How to study models with an arbitrary number of Higgs-boson doublets

Markos Maniatis in collab. with Otto Nachtmann

UBB Chile

Scalars, Warsaw 2017

Why study nHDM's?

- T. D. Lee introduced 2HDM getting CP violation.
- Dark matter models realized by nHDM's.
- Neutrino mixing models realized by nHDM's
- Supersymmetry requieres at least two doublets.
- Number of doublets not restricted.
95% C.L. limit on $\sigma(\mathrm{qq} \rightarrow H) \times B R(H \rightarrow Z Z)[p b]$

- Suppose we have nHDM; we want to study

```
stability
global minima
electroweak symmetry breaking
symmetries
squared mass matrices
```

- Simple case one Higgs doublet

$$
V_{S M}=-\mu^{2} \varphi^{\dagger} \varphi+\lambda\left(\varphi^{\dagger} \varphi\right)^{2}
$$

- Electroweak symmetry breaking: $\mu^{2}>0$, stability: $\lambda>0$,
- Vacuum expectation value: $v_{0}=\sqrt{\frac{\mu^{2}}{\lambda}} \simeq 246 \mathrm{GeV}$.

Example of 3HDM

- 3 Higgs-boson doublets to generate ν masses and mixing.

$$
\varphi_{i}=\binom{\varphi_{i}^{+}}{\varphi_{i}^{0}}, \quad i=1,2,3
$$

W. Grimus, L. Lavoura and D. Neubauer, JHEP 0807, 051 (2008)

- Symmetry $O(2) \times \mathbb{Z}_{2} \cong \mathbb{Z}_{2}^{\prime} \times U(1) \times \mathbb{Z}_{2}$
- Potential

$$
\begin{aligned}
V_{O(2) \times \mathbb{Z}_{2}}=\mu_{0} \varphi_{3}^{\dagger} \varphi_{3}+\mu_{12}\left(\varphi_{1}^{\dagger} \varphi_{1}+\varphi_{2}^{\dagger} \varphi_{2}\right) & +\mu_{m}\left(\varphi_{1}^{\dagger} \varphi_{2}+\varphi_{2}^{\dagger} \varphi_{1}\right) \\
+a_{1}\left(\varphi_{3}^{\dagger} \varphi_{3}\right)^{2}+a_{2} \varphi_{3}^{\dagger} \varphi_{3}\left(\varphi_{1}^{\dagger} \varphi_{1}+\varphi_{2}^{\dagger} \varphi_{2}\right) & +a_{3}\left(\varphi_{3}^{\dagger} \varphi_{1} \cdot \varphi_{1}^{\dagger} \varphi_{3}+\varphi_{3}^{\dagger} \varphi_{2} \cdot \varphi_{2}^{\dagger} \varphi_{3}\right) \\
+a_{4} \varphi_{3}^{\dagger} \varphi_{1} \cdot \varphi_{3}^{\dagger} \varphi_{2}+a_{4}^{*} \varphi_{1}^{\dagger} \varphi_{3} \cdot \varphi_{2}^{\dagger} \varphi_{3} & +a_{5}\left(\left(\varphi_{1}^{\dagger} \varphi_{1}\right)^{2}+\left(\varphi_{2}^{\dagger} \varphi_{2}\right)^{2}\right) \\
& +a_{6} \varphi_{1}^{\dagger} \varphi_{1} \cdot \varphi_{2}^{\dagger} \varphi_{2}+a_{7} \varphi_{1}^{\dagger} \varphi_{2} \cdot \varphi_{2}^{\dagger} \varphi_{1}
\end{aligned}
$$

Bilinears

- Higgs doublets $\varphi_{i}=\binom{\varphi_{i}^{+}}{\varphi_{i}^{0}}, i=1, \ldots, n$, write

$$
\phi=\left(\begin{array}{c}
\varphi_{1}^{\mathrm{T}} \\
\vdots \\
\varphi_{n}^{\mathrm{T}}
\end{array}\right)=\left(\begin{array}{c}
\varphi_{1}^{+} \varphi_{1}^{0} \\
\vdots \\
\varphi_{n}^{+} \varphi_{n}^{0}
\end{array}\right)
$$

