Introduction G2HDM LRM A3HDM Results and conclusions

0000 000000 [e]e]e} [e]e]e} [e]e]e}

Predicting Unitarity and Bounded from Below
Constraints Using Machine Learning

Darius Jurciukonis

Vilnius University, Institute of Theoretical Physics and Astronomy
darius.jurciukonis@tfai.vu.It

September 15, 2023



Introduction G2HDM LRM A3HDM Results and conclusions

@000

UNI and BFB

There are two important theoretical constraints that one must impose on the scalar

potential.
® UNI: all the (tree-level) scalar—scalar scattering amplitudes must respect
unitarity.

® BFB: the potential must have a minimum, viz. they prevent the existence of
directions in field space along which the potential is unbounded from below.

UNI BFB

® Analytical computation is feasible only

® |t can be computed analytically.
for simple models.

® Typically, the computation requires
determining the eigenvalues of
scattering matrices.
® The computations are precise and fast. ® The computations are often slow and
imprecise.

® For complex models, minimization of
the potential is required.
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Figure on right:
® blue: 10° samples
® magenta: 10° samples
¢ vellow: 10* samples

Table below:

® Percentage of true samples
when lambdas are generated
randomly (raw data).

® BFB-I: the percentage of true
examples from raw data.

® BFB-II: the percentage from
datasets refined by UNI
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Re(As)

-4
-4-3-2-10 1 2 3

Re(As) Re(Ag) Re(A7)
conditions.
‘ Model ()\'s) ‘ UNI ‘ BFB-I ‘ BFB-II ‘ UNI+BFB ‘
G2HDM (10) 1.02 23.3 3.25 0.033
LRM (13) 0.41 18.4 0.7 0.0028
A3HDM (14) 0.18 1.73 0.05 0.00009




Introduction G2HDM LRM A3HDM Results and conclusions

ooeo 000000 [e]e]e} [e]e]e} [e]e]e}

Strategy

Machine learning is currently utilized across various fields; let's see if it can be
applied to UNI and BFB calculations.

Three models with precise "analytical” procedures for BFB computations were
investigated to verify the reliability of machine learning.

® General 2HDM [DJ and L.Lavoura, 1807.04244; M. Maniatis et al.,
hep-ph/0605184; I.P. lvanov and J.P. Silva, 1507.05100].

® CP conseved Left-Right model [D. Fontes, DJ and L. Lavoura, 2212.12075;
K. Kannike, 2109.01671].

® Aligned 3HDM [DJ, L. Lavoura, 2103.16635; P.M.Ferreira et al., 1711.02042].

There are two computational strategies:
® Train networks to predict BFB constraints using data that satisfy UNI constraints.

® Train networks to predict both UNI and BFB constraints simultaneously.
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Technical details

For this research, a desktop computer
was used.

® CPU: Intel(® Core™ i9-13900K, 24
Cores (8P-16E) 2.2-5.8 GHz

® GPU: NVIDIA GeForce RTX 4090

® SOFT: Ubuntu 22.04 LTS; Wolfram
Mathematica 13.2

Machine learning parameters:
® training data: 10° — 107 samples
® bach size: 2'* = 16384
® training rounds: up to 500
® networks: linear nets of 8 layers

net-1:

net-2:

net-3:

net-4:

W w J =
i
% 2 / >
@ @ @ =
vz

The initial network, net-1, is trained
using raw data.

This network, net-1, is subsequently
used to prepare the training data for
net-2.

Both net-3 and net-4 are trained using
the same data as net-2.

These networks, net-3 and net-4, are
then utilized to filter the predictions
made by net-2.
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The scalar potential

The most general scalar potential for the 2HDM is
Vo= moldr + pmadid, + (N3¢I¢2 + H-C-)
s (¢T¢ ) + % (cbgcbz)z + s dl0; S, + ), ], Of
+ [A"’ (¢T¢2) + 26 DIy DId, + )7 OJd, O], + Hec.|

where 11 2> and A1 234 are real, while the remaining parameters are complex. The
quartic part of the scalar potential comprises 10 real parameters.

