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The Higgs Hierarchy Problem
If the resonance found @LHC is the SM Higgs then 
some NP@TeV should be present to stabilise its mass

V (H) = �µ2H†H + �
�
H†H
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The Higgs Hierarchy Problem
If the resonance found @LHC is the SM Higgs then 
some NP@TeV should be present to stabilise its mass

 EW HIERARCHY PROBLEM: ⇤NP � v

V (H) = �µ2H†H + �
�
H†H

�2

�µ2
i

µ2
' ± g2i

16⇡2

✓
⇤2
i

µ2

◆
µ2 = µ2

tree +
X

i

�µ2
i

The Higgs mass receives quadratically divergent 
contributions from loop corrections:
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The Higgs as a (p)NG Boson
[Georgi, Kaplan (1985), Agashe, Contino, Pomarol (2005)]
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The Higgs as a (p)NG Boson
The Composite Higgs framework (but not only …)  


Several coset configurations (4 or plus pGBs): SO(5)/SO(4), 
SU(5)/SO(5), S0(6)/SO(5), SU(4)/Sp(4), SU(4)/SU(3), …;

Often in the context of non-linear (HEFT) realisation of the 
symmetry breaking:

Contains polynomial dependence on GBs, non 
renormalisable: limited energy validity;

(Mostly) Model Independent approach, providing 
a parameterisation of all possible UV completions;

[Contino (2011), Panico (2012), Redi (2012), Carena (2014), 
Carmona (2014), …]

Following chiral QCD example it may be enlightening to 
analyse a renormalisable (Minimal) Linear 𝜎-model
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The Minimal SO(5) Linear 𝜎-model



General feature of our Minimal SO(5) Linear 𝜎-model:
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The Minimal SO(5) Linear 𝜎-model
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General feature of our Minimal SO(5) Linear 𝜎-model:
Real scalar field in the fundamental of SO(5):

Two types of heavy vector-like fermions in the 5 and 1 of 
SO(5) (top and bottom partners) and massless SM quarks:
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The Minimal SO(5) Linear 𝜎-model
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The Minimal SO(5) Linear 𝜎-model
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The Minimal SO(5) Linear 𝜎-model

� = (⇡1,⇡2,⇡3, h,�)

 ⇠ 5 ! M5

� ⇠ 1 ! M1

qL

(tR, bR)
! mt,b = 0

⇤1 (q̄L�2⇥5)  R + ⇤2  ̄L (�5⇥1tR) + ⇤3 �̄L (�1⇥1tR)

y1  ̄L ��R + y2  ̄R ��L

                 SM 
mass term
⇠⇠⇠SO(5)

[Kaplan ’91]
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SO(5) invariant term 

induces SB to SO(4)

Explicit SO(5) breaking 
induced by fermionic loops

V (h,�) = �
�
h2 + �2 � f2

�
2 + ↵f3� � �f2h

The most general renormalisable scalar potential SO(4) invariant 
contains 8 parameters, but only 4 are needed at 1-loop level:

One obtains the following expressions for vevs:

v2� = f2 ↵2

4�2
, v2h = f2

✓
1� ↵2

4�2
+

�

2�

◆

m2
h,� = 4�f2

(✓
1 +

3

4

�

�

◆
⌥

1 +

�

2�

✓
1 +

↵2

4�2
+

�

8�

◆�1/2)
and masses for the physical light and heavy scalar states (     )

rotated with respect to the original fields (     ):

tan 2� =
4vhv�

3v2� � v2h � f2

The scalar potential

✓
h
�

◆
=

✓
˜h cos � + �̃ sin �
�̃ cos � � ˜h sin �

◆

h̃, �̃

h,�

[Barbieri (2007)]



The first term identify the Gauge Boson masses:


The scalar-gauge couplings are “SM like” but with a cos 𝛾 
suppression for    (and a sin 𝛾 suppression for  )
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The SO(5)/SO(4) scalar-gauge sector

