphi\right)-\frac{v^{2}}{4} \frac{s_{\phi}^{2}}{\xi}\left\langle V^{\mu} V_{\mu}\right\rangle-\underset{\text { SO(5) invariant terms }}{f^{4}\left(\alpha c_{\varphi}-\beta s_{\varphi}^{2}\right)} \underset{\text { SO(5) breaking term }}{\mathcal{L}^{2}}
$$

- The NLO terms contains $4 \boldsymbol{\partial}$ operators, corrections to the $2 \boldsymbol{\partial}$ LO Lagrangian and correction to the SSB breaking potential:

NOTE: Interactions with SM and heavy fermions are here neglected but they can easily be included [Gavela et al. (2016)]

Only 5 derivative operators are generated at tree level at $O(1 / \lambda)$ (the Higgs potential terms at LO and NLO are not reported here)

	Operator	$\mathcal{F}_{k}(\varphi)$	$1 / \lambda^{n}$
$\mathcal{L}_{2 \partial}$	$\mathcal{P}_{H}=\frac{1}{2}\left(\partial_{\mu} h\right)^{2} \mathcal{F}_{H}(\varphi)$	$1-\frac{1}{4 \lambda}\left(\alpha c_{\varphi}-2 \beta s_{\varphi}^{2}\right)$	0
	$\mathcal{P}_{C}=-\frac{v^{2}}{4}\left\langle V_{\mu} V^{\mu}\right\rangle \mathcal{F}_{C}(\varphi)$	$\frac{1}{\xi}\left[1-\frac{1}{4 \lambda}\left(\alpha c_{\varphi}-2 \beta s_{\varphi}^{2}\right)\right] s_{\varphi}^{2}$	0
$\mathcal{L}_{4 \partial}$	$\mathcal{P}_{D H}=\frac{1}{v^{4}}\left(\partial_{\mu} h\right)^{4} \mathcal{F}_{D H}(\varphi)$	$\frac{\xi^{2}}{16 \lambda}$	1
	$\mathcal{P}_{6}=\left\langle V_{\mu} V^{\mu}\right\rangle^{2} \mathcal{F}_{6}(\varphi)$	$\frac{s_{\varphi}^{4}}{64 \lambda}$	1
	$\mathcal{P}_{20}=\frac{1}{v^{2}}\left\langle V_{\mu} V^{\mu}\right\rangle\left(\partial_{\nu} h\right)^{2} \mathcal{F}_{20}(\varphi)$	$-\frac{\xi}{16 \lambda} s_{\varphi}^{2}$	1

$$
\varphi=\langle\varphi\rangle+h \quad c_{\varphi}=\cos (\varphi / f) \quad s_{\varphi}=\sin (\varphi / f)
$$

Integrating out the heavy scalar

- The Higgs potential triggering the EW SB is proportional to the explicit SO(5) breaking parameters α and β :
- At NLO the Higgs kinetic term $\left(\mathcal{P}_{H}\right)$ gets non-canonical and the Higgs field has to renormalised: $h \rightarrow(1-\beta /(4 \lambda))$
- From \mathcal{P}_{C} one defines Mw_{w} and the Higgs to Gauge Boson couplings

$$
\kappa_{V} \equiv \frac{g_{h V V}}{g_{h V V}^{S M}}=\sqrt{1-\xi}+\frac{\beta \xi}{2 \lambda} \frac{1-\xi / 2}{\sqrt{1-\xi}}+O\left(1 / \lambda^{2}\right)
$$

- The 3 operators with 4∂, at $O(1 / \lambda)$, are $S O(5)$ preserving; they contribute to $4 \mathrm{~h}, 4 \mathrm{~V}$ (+hs) and $2 \mathrm{~V}+2 \mathrm{~h}$ (+hs) couplings.
- Only few of the possible non-linear operators appears at tree level (at any order $1 / \lambda$). For example operators containing $\left\langle V_{\mu} V_{\nu}\right\rangle$ would be loop-induced and expected to be sub-leading.

