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Sub-GeV Dark Matter

» Sub-GeV dark matter has been studied in a variety of
scenarios particularly vector portals

> A sub-GeV dark matter with a mediator of the same mass
scale behaves like a WIMP requiring (ov) ~ 10726cm3s~! for
the correct relic density

» We focus here on vector portal with a dark Higgs mechanism
for providing mass to the vector boson

» Sub-GeV range searches for visible and invisible decays of the
mediator/dark Higgs provide the most stringent constraints on
such models

» For long lived scalars, BBN and CMB constraints also play an
important role in constraining the parameter space



Minimal Dark Sector Scenarios

» Minimal dark sector refers to extension of SM by adding an
extra U(1)p gauge group and corresponding fields
» Minimal dark sector consists of
» U(1)p gauge boson - Dark photon V
» Complex scalar breaking U(1)p - dark Higgs S
» Dark matter candidate charged under U(1)p - Complex scalar
or pseudo Dirac fermion x
» U(1)p breaking leads to a massive dark photon, dark Higgs
and dark matter particles
» Dark photon interacts with SM fields through kinetic mixing
of U(I)D and U(l)y
» Dark Higgs interacts with the SM fields through dark photon,
e.g. 5V3
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Focus on effect of including dark Higgs in the dark sector in
addition to a dark photon

Two models of dark matter studied - CS(complex scalar) and
pDF (pseudo Dirac fermion)

VoDF = ysLSXLXL + YsrRSXRrXR + h.c.
Ves = Alxl* + AgsIXPISP + Agnlx P HI

Parameters : gy, e, Ms, My, my, ysi (Asy) and ysgr (Ay)

Restrict analysis to Mg < 200 MeV and My < 500 MeV and
thereby avoid hadronic final states so as to simplify the
analysis

Only decay mode for dark Higgs is to leptons




Relic Density and CMB constraints

» Relic density achieved through the freeze-out mechanism in a
two-component dark matter scenario due to presence of long
lived dark Higgs

» Both mediator and DM particles in the MeV mass scale
requiring a annihilation cross section of 10726cm3s~! as in the

case of a traditional WIMP
» Presence of dark Higgs provides additional annihilation
channels thus modifying relic density evaluation

» Injection of charged particles and photons in the inter-galactic
medium (IGM) can significantly alter the recombination
history of the universe by ionizing and heating the IGM gas

» Injections from DM annihilation parametrized as
Pann = f<JV>/MX

» Stringent constraints from s-wave DM annihilations but much
more relaxed for velocity suppressed p-wave annihilations
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Search for Dark Higgs in Beam Dump Experiments

» Fixed target experiments well suited for detection of light dark
sector particles

» High-intensity, but relatively low-energy proton or electron
beam impacting target produces “dark matter beam” e.g.
dark photon decay

» Proton beam-dump experiments could be practically seen as
light meson factories, with around one neutral pion created for
each proton on the target.

» Electron beam-dump experiments can also lead to dark sector
beams through dark photon production by bremsstrahlung

» Bounds on the kinetic mixing parameter ¢ from electron beam
dumps were found to be always significantly weaker than the
current missing energy bound from BABAR, ¢ < 1073
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Meson produced in proton beam dump decays into dark
photon with a small probability

Dark Higgs can be produced from an excited dark photon
through a “dark” Higgstrahlung mechanism

Scalar meson decay
70 n — 4V, V¥ = SV,
Vector meson decay

pyw— V V" — SV,
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» We have chosen ¢ = 0.001 and ap = aem

» SBND will improve on the miniBooNE bound by one order of

magnitude
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» No. of dark Higgs detected goes as £° and so more sensitive
to SBND compared to DM searches

» Thermal value target out of reach of beam dump experiments



Probing CSmodel through DM decay
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BBN Constraints

» BBN bounds arise from either early time (t < 10 s) injection
or late time (t > 100 s) injection of energy from decays of
long lived particles like the dark Higgs

» Early time injection constraints are obtained from n/p ratio or
the effective number of neutrino species Neg

» Late time injection constraints arise from primordial
abundances of light nuclei (3He and D)

» BBN bounds on Higgs portal models from Neg limit dark
Higgs lifetime to be smaller than 0.1 s

» Bounds from primordial abundances affect 75 > 10* s, and
can be quite stringent

» These bounds are mitigated due to lepton-only decay modes
of dark Higgs and efficient annhilation mechanism
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Summary of Constraints
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Conclusions

» We have argued that models with a massive, but light, dark
vector mediator, the spectrum should naturally contain a light
dark Higgs, which can substantially modify predictions

» Cosmological constraints are considerable modified due to the
presence of dark Higgs and additional modes of annihilation
for DM

» We particularly study a long lived, light dark Higgs boson

» The low abundance region, M, < Ms < 2M,,, where bounds
from BBN are weakened due to presence of dark Higgs while
relic density is realized mainly from yx — S~ leading to a
lower bound on ¢

» The high abundance region, Ms < M, , where there are
relatively strong bounds from BBN-related observables and for
CSmodel, this region is ruled out by CMB constraints