M2
W =

g2 v2h
4

, M2
Z =

(g2 + g02) v2h
4

! vh ⌘ v = 246GeV

Setting the notation useful in the next slides:

H =
(h+ v)p

2
U

✓
0
1

◆
, U(x) = e

i⇡(x)
f

DµU(x) ⌘ @µU+ i

g

2
W

a
µ�aU� i

g

0

2
BµU�3 Vµ = (DµU)U†

The SO(5)/SO(4) scalar-gauge sector reads (σ is a SM singlet) 

h̃ �̃

Lg,s ⌘ (DµH)

†
(DµH) � v2h

4

hVµV
µi+ vh

2

⇣
˜h cos � + �̃ sin �

⌘
hVµV

µi

+

1

4

⇣
˜h2

cos

2 � + 2

˜h �̃ sin � cos � + �̃2
sin

2 �
⌘
hVµV

µi
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Parameters renormalisation

n

GF ⌘ (
p
2v2)�1, mh, m�, sin2 �

o

� =

sin

2 �m2
�

8v2

✓
1 + cot

2 �
m2

h

m2
�

◆
,

�

4�
=

m2
hm

2
�

sin

2 �m4
� + cos

2 �m4
h � 2m2

hm
2
�

,

↵2

4�2
=

sin

2
(2�)(m2

� �m2
h)

2

4(sin

2 �m4
� + cos

2 �m4
h � 2m2

hm
2
�)

,

f2
=

v2(sin2 �m4
� + cos

2 �m4
h � 2m2

hm
2
�)

(sin

2 �m2
� + cos

2 �m2
h)

2
.

The 4 parameters appearing in the scalar Lagrangian can be 
expressed in terms of the following 2+2 observables: 

by the following exact relation:  
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Th-available parameter space
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Higgs coupling to gauge bosons + effective coupling to gluons 
give bounds on the mixing angle 𝛾

sin2 � < 0.18 at 2�

V =
ghV V

gSM
HV V

F =
ghFF

gSM
HFF

 !

cos

2 � > 0.82 at 2�

Exp-available parameter space
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��
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Available parameter space

Light 𝜎 
m� ⌧ mh ⇡ v
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��-� ��-� ��-� ��� ��� ���
���

���

���

���

���

���

�σ (���)

��
��
γ

sin2 � < 0.18

Excluded	by	Higgs	data	
ATLAS	+	CMS		

Excluded	by	Higgs	data	
ATLAS	+	CMS		

Available parameter space

↵ ⇡ � ⌧ �

mh ⇡ v ⌧ m�

Non-Linear “regime”
Light 𝜎 

m� ⌧ mh ⇡ v



mσ
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Bounds from Precision @ LEP
Lower mσ  is better, but fermion can always compensate

[see also Barbieri (2007) and Gertov (2015)]
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Precision Bounds and Zbb
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LHC Bounds on 𝜎
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Integrating out the heavy scalar
LHC bounds are going to push higher and higher the 𝜎 scale, so  
it may useful to integrate out the heavy field;

The mass of the heavy scalar is controlled by the self coupling λ

It is useful to redefine the scalar fields in “polar” coordinates:

Solving perturbatively the 𝜌 equation of motion: 


                      

gives the effective Lagrangian exapanded in powers of 1/λ 

L = L0 + L1/� + L2/�
2 + . . .

m2
h

m2
�

' �⇠

4�m2
h = 2�v2 +O(1/�)

m2
� = 8�f2 +O(�0)

⇢ = h⇢i+ �

' = h'i+ h

� = ⇢ cos'

h = ⇢ sin'

⇢ = ⇢0 + ⇢1/�+ ⇢2/�
2 + . . .