Σ decomposition of G/H coset

- It is interesting to point out the connection with the Σ decomposition of the chiral Lagrangian of a generic G/H model;
[Alonso et al. JHEP 1412 (2014) 034]
Let's denote with $\Theta(x)$ the $G B$ field of the G / H coset, and with \tilde{S}_{μ} the gauge fields (subgroup of G)
$\Theta(x)=e^{i \frac{\pi(x)}{f}} \longrightarrow \mathbf{D}_{\mu} \Theta(x)=\partial_{\mu} \Theta(x)+i g\left(\tilde{S}_{\mu} \Theta(x)-\Theta(x) \tilde{S}_{\mu}^{\mathcal{R}}\right)$
- Following ALF, one can write the most general effective chiral Lagrangian (scale f) compatible with the SM gauge symmetry, (custodial preserving) using as building blocks:
[Appelquist, Carazzone (1980); Longhitano (1980), Feruglio (1993)]

$$
\begin{array}{cc}
\tilde{\mathbf{V}}_{\mu}=\left(\mathbf{D}_{\mu} \Theta\right) \Theta^{\dagger} & \tilde{S}_{\mu \nu}=\left(\tilde{W}_{\mu \nu}, \tilde{B}_{\mu \nu}\right) \\
\mathcal{D}_{\mu} \tilde{\mathbf{V}}^{\mu}=\partial_{\mu} \tilde{\mathbf{V}}^{\mu}+i g_{S}\left[\tilde{S}_{\mu}, \tilde{\mathbf{V}}_{\mu}\right] &
\end{array}
$$

SO(5)/SO(4) EW chiral Lagrangian

Basis of CP-even gauge-Goldstone operators up to 40, assuming no extra-SM custodial symmetry breaking terms:

$$
\begin{array}{ll}
\widetilde{\mathcal{A}}_{C}=-\frac{f^{2}}{4} \operatorname{Tr}\left(\widetilde{\mathbf{V}}_{\mu} \widetilde{\mathbf{V}}^{\mu}\right) & \widetilde{\mathcal{A}}_{3}=i g \operatorname{Tr}\left(\widetilde{\mathbf{W}}_{\mu \nu}\left[\widetilde{\mathbf{V}}^{\mu}, \widetilde{\mathbf{V}}^{\nu}\right]\right) \\
\widetilde{\mathcal{A}}_{B}=-\frac{1}{4} \operatorname{Tr}\left(\widetilde{\mathbf{B}}_{\mu \nu} \widetilde{\mathbf{B}}^{\mu \nu}\right) & \widetilde{\mathcal{A}}_{4}=\operatorname{Tr}\left(\widetilde{\mathbf{V}}_{\mu} \widetilde{\mathbf{V}}^{\mu}\right) \operatorname{Tr}\left(\widetilde{\mathbf{V}}_{\mu} \widetilde{\mathbf{V}}^{\mu}\right) \\
\widetilde{\mathcal{A}}_{W}=-\frac{1}{4} \operatorname{Tr}\left(\widetilde{\mathbf{W}}_{\mu \nu} \widetilde{\mathbf{W}}^{\mu \nu}\right) & \widetilde{\mathcal{A}}_{5}=\operatorname{Tr}\left(\widetilde{\mathbf{V}}_{\mu} \widetilde{\mathbf{V}}_{\nu}\right) \operatorname{Tr}\left(\widetilde{\mathbf{V}}^{\mu} \widetilde{\mathbf{V}}^{\nu}\right) \\
\widetilde{\mathcal{A}}_{B \Theta}=g^{\prime 2} \operatorname{Tr}\left(\Theta \widetilde{\mathbf{B}}_{\mu \nu} \Theta^{\dagger} \widetilde{\mathbf{B}}^{\mu \nu}\right) & \widetilde{\mathcal{A}}_{6}=\operatorname{Tr}\left(\left(\mathcal{D}_{\mu} \widetilde{\mathbf{V}}^{\mu}\right)^{2}\right) \\
\widetilde{\mathcal{A}}_{W \Theta}=g^{2} \operatorname{Tr}\left(\Theta \widetilde{\mathbf{W}}_{\mu \nu} \Theta^{\dagger} \widetilde{\mathbf{W}}^{\mu \nu}\right) & \widetilde{\mathcal{A}}_{7}=\operatorname{Tr}\left(\widetilde{\mathbf{V}}_{\mu} \widetilde{\mathbf{V}}^{\mu} \widetilde{\mathbf{V}}_{\nu} \widetilde{\mathbf{V}}^{\nu}\right) \\
\widetilde{\mathcal{A}}_{1}=g g^{\prime} \operatorname{Tr}\left(\Theta \widetilde{\mathbf{B}}_{\mu \nu} \Theta^{\dagger} \widetilde{\mathbf{W}}^{\mu \nu}\right) & \widetilde{\mathcal{A}}_{8}=\operatorname{Tr}\left(\widetilde{\mathbf{V}}_{\mu} \widetilde{\mathbf{V}}_{\nu} \widetilde{\mathbf{V}}^{\mu} \widetilde{\mathbf{V}}^{\nu}\right) \\
\widetilde{\mathcal{A}}_{2}=i g^{\prime} \operatorname{Tr}\left(\widetilde{\mathbf{B}}_{\mu \nu}\left[\widetilde{\mathbf{V}}^{\mu}, \widetilde{\mathbf{V}}^{\nu}\right]\right) & \widetilde{\mathcal{A}}_{9}=\operatorname{Tr}\left(\left(\mathcal{D}_{\mu} \widetilde{\mathbf{V}}^{\mu}\right) \widetilde{\mathbf{V}}_{\nu} \widetilde{\mathbf{V}}^{\nu}\right) \\
\hline
\end{array}
$$

