Light Dark Higgs boson in Minimal Sub-GeV Dark Matter Scenarios

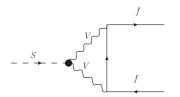
Soumya Rao

National Centre for Nuclear Research (NCBJ), Warsaw.

December 2, 2017

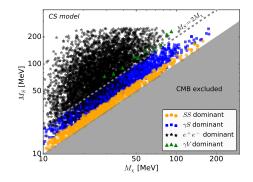
- Sub-GeV dark matter has been studied in a variety of scenarios particularly vector portals
- A sub-GeV dark matter with a mediator of the same mass scale behaves like a WIMP requiring $\langle \sigma v \rangle \sim 10^{-26} \text{cm}^3 \text{s}^{-1}$ for the correct relic density
- We focus here on vector portal with a dark Higgs mechanism for providing mass to the vector boson
- Sub-GeV range searches for visible and invisible decays of the mediator/dark Higgs provide the most stringent constraints on such models
- For long lived scalars, BBN and CMB constraints also play an important role in constraining the parameter space

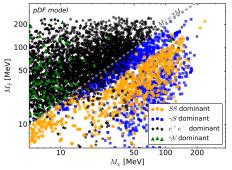
Minimal Dark Sector Scenarios


- Minimal dark sector refers to extension of SM by adding an extra U(1)_D gauge group and corresponding fields
- Minimal dark sector consists of
 - $U(1)_D$ gauge boson Dark photon V
 - Complex scalar breaking $U(1)_D$ dark Higgs S
 - ► Dark matter candidate charged under U(1)_D Complex scalar or pseudo Dirac fermion χ
- ► U(1)_D breaking leads to a massive dark photon, dark Higgs and dark matter particles
- ► Dark photon interacts with SM fields through kinetic mixing of U(1)_D and U(1)_Y
- ▶ Dark Higgs interacts with the SM fields through dark photon, e.g. SV_{μ}^2

$$egin{aligned} \mathcal{L}_V &= -rac{1}{4} \mathcal{F}'^{\mu
u} \mathcal{F}'_{\mu
u} - rac{1}{2} rac{arepsilon}{\cos heta_w} \mathcal{B}_{\mu
u} \mathcal{F}'^{\mu
u} \;, \ \mathcal{L}_S &= (\mathcal{D}^\mu S)^* (\mathcal{D}_\mu S) + \mu_S^2 |S|^2 - rac{\lambda_S}{2} |S|^4 - rac{\lambda_{SH}}{2} |S|^2 |\mathcal{H}|^2 \;, \end{aligned}$$

- Focus on effect of including dark Higgs in the dark sector in addition to a dark photon
- Two models of dark matter studied CS(complex scalar) and pDF(pseudo Dirac fermion)


$$\begin{split} V_{pDF} &= y_{SL} S \chi_L \chi_L + y_{SR} S \chi_R^c \chi_R^c + \text{ h.c.} \\ V_{CS} &= \lambda_\chi |\chi|^4 + \lambda_{\chi S} |\chi|^2 |S|^2 + \lambda_{\chi H} |\chi|^2 |H|^2 \end{split}$$

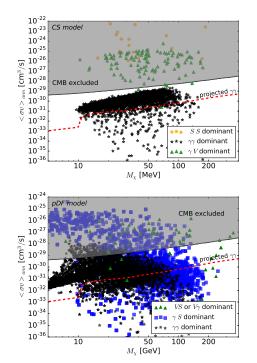

- ► Parameters : g_V , ε , M_S , M_V , m_{χ} , y_{SL} ($\lambda_{S\chi}$) and y_{SR} (λ_{χ})
- ▶ Restrict analysis to $M_S \le 200$ MeV and $M_V \le 500$ MeV and thereby avoid hadronic final states so as to simplify the analysis
- Only decay mode for dark Higgs is to leptons

Relic Density and CMB constraints

- Relic density achieved through the freeze-out mechanism in a two-component dark matter scenario due to presence of long lived dark Higgs
- Both mediator and DM particles in the MeV mass scale requiring a annihilation cross section of 10⁻²⁶cm³s⁻¹ as in the case of a traditional WIMP
- Presence of dark Higgs provides additional annihilation channels thus modifying relic density evaluation
- Injection of charged particles and photons in the inter-galactic medium (IGM) can significantly alter the recombination history of the universe by ionizing and heating the IGM gas
- Injections from DM annihilation parametrized as $p_{ann} = f \langle \sigma v \rangle / M_{\chi}$
- Stringent constraints from s-wave DM annihilations but much more relaxed for velocity suppressed p-wave annihilations