NOTE: Interactions with SM and heavy fermions are here 
neglected but they can easily be included
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Integrating out the heavy scalar

L0 =
1

2
(@µ') (@

µ')� v2

4

s2�
⇠

hV µVµi � f4
�
↵c' � �s2'

�

The LO Lagrangian is the 2𝝏 custodial preserving SO(5)/SO(4) 
HEFT Lagrangian (                ) with the SSB breaking potential 
term induced by 𝛼 and 𝛽 parameters: [Agashe, Contino, Pomarol (2005)]

Vµ = (DµU)U †

[Gavela et al. (2016)]

The NLO terms contains 4𝝏 operators, corrections to the 2𝝏 
LO Lagrangian and correction to the SSB breaking potential:

SO(5) invariant terms SO(5) breaking term

SO(5) invariant terms SO(5) breaking term

L1 =


1

2
(@µ') (@

µ')� v2

4

s2'
⇠
hVµV

µi � f4

2

�
↵c' � 2�s2'

� �2
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Only 5 derivative operators are generated at tree level at O(1/𝜆)

 (the Higgs potential terms at LO and NLO are not reported here)

⇢ = h⇢i+ �, ' = h'i+ h c' = cos('/f) s' = sin('/f)
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Integrating out the heavy scalar
The Higgs potential triggering the EW SB is proportional to the 
explicit SO(5) breaking parameters 𝛼 and 𝛽:

At NLO the Higgs kinetic term (    ) gets non-canonical and the 
Higgs field has to renormalised:

PH

From     one defines MW and the Higgs to Gauge Boson couplings  PC

h !
�
1� �/(4�)

�

V ⌘ ghV V

gSM
hV V

=
p

1� ⇠ +
�⇠

2�

1� ⇠/2p
1� ⇠

+O(1/�2)

The 3 operators with 4𝝏, at O(1/λ), are SO(5) preserving; they 
contribute to 4h, 4V (+hs) and 2V+2h (+hs) couplings.   

Only few of the possible non-linear operators appears at tree 
level (at any order 1/λ). For example operators containing           
would be loop-induced and expected to be sub-leading.     

hVµV⌫i



It is interesting to point out the connection with the 𝜮 
decomposition of the chiral Lagrangian of a generic G/H model;
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𝜮 decomposition of G/H coset

[Alonso et al. JHEP 1412 (2014) 034]

Ṽµ = (Dµ⇥)⇥†

Let’s denote with        the GB field of the G/H coset, and with                  
the gauge fields (subgroup of G) 

⇥(x)

⇥(x) = e

i⇡(x)
f

Following ALF, one can write the most general effective chiral 
Lagrangian (scale f) compatible with the SM gauge symmetry, 
(custodial preserving) using as building blocks:

[Appelquist, Carazzone (1980); Longhitano (1980), Feruglio (1993)]

Dµ⇥(x) = @µ⇥(x) + ig

⇣
S̃µ⇥(x)�⇥(x)S̃R

µ

⌘

S̃µ

S̃µ⌫ =
⇣
W̃µ⌫ , B̃µ⌫

⌘

DµṼ
µ = @µṼ

µ + igS
h
S̃µ, Ṽµ

i



 

 

22

SO(5)/SO(4) EW chiral Lagrangian
Basis of CP-even gauge-Goldstone operators up to 4𝝏, 
assuming no extra-SM custodial symmetry breaking terms:

eAC = �f2

4
Tr

⇣
eVµ

eVµ
⌘

eA3 = i gTr
⇣
fWµ⌫

h
eVµ, eV⌫

i⌘

eAB = �1

4
Tr

⇣
eBµ⌫

eBµ⌫
⌘

eA4 = Tr
⇣
eVµ

eVµ
⌘
Tr

⇣
eVµ

eVµ
⌘

eAW = �1

4
Tr

⇣
fWµ⌫

fWµ⌫
⌘

eA5 = Tr
⇣
eVµ

eV⌫

⌘
Tr

⇣
eVµ eV⌫

⌘

eAB⇥ = g02Tr
⇣
⇥eBµ⌫⇥

† eBµ⌫
⌘

eA6 = Tr
⇣
(Dµ

eVµ)2
⌘

eAW⇥ = g2Tr
⇣
⇥fWµ⌫⇥

†fWµ⌫
⌘

eA7 = Tr
⇣
eVµ

eVµ eV⌫
eV⌫

⌘

eA1 = g g0 Tr
⇣
⇥eBµ⌫⇥

†fWµ⌫
⌘

eA8 = Tr
⇣
eVµ

eV⌫
eVµ eV⌫

⌘

eA2 = i g0 Tr
⇣
eBµ⌫

h
eVµ, eV⌫

i⌘
eA9 = Tr

⇣
(Dµ

eVµ)eV⌫
eV⌫

⌘
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SO(5)/SO(4) EW chiral Lagrangian
Basis of CP-even gauge-Goldstone operators up to 4𝝏, 
assuming no extra-SM custodial symmetry breaking terms:

eAC = �f2

4
Tr

⇣
eVµ

eVµ
⌘

eA3 = i gTr
⇣
fWµ⌫

h
eVµ, eV⌫

i⌘

eAB = �1

4
Tr

⇣
eBµ⌫

eBµ⌫
⌘

eA4 = Tr
⇣
eVµ

eVµ
⌘
Tr

⇣
eVµ

eVµ
⌘

eAW = �1

4
Tr

⇣
fWµ⌫

fWµ⌫
⌘

eA5 = Tr
⇣
eVµ

eV⌫

⌘
Tr

⇣
eVµ eV⌫

⌘

eAB⇥ = g02Tr
⇣
⇥eBµ⌫⇥

† eBµ⌫
⌘

eA6 = Tr
⇣
(Dµ

eVµ)2
⌘

eAW⇥ = g2Tr
⇣
⇥fWµ⌫⇥

†fWµ⌫
⌘

eA7 = Tr
⇣
eVµ

eVµ eV⌫
eV⌫

⌘

eA1 = g g0 Tr
⇣
⇥eBµ⌫⇥

†fWµ⌫
⌘

eA8 = Tr
⇣
eVµ

eV⌫
eVµ eV⌫

⌘

eA2 = i g0 Tr
⇣
eBµ⌫

h
eVµ, eV⌫

i⌘
eA9 = Tr

⇣
(Dµ

eVµ)eV⌫
eV⌫

⌘
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𝜮 decomposition of SO(5)/SO(4) coset

X (x) =
1p
2

0

@
0 0 U(x)e1
0 0 U(x)e2

(U(x)e1)† (U(x)e2)† 0

1

A
e1 =

✓
1
0

◆
, e2 =

✓
0
1

◆
with

⇥(x) = e

i

'(x)
f

X (x)
= 1+ i sin ('/f)X + (cos ('/f)� 1)X 2 ('(x) = h(x) + h'i)

ÃC = PH +
4

⇠
sin2

✓
'

2f

◆
PC

Ã4 = 4 ⇠2PDH + 16 sin4
✓

'

2f

◆
P6 � 16 ⇠ sin2

✓
'

2f

◆
P20

The effective Lagrangian expanded at O(1/λ) for the integrated 
Minimal SO(5) linear model get contributions only from 2 ops:    

The building blocks for the SO(5)/SO(4) Lagrangian are defined:   
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𝜮 decomposition of SO(5)/SO(4) coset

X (x) =
1p
2

0

@
0 0 U(x)e1
0 0 U(x)e2

(U(x)e1)† (U(x)e2)† 0

1

A
e1 =

✓
1
0

◆
, e2 =

✓
0
1

◆
with

⇥(x) = e

i

'(x)
f

X (x)
= 1+ i sin ('/f)X + (cos ('/f)� 1)X 2 ('(x) = h(x) + h'i)

3 SM wBGBs

ÃC = PH +
4

⇠
sin2

✓
'

2f

◆
PC

Ã4 = 4 ⇠2PDH + 16 sin4
✓

'

2f

◆
P6 � 16 ⇠ sin2

✓
'