SO(5)/SO(4) EW chiral Lagrangian

Basis of CP-even gauge-Goldstone operators up to 4d, assuming no extra-SM custodial symmetry breaking terms:

$$
\begin{array}{ll}
\hline \widetilde{\mathcal{A}}_{C}=-\frac{f^{2}}{4} \operatorname{Tr}\left(\widetilde{\mathbf{V}}_{\mu} \widetilde{\mathbf{V}}^{\mu}\right) \\
\hline \widetilde{\mathcal{A}}_{B}=-\frac{1}{4} \operatorname{Tr}\left(\widetilde{\mathbf{B}}_{\mu \nu} \widetilde{\mathbf{B}}^{\mu \nu}\right) \\
\widetilde{\mathcal{A}}_{W}=-\frac{1}{4} \operatorname{Tr}\left(\widetilde{\mathbf{W}}_{\mu \nu} \widetilde{\mathbf{W}}^{\mu \nu}\right) & \widetilde{\mathcal{A}}_{3}=i g \operatorname{Tr}\left(\widetilde { \mathbf { W } } _ { \mu \nu } \left[\widetilde{\mathbf{V}}^{\mu}, \widetilde{\mathbf{V}}^{\nu}\right.\right. \\
\hline \widetilde{\mathcal{A}}_{B \Theta}=g^{\prime 2} \operatorname{Tr}\left(\Theta \widetilde{\mathbf{B}}_{\mu \nu} \Theta^{\dagger} \widetilde{\mathbf{B}}^{\mu \nu}\right) & \widetilde{\mathcal{A}}_{5}=\operatorname{Tr}\left(\widetilde{\mathbf{V}}_{\mu} \widetilde{\mathbf{V}}^{\mu}\right) \operatorname{Tr}\left(\widetilde{\mathbf{V}}_{\mu} \widetilde{\mathbf{V}}_{\mu}\right) \operatorname{Tr}\left(\widetilde{\mathbf{V}}^{\mu}\right. \\
\widetilde{\mathcal{A}}_{W \Theta}=g^{2} \operatorname{Tr}\left(\Theta \widetilde{\mathbf{W}}_{\mu \nu} \Theta^{\dagger} \widetilde{\mathbf{W}}^{\mu \nu}\right) & \left.\widetilde{\mathcal{A}}_{\dot{\prime}}=\operatorname{Ti}\left(\mathcal{D}_{\mu} \widetilde{\mathbf{V}}^{\mu}\right)^{2}\right) \\
\widetilde{\mathcal{A}}_{1}=g g^{\prime} \operatorname{Tr}\left(\Theta \widetilde{\mathbf{B}}_{\mu \nu} \Theta^{\dagger} \widetilde{\mathbf{W}}^{\mu \nu}\right) & \widetilde{\mathcal{A}}_{7}=\operatorname{Tr}\left(\widetilde{\mathbf{V}}_{\mu} \widetilde{\mathbf{V}}^{\mu} \widetilde{\mathbf{V}}_{\nu} \widetilde{\mathbf{V}}^{\nu}\right) \\
\widetilde{\mathcal{A}}_{2}=i g^{\prime} \operatorname{Tr}\left(\widetilde{\mathbf{B}}_{\mu \nu}\left[\widetilde{\mathbf{V}}^{\mu}, \widetilde{\mathbf{V}}^{\nu}\right]\right) & \widetilde{\mathcal{A}}_{8}=\operatorname{Tr}\left(\widetilde{\mathbf{V}}_{\mu} \widetilde{\mathbf{V}}_{\nu} \widetilde{\mathbf{V}}^{\mu} \widetilde{\mathbf{V}}^{\nu}\right) \\
& \widetilde{\mathcal{A}}_{y}=\operatorname{Ti}\left(\left(\mathcal{D}_{\mu} \widetilde{\mathbf{V}}^{\mu}\right) \widetilde{\mathbf{V}}_{\nu} \widetilde{\mathbf{V}}^{\nu}\right)
\end{array}
$$