CS

- M_S > 2M_χ : e⁺e[−] no S
- $M_S \simeq M_\chi$: SS

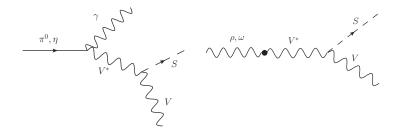

•
$$M_S \sim 2M_\chi$$
 : $S\gamma$

•
$$M_S < M_\chi$$
 : excluded

pDF

•
$$M_S < M_\chi$$
 : $S\gamma$

 CMB bounds relaxed due to coannihilation channels

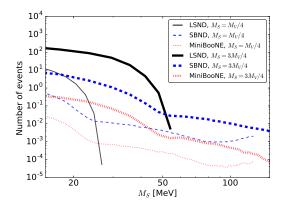

CS

- $M_{\chi} < M_V, M_S$ only $\gamma \gamma$ available, suppressed by ε^4
- ► M_χ > M_S, Sγ dominates, only suppressed by ε²

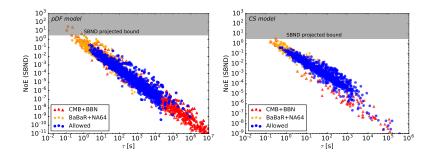
pDF

- *M*_χ > *M*_S completely excluded, no ε suppression
- ► M_{\chi} > M_{\chi}, channel with V in final state open

- Fixed target experiments well suited for detection of light dark sector particles
- High-intensity, but relatively low-energy proton or electron beam impacting target produces "dark matter beam" e.g. dark photon decay
- Proton beam-dump experiments could be practically seen as light meson factories, with around one neutral pion created for each proton on the target.
- Electron beam-dump experiments can also lead to dark sector beams through dark photon production by bremsstrahlung
- Bounds on the kinetic mixing parameter ε from electron beam dumps were found to be always significantly weaker than the current missing energy bound from BABAR, ε < 10⁻³

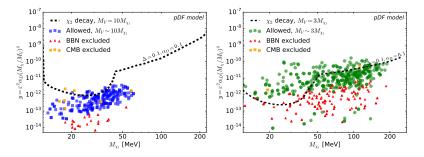


- Meson produced in proton beam dump decays into dark photon with a small probability
- Dark Higgs can be produced from an excited dark photon through a "dark" Higgstrahlung mechanism
- Scalar meson decay


$$\pi^0, \eta \to \gamma V^*, V^* \to SV,$$

Vector meson decay

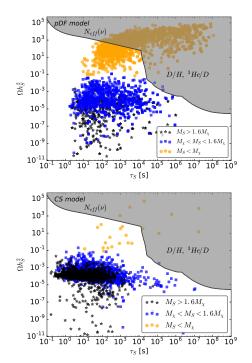
$$\rho, \omega \to V^*, V^* \to SV.$$



- We have chosen $\varepsilon = 0.001$ and $\alpha_D = \alpha_{\rm em}$
- SBND will improve on the miniBooNE bound by one order of magnitude

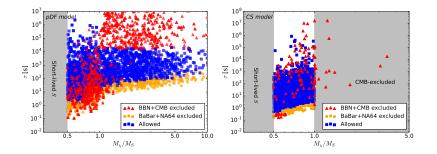
- ► No. of dark Higgs detected goes as ε⁶ and so more sensitive to SBND compared to DM searches
- Thermal value target out of reach of beam dump experiments

Probing CS model through DM decay



- Search at LSND recast to probe χ₂ → χ₁e⁺e[−] Izaguirre etal, PRD (2017)
- Very sensitive to mass splitting, $\Delta = M_{\chi_2} M_{\chi_1}$

$$\Gamma_{\chi_2} \propto \alpha_D \varepsilon^2 \Delta^5 M_V^{-4}$$


BBN Constraints

- ▶ BBN bounds arise from either early time (t ≤ 10 s) injection or late time (t > 100 s) injection of energy from decays of long lived particles like the dark Higgs
- ► Early time injection constraints are obtained from n/p ratio or the effective number of neutrino species N_{eff}
- Late time injection constraints arise from primordial abundances of light nuclei (³He and D)
- ▶ BBN bounds on Higgs portal models from N_{eff} limit dark Higgs lifetime to be smaller than 0.1 s
- \blacktriangleright Bounds from primordial abundances affect $\tau_S>10^4$ s, and can be quite stringent
- These bounds are mitigated due to lepton-only decay modes of dark Higgs and efficient annhilation mechanism

- When $M_S > M_\chi$ $SS \rightarrow \chi \chi$ decreasess abundance
- ► For M_S < M_X, N_{eff} bound rules out part of parameter space above 100 s
- Large part of parameter space ruled out above 10⁴ s

Summary of Constraints

Conclusions

- We have argued that models with a massive, but light, dark vector mediator, the spectrum should naturally contain a light dark Higgs, which can substantially modify predictions
- Cosmological constraints are considerable modified due to the presence of dark Higgs and additional modes of annihilation for DM
- We particularly study a long lived, light dark Higgs boson
- The low abundance region, $M_{\chi} < M_S < 2M_{\chi}$, where bounds from BBN are weakened due to presence of dark Higgs while relic density is realized mainly from $\chi\chi \rightarrow S\gamma$ leading to a lower bound on ε
- The high abundance region, M_S < M_χ, where there are relatively strong bounds from BBN-related observables and for CSmodel, this region is ruled out by CMB constraints