2f

◆
P20

The effective Lagrangian expanded at O(1/λ) for the integrated 
Minimal SO(5) linear model get contributions only from 2 ops:    

The building blocks for the SO(5)/SO(4) Lagrangian are defined:   
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𝜮 decomposition of SO(5)/SO(4) coset
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✓
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4

⇠
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The GB nature of the Higgs is a well motivated 
framework that solve the Hierarchy problem;

We discussed a “Minimal” Linear 𝜎 model based on the 
SO(5)/SO(4) global symmetry breaking; 

The main phenomenological signatures have been studied 
(precision, LHC bounds on h, 𝜎 signatures);

One of the most interesting features is the possibility to 
check the linear-nonlinear divide;

Once the heavy scalar is integrated out, a particular 
subset of operators of the SO(5)/SO(4) effective chiral 
Lagrangian is obtained; 

Summary & Outlook
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The Heavy Fermion content

 (5)
�1/3 ⇠ (Q0, X 0, B(5)),

 (5)
+2/3 ⇠ (X,Q, T (5)),  (1)

+2/3 ⇠ T (1)

 (1)
�1/3 ⇠ B(1)

Two type of fermions with different charge under an extra U(1)X 

can be defined (X=2/3 and X=-1/3) for the 5 and the 1 of SO(5):

The decomposition of fermions under SU(2)L x U(1)Y group is shown

qL qLtR bR
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The Heavy Fermion Lagrangian
The SO(5) preserving part of the Lagrangian includes the 
proto-Yukawa interactions with the scalar multiplet:

The SO(5) breaking part of the fermionic Lagrangian is given 
by partial-compositeness couplings with SM (massless) fermion

[Kaplan ’91]

L⇠⇠⇠SO(5) = �
h
⇤1q̄LQR + ⇤2T̄

(5)
L tR + ⇤3T̄

(1)
L tR + h.c.

i

�
h
⇤0
1q̄LQ

0
R + ⇤0

2B̄
(5)
L bR + ⇤0

3B̄
(1)
L bR + h.c.

i

LSO(5) =  ̄(2/3)
�
i /D �M5

�
 (2/3) +  ̄(�1/3)

�
i /D �M 0

5

�
 (�1/3)

+ �̄(2/3)
�
i /D �M1

�
�(2/3) + �̄(�1/3)

�
i /D �M 0

1

�
�(�1/3)

� y1  ̄
(2/3)
L ��(2/3)

R � y2  ̄
(2/3)
R ��(2/3)

L

� y01  ̄
(�1/3)
L ��(�1/3)

R � y02  ̄
(�1/3)
R �
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SM fermion mass generation
Combining the SO(5) invariant proto-Yukawas with the SO(5) 
breaking partial composite interactions:

one gives rise to a see-saw mechanism for generating the SM 
fermion masses. The leading order can be obtained schematically 

qL �!
⇤1

QR �!
M5

QL �!
y1hHi

T (1)
R �!

M1

T (1)
L �!

⇤3

tR

yt ⇠ y1
⇤1⇤3

M1M5
v yb ⇠ y01

⇤0
1⇤

0
3

M 0
1M

0
5

vand



 

 

29

Fermion loops and Scalar Potential
The generalised mass matrix of heavy vector-like and SM 
fermions contains SO(5) breaking terms (𝛬1, 𝛬2, 𝛬3)

Through Coleman—Weinberg mechanism, at one loop, the SO(5) 
breaking  propagates to the scalar potential. Among other terms it 
induces two divergent SO(5) breaking terms:

� ̄LM(h,�) R

VCW � 1

64⇡2
Tr

⇥
(MM†

)

2
⇤
log

✓
⇤

2

µ2

◆

Tr[(MM†)2] = [SO(5)inv] +A� +Bh2

One need to introduce such terms at tree-level in the potential in 
order to ensure the renormalisability to the model

V (h,�) � ↵f3� � �f2h2