Σ decomposition of SO(5)/SO(4) coset

- The building blocks for the $\mathrm{SO}(5) / \mathrm{SO}(4)$ Lagrangian are defined:

$$
\left.\Theta(x)=e^{i \frac{\varphi(x)}{f} \mathcal{X}(x)}=\mathbf{1}+i \sin (\varphi / f) \mathcal{X}+(\cos (\varphi / f)-\mathbf{1}) \mathcal{X}^{2}\right)(\varphi(x)=h(x)+\langle\varphi\rangle)
$$

$$
\mathcal{X}(x)=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
0 & 0 & \mathbf{U}(x) e_{1} \\
0 & 0 & \mathbf{U}(x) e_{2} \\
\left(\mathbf{U}(x) e_{1}\right)^{\dagger} & \left(\mathbf{U}(x) e_{2}\right)^{\dagger} & 0
\end{array}\right) \quad \text { with } \quad e_{1}=\binom{1}{0}, \quad e_{2}=\binom{0}{1}
$$

- The effective Lagrangian expanded at $O(1 / \lambda)$ for the integrated Minimal SO(5) linear model get contributions only from 2 ops:

$$
\begin{aligned}
& \tilde{\mathcal{A}}_{C}=\mathcal{P}_{H}+\frac{4}{\xi} \sin ^{2}\left(\frac{\varphi}{2 f}\right) \mathcal{P}_{C} \\
& \tilde{\mathcal{A}}_{4}=4 \xi^{2} \mathcal{P}_{D H}+16 \sin ^{4}\left(\frac{\varphi}{2 f}\right) \mathcal{P}_{6}-16 \xi \sin ^{2}\left(\frac{\varphi}{2 f}\right) \mathcal{P}_{20}
\end{aligned}
$$