- Arrange all $S U(2)_{L} \times U(1)_{Y}$ invariants into hermitian $n \times n$ matrix

$$
\underline{K}=\phi \phi^{\dagger}=\left(\begin{array}{ccc}
\varphi_{1}^{\dagger} \varphi_{1} & \cdots & \varphi_{n}^{\dagger} \varphi_{n} \\
\vdots & \ddots & \vdots \\
\varphi_{1}^{\dagger} \varphi_{n} & \cdots & \varphi_{n}^{\dagger} \varphi_{n}
\end{array}\right)
$$

- $\underline{K}=\phi \phi^{\dagger}$ is hermitian, positive semidefinite with rank ≤ 2.
- Basis for \underline{K} are Gell-Mann matrices $\lambda_{\alpha}, \lambda_{0}=\sqrt{\frac{2}{n}} \mathbb{1}_{n}$,

$$
\underline{K}=\frac{1}{2} K_{\alpha} \lambda_{\alpha}, \quad \alpha=0,1, \ldots, n^{2}-1
$$

- One-to-one correspondance between Higgs-boson doublets and Hermitean matrix K with rank ≤ 2.
- nHDM potential can be written with $K_{0}, K=\left(\begin{array}{c}K_{1} \\ \vdots \\ K_{n^{2}-1}\end{array}\right)$

$$
V=\xi_{0} K_{0}+\xi^{\mathrm{T}} \boldsymbol{K}+\eta_{00} K_{0}^{2}+2 K_{0} \eta^{\mathrm{T}} \boldsymbol{K}+\boldsymbol{K}^{\mathrm{T}} E \boldsymbol{K},
$$

avoid unphysical gauge degrees of freedom. real parameters.
reduce power of potential.

Change of basis

- Consider the following unitary mixing of the doublets

$$
\left(\begin{array}{c}
\varphi_{1}^{\prime}(x)^{\mathrm{T}} \\
\vdots \\
\varphi_{n}^{\prime}(x)^{\mathrm{T}}
\end{array}\right)=U\left(\begin{array}{c}
\varphi_{1}(x)^{\mathrm{T}} \\
\vdots \\
\varphi_{n}(x)^{\mathrm{T}}
\end{array}\right)
$$

- Bilinears transform as

$$
K_{0}^{\prime}=K_{0}, \quad \boldsymbol{K}^{\prime}=R(U) \boldsymbol{K},
$$

with $U^{\dagger} \lambda_{a} U=R_{a b}(U) \lambda_{b}, R \in S O\left(n^{2}-1\right)$, proper rotations in K-space.

- Under change of basis $K_{0}^{\prime}=K_{0}, K^{\prime}=R(U) K$ potential remains invariant if

$$
\begin{aligned}
& \xi_{0}^{\prime}=\xi_{0}, \quad \eta_{00}^{\prime}=\eta_{00}, \\
& \xi^{\prime}=R \xi, \quad \eta^{\prime}=R \eta, E^{\prime}=R E R^{\mathrm{T}} .
\end{aligned}
$$

Symmetries

- Symmetry desirable to restrict nHDM.
- Symmetries easily formulated in terms of bilinears.

$$
V=\xi_{0} K_{0}+\xi^{\mathrm{T}} \boldsymbol{K}+\eta_{00} K_{0}^{2}+2 K_{0} \boldsymbol{\eta}^{\mathrm{T}} \boldsymbol{K}+\boldsymbol{K}^{\mathrm{T}} E \boldsymbol{K}
$$

- Transformation $K_{0} \rightarrow K_{0}, K \rightarrow \bar{R} K, \bar{R} \in O\left(n^{2}-1\right)$ is symmetry of potential iff

$$
\xi=\bar{R} \xi, \quad \eta=\bar{R} \eta, \quad E=\bar{R} E \bar{R}^{\mathrm{T}}
$$

- $\bar{R} \in O\left(n^{2}-1\right)$, keeping kinetic terms invariant.
I. F. Ginzburg, M. Krawczyk, PRD 72 (2005)
I. P. Ivanov and C. C. Nishi, PRD 82 (2010)