® Simple UNI conditions
® Algorithms for precise BFB computations

® Fast computations
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Classifier measurements

Classifier measurements (accuracy, error and prediction time) as functions from the size of
raw training data. Blue points represent net-1, while red points correspond to
measurements from net-4.
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Classifier measurements

Classifier measurements for the net-1 (left) and net-2 (right).
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Lambdas
Scatter plots of A values for the G2HDM.
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Masses

Scatter plots of Higgs masses for the G2HDM.
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Couplings

The three-Higgs vertex [DJ, L.Lavoura,

8 2
1807.04244]: , <)
6 =
v o
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The scalar potential

The scalar potential in our LRM is of the form  [D. Fontes, DJ, L. Lavoura, 2212.12075]

V = Vy + Vo + Vyoe, where [K. Kannike, 2109.01671]
Vb = HZHL + ur H,T?HR
+ ). H Hi HI HL 4 Mg H:Hr HYHr 4+ Mg Hf HL HE Hrg,
Vo = mitr (nb*cb) + patr (&>T¢ + ¢T<T>)

o for (o'0)] o f[ur (018)] 4 Hc f 4 or (o18)
s tr (¢*¢) tr (&>T¢ + ¢*&>) ,

Vie = m (H[chR + H;¢THL) +my (HZ<T>HR + H;éTHL)
+ s Hi @O H; + M3g HLOTOHR + Aoy Hf ®DTH, + \ar HE®TOHr
AL H] (cb&ﬂ + &mﬂ) Hy + Mg H (¢T&> + &>T¢) Hk.

All parameters of the potential are real because of the assumed CP conservation. The
quartic part of the scalar potential comprises 13 real parameters.
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Classifier measurements

Classifier measurements for the net-1 (left) and net-2 (right).
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Scatter plots of A values for the LRM.
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The scalar potential

We consider following potential for the aligned 3HDM [DJ, L. Lavoura, 2103.16635]

V= 11 ®I b1 + pip ®I by + pi3 dids + (,u4 SIdy + s ST D3 + 16 DIb3 + H.c.)
+A1 (¢T¢1) + X O] Dy DId, + 25 DIy Dl s + \; O] b, DIy
e bl s ol + {Am (o]o2 ) + ﬂ (¢*¢3) + s 0] 0],
FA1a DID; D3 + Ao DI D DI D3 + Moy DI D3 DID; + Nos DI, DI b3 + H.c} ,

where p1123 and A1 4,57, are real and the remaining parameters are in general complex.
The quartic part of the scalar potential comprises 14 real parameters.
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Classifier measurements

Classifier measurements for the net-1 (left) and net-2 (right).
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Lambdas

Scatter plots of A values for the aligned 3HDM.
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Times

® The minimization of the scalar potential demands substantial computational
resources.

® Neural networks have the potential to significantly accelerate these
computations.

® Recalculating nets predictions using the minimization procedure ensures that
computation times remain manageable.

’ Model \ UNI+min. \ neural nets \ neural nets-+min. ratio-| ratio-Il
G2HDM 131 1.7 35 77 3.7
LRM 2224 18 78 1235 28.5
A3HDM 3874 346 382 11.2 10.1

Table: Computation times (in seconds) needed to identify 1000 true samples. The second
column presents the computation time employing both UNI and global minimization
methods. The third column depicts the time taken using only neural networks. The fourth
column outlines the time required when utilizing neural networks, followed by a check
using global minimization.
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Accuracy
| Model | net-1 [ net-2 | net-34 net-2 — net-4
G2HDM 52-55 96-97 97-98 > 99
LRM 42-47 91-92 91-93 > 08
A3HDM 13-15 90-92 90-91 > 07

Table: Percentage of true samples within predicted results (from raw data), verified using
analytical UNI+BFB conditions.

| Model | net-1 | net-2 | net-34 | net-2 —net-4 |
G2HDM 96-97 08-99 97-98 > 99
LRM 84-86 94-96 95-97 > 99
A3HDM 69-74 92-95 92-96 > 08

Table: Percentage of true samples within predicted results (from UNI data), verified using
analytical BFB conditions.
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Conclusions

This analysis demonstrates that machine learning techniques can effectively
predict UNI and BFB constraints in multi-scalar models.

Simple linear networks can achieve high prediction accuracy, though they
require appropriately prepared and sizeable training data samples.

Machine learning techniques can significantly reduce computing time in
comparison to the global minimization technique.

The Mathematica notebook containing examples of computations will be
published soon.
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