Σ decomposition of SO(5)/SO(4) coset

- The building blocks for the $\mathrm{SO}(5) / \mathrm{SO}(4)$ Lagrangian are defined:

$$
\Theta(x)=e^{i \frac{\varphi(x)}{f} \mathcal{X}(x)}=\mathbf{1}+i \sin (\varphi / f) \mathcal{X}+(\cos (\varphi / f)-1) \mathcal{X}^{2} \quad(\varphi(x)=h(x)+\langle\varphi\rangle)
$$

$$
\mathcal{X}(x)=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
0 & 0 & \mathbf{U}(x) e_{1} \\
0 & 0 & \mathbf{U}(x) e_{2} \\
\left(\mathbf{U}(x) e_{1}\right)^{\dagger} & \left(\mathbf{U}(x) e_{2}\right)^{\dagger} & 0
\end{array}\right) \quad 3 \text { SM WBGBS }
$$

- The effective Lagrangian expanded at $O(1 / \lambda)$ for the integrated Minimal SO(5) linear model get contributions only from 2 ops:

$$
\begin{aligned}
& \tilde{\mathcal{A}}_{C}=\mathcal{P}_{H}+\frac{4}{\xi} \sin ^{2}\left(\frac{\varphi}{2 f}\right) \mathcal{P}_{C} \\
& \tilde{\mathcal{A}}_{4}=4 \xi^{2} \mathcal{P}_{D H}+16 \sin ^{4}\left(\frac{\varphi}{2 f}\right) \mathcal{P}_{6}-16 \xi \sin ^{2}\left(\frac{\varphi}{2 f}\right) \mathcal{P}_{20}
\end{aligned}
$$

Σ decomposition of SO(5)/SO(4) coset

- The building blocks for the $\mathrm{SO}(5) / \mathrm{SO}(4)$ Lagrangian are defined:

- The effective Lagrangian expanded at $O(1 / \lambda)$ for the integrated Minimal SO(5) linear model get contributions only from 2 ops:

$$
\begin{aligned}
& \tilde{\mathcal{A}}_{C}=\mathcal{P}_{H}+\frac{4}{\xi} \sin ^{2}\left(\frac{\varphi}{2 f}\right) \mathcal{P}_{C} \\
& \tilde{\mathcal{A}}_{4}=4 \xi^{2} \mathcal{P}_{D H}+16 \sin ^{4}\left(\frac{\varphi}{2 f}\right) \mathcal{P}_{6}-16 \xi \sin ^{2}\left(\frac{\varphi}{2 f}\right) \mathcal{P}_{20}
\end{aligned}
$$

Σ decomposition of SO(5)/SO(4) coset

- The building blocks for the $\mathrm{SO}(5) / \mathrm{SO}(4)$ Lagrangian are defined:

$$
\left.\Theta(x)=e^{i \frac{\varphi(x)}{f} \mathcal{X}(x)}=\mathbf{1}+i \sin (\varphi / f) \mathcal{X}+(\cos (\varphi / f)-\mathbf{1}) \mathcal{X}^{2}\right)(\varphi(x)=h(x)+\langle\varphi\rangle)
$$

$$
\mathcal{X}(x)=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
0 & 0 & \mathbf{U}(x) e_{1} \\
0 & 0 & \mathbf{U}(x) e_{2} \\
\left(\mathbf{U}(x) e_{1}\right)^{\dagger} & \left(\mathbf{U}(x) e_{2}\right)^{\dagger} & 0
\end{array}\right) \quad \text { with } \quad e_{1}=\binom{1}{0}, \quad e_{2}=\binom{0}{1}
$$

- The effective Lagrangian expanded at $O(1 / \lambda)$ for the integrated Minimal SO(5) linear model get contributions only from 2 ops:

$$
\begin{aligned}
& \tilde{\mathcal{A}}_{C}=\mathcal{P}_{H}+\frac{4}{\xi} \sin ^{2}\left(\frac{\varphi}{2 f}\right) \mathcal{P}_{C} \\
& \tilde{\mathcal{A}}_{4}=4 \xi^{2} \mathcal{P}_{D H}+16 \sin ^{4}\left(\frac{\varphi}{2 f}\right) \mathcal{P}_{6}-16 \xi \sin ^{2}\left(\frac{\varphi}{2 f}\right) \mathcal{P}_{20}
\end{aligned}
$$