MM, O. Nachtmann, JHEP 11151 (2011)
V. Keus, S.F. King, S. Moretti, JHEP 1401 (2014)
B. Grzadkowski, MM, J. Wudka, JHEP 1111 (2011)
P. M. Ferreira, H. E. Haber, MM, O. Nachtmann, J. P. Silva, Int.J.Mod.Phys. A26 (2011)

CP symmetry

- CP transformation of the doublet fields

$$
\varphi_{i}(x) \longrightarrow \varphi_{i}^{*}\left(x^{\prime}\right), \quad i=1, \ldots n, \quad x=(t, \boldsymbol{x})^{\mathrm{T}}, \quad x^{\prime}=(t,-\boldsymbol{x})^{\mathrm{T}}
$$

- In terms of bilinears

$$
K_{0}(x) \longrightarrow K_{0}\left(x^{\prime}\right), \quad K(x) \longrightarrow \bar{R} \boldsymbol{K}\left(x^{\prime}\right)
$$

- \bar{R} is defined by the (generalized) Gell-Mann matrices

$$
\lambda_{a}^{\mathrm{T}}=\bar{R}_{a b} \lambda_{b}, \quad a, b \in\left\{1, \ldots, n^{2}-1\right\} .
$$

THDM: $\quad \bar{R}=\operatorname{diag}(1,-1,1)$,
3HDM: $\quad \bar{R}=\operatorname{diag}(1,-1,1,1,-1,1,-1,1)$

- CP symmetry conditions

$$
\xi=\bar{R} \xi, \quad \eta=\bar{R} \eta, \quad E=\bar{R} E \bar{R}^{\mathrm{T}} .
$$

- CP symmetry respected by vacuum if

$$
\bar{R}\langle\boldsymbol{K}\rangle=\langle\boldsymbol{K}\rangle
$$

- Basis invariance condition, generalized CP studied in THDM.

```
C. Nishi PRD 74 (2006),
MM, A. Manteuffel, O. Nachtmann, EPJC57 (2008)
P. M. Ferreira, H. E. Haber, MM, O. Nachtmann, J. P. Silva, Int.J.Mod.Phys. A26 (2011)
```


Study of the nHDM

- Concise conditions for stability given.
- Stationarity equations with different sets coresponding to electroweak symmetry breaking behavior.
- Squared mass matrices given for the general case.

MM, O. Nachtmann, PR D92 7 (2015)

Conclusion

- Bilinears are powerful tool in the nHDM.

Electroweak symmetry breaking

- EW symmetry breaking given by global minimum

$$
\langle\phi\rangle=\left\langle\left(\begin{array}{cc}
\varphi_{1}^{+} & \varphi_{1}^{0} \\
\vdots & \\
\varphi_{n}^{+} & \varphi_{n}^{0}
\end{array}\right)\right\rangle=\left(\begin{array}{cc}
v_{1}^{+} & v_{1}^{0} \\
\vdots & \\
v_{3}^{+} & v_{3}^{0}
\end{array}\right), \quad \underline{K}=\langle\phi\rangle\langle\phi\rangle^{\dagger}
$$

- Fully broken EW symmetry corresponds to $\langle\phi\rangle$ rank 2

$$
\operatorname{tr}(\underline{K})>0, \quad(\operatorname{tr}(\underline{K}))^{2}-\operatorname{tr}\left(\underline{K}^{2}\right)>0, \quad \operatorname{det}(\underline{K})=0 .
$$

- $S U(2)_{L} \times U(1)_{Y} \rightarrow U(1)_{e m}$ corresponds to $\langle\phi\rangle$ rank 1,

$$
\operatorname{tr}(\underline{K})>0, \quad(\operatorname{tr}(\underline{K}))^{2}-\operatorname{tr}\left(\underline{K}^{2}\right)=0, \quad \operatorname{det}(\underline{K})=0 .
$$

- Unbroken $S U(2)_{L} \times U(1)_{Y}$ corresponds to $\langle\phi\rangle$ rank 0 ,

$$
\underline{K}=0, \quad \varphi_{i}=0, \quad V=0
$$