Summary \& Outlook

Summary \& Outlook

- The GB nature of the Higgs is a well motivated framework that solve the Hierarchy problem;

Summary \& Outlook

- The GB nature of the Higgs is a well motivated framework that solve the Hierarchy problem;
- We discussed a "Minimal" Linear σ model based on the SO(5)/SO(4) global symmetry breaking;

Summary \& Outlook

- The GB nature of the Higgs is a well motivated framework that solve the Hierarchy problem;
- We discussed a "Minimal" Linear σ model based on the SO(5)/SO(4) global symmetry breaking;
- The main phenomenological signatures have been studied (precision, LHC bounds on h, σ signatures);

Summary \& Outlook

- The GB nature of the Higgs is a well motivated framework that solve the Hierarchy problem;
- We discussed a "Minimal" Linear σ model based on the SO(5)/SO(4) global symmetry breaking;
- The main phenomenological signatures have been studied (precision, LHC bounds on h, σ signatures);
- One of the most interesting features is the possibility to check the linear-nonlinear divide;

Summary \& Outlook

- The GB nature of the Higgs is a well motivated framework that solve the Hierarchy problem;
- We discussed a "Minimal" Linear σ model based on the SO(5)/SO(4) global symmetry breaking;
- The main phenomenological signatures have been studied (precision, LHC bounds on h, σ signatures);
- One of the most interesting features is the possibility to check the linear-nonlinear divide;
- Once the heavy scalar is integrated out, a particular subset of operators of the $S O(5) / S O(4)$ effective chiral Lagrangian is obtained;

Backup Slides

The Heavy Fermion content

Two type of fermions with different charge under an extra $U(1)_{x}$ can be defined ($X=2 / 3$ and $X=-1 / 3$) for the 5 and the 1 of $S O(5)$:

$$
\begin{array}{ll}
\psi_{+2 / 3}^{(5)} \sim\left(X, Q, T^{(5)}\right), & \psi_{+2 / 3}^{(1)} \sim T^{(1)} \\
\psi_{-1 / 3}^{(5)} \sim\left(Q^{\prime}, X^{\prime}, B^{(5)}\right), & \psi_{-1 / 3}^{(1)} \sim B^{(1)}
\end{array}
$$

The decomposition of fermions under $S U(2)_{\llcorner } \times U(1)_{Y}$ group is shown

Charge/Field	X	Q	$T_{(1,5)}$	Q^{\prime}	X^{\prime}	$B_{(1,5)}$
$\Sigma_{R}^{(3)}$	$+1 / 2$	$-1 / 2$	0	$+1 / 2$	$-1 / 2$	0
$S U(2)_{L} \times U(1)_{Y}$	$(2,+7 / 6)$	$(2,+1 / 6)$	$(1,+2 / 3)$	$(2,+1 / 6)$	$(2,-5 / 6)$	$(1,-1 / 3)$
x	$+2 / 3$	$+2 / 3$	$+2 / 3$	$-1 / 3$	$-1 / 3$	$-1 / 3$
$q_{E M}$	$X^{u}=+5 / 3$	$Q^{u}=+2 / 3$	$+2 / 3$	$Q^{\prime u}=+2 / 3$	$X^{\prime u}=-1 / 3$	$-1 / 3$
	$X^{d}=+2 / 3$	$Q^{d}=-1 / 3$		$Q^{\prime d}=-1 / 3$	$X^{\prime d}=-4 / 3$	

q_{L}
q_{L}
b_{R}

The Heavy Fermion Lagrangian

- The SO(5) preserving part of the Lagrangian includes the proto-Yukawa interactions with the scalar multiplet:

$$
\begin{aligned}
\mathcal{L}_{S O(5)} & =\bar{\psi}^{(2 / 3)}\left(i \not D-M_{5}\right) \psi^{(2 / 3)}+\bar{\psi}^{(-1 / 3)}\left(i \not D-M_{5}^{\prime}\right) \psi^{(-1 / 3)} \\
& +\bar{\chi}^{(2 / 3)}\left(i \not D-M_{1}\right) \chi^{(2 / 3)}+\bar{\chi}^{(-1 / 3)}\left(i \not D-M_{1}^{\prime}\right) \chi^{(-1 / 3)} \\
& -y_{1} \bar{\psi}_{L}^{(2 / 3)} \phi \chi_{R}^{(2 / 3)}-y_{2} \bar{\psi}_{R}^{(2 / 3)} \phi \chi_{L}^{(2 / 3)} \\
& -y_{1}^{\prime} \bar{\psi}_{L}^{(-1 / 3)} \phi \chi_{R}^{(-1 / 3)}-y_{2}^{\prime} \bar{\psi}_{R}^{(-1 / 3)} \phi
\end{aligned}
$$

- The SO(5) breaking part of the fermionic Lagrangian is given by partial-compositeness couplings with SM (massless) fermion

$$
\begin{aligned}
\mathcal{L}_{\text {SQ(5) }}= & -\left[\Lambda_{1} \bar{q}_{L} Q_{R}+\Lambda_{2} \bar{T}_{L}^{(5)} t_{R}+\Lambda_{3} \bar{T}_{L}^{(1)} t_{R}+\text { h.c. }\right] \\
& -\left[\Lambda_{1}^{\prime} \bar{q}_{L} Q_{R}^{\prime}+\Lambda_{2}^{\prime} \bar{B}_{L}^{(5)} b_{R}+\Lambda_{3}^{\prime} \bar{B}_{L}^{(1)} b_{R}+\text { h.c. }\right]
\end{aligned}
$$

SM fermion mass generation

- Combining the SO(5) invariant proto-Yukawas with the SO(5) breaking partial composite interactions:

one gives rise to a see-saw mechanism for generating the SM fermion masses. The leading order can be obtained schematically

$$
q_{L} \underset{\Lambda_{1}}{\longrightarrow} Q_{R} \underset{M_{5}}{\longrightarrow} Q_{L} \underset{y_{1}\langle H\rangle}{\longrightarrow} T_{R}^{(1)} \underset{M_{1}}{\longrightarrow} T_{L}^{(1)} \underset{\Lambda_{3}}{\longrightarrow} t_{R}
$$

$$
y_{t} \sim y_{1} \frac{\Lambda_{1} \Lambda_{3}}{M_{1} M_{5}} v \quad \text { and } \quad y_{b} \sim y_{1}^{\prime} \frac{\Lambda_{1}^{\prime} \Lambda_{3}^{\prime}}{M_{1}^{\prime} M_{5}^{\prime}} v
$$

Fermion loops and Scalar Potential

- The generalised mass matrix of heavy vector-like and SM fermions contains SO(5) breaking terms ($\Lambda_{1}, \Lambda_{2}, \Lambda_{3}$)

$$
-\bar{\Psi}_{L} \mathcal{M}(h, \sigma) \Psi_{R}
$$

Through Coleman-Weinberg mechanism, at one loop, the SO(5) breaking propagates to the scalar potential. Among other terms it induces two divergent SO(5) breaking terms:

$$
\begin{aligned}
& V_{\mathrm{CW}} \supset \frac{1}{64 \pi^{2}} \operatorname{Tr}\left[\left(\mathcal{M}_{\left.\left.\mathcal{M}^{\dagger}\right)^{2}\right] \log \left(\frac{\Lambda^{2}}{\mu^{2}}\right)}^{\operatorname{Tr}\left[\left(\mathcal{M M}^{\dagger}\right)^{2}\right]=\left[\mathrm{SO}(5)_{\mathrm{inv}}\right]+A \sigma+B h^{2}}\right.\right.
\end{aligned}
$$

One need to introduce such terms at tree-level in the potential in order to ensure the renormalisability to the model

$$
V(h, \sigma) \supset \alpha f^{3} \sigma-\beta f^{2} h^{2}
$$

