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› Standard parametrization(s) of the general 2HDM potential.

› Second form most convenient in the study of invariants.

The general 2HDM potential
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Choice of basis is not unique
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› Initial expression of potential is defined with respect to doublets         and         .

› We may rotate to a new basis by the following transformation

where U is any U(2) matrix.

› Potential parameters change under change of basis.

› Physics is the same regardless of our choice of basis.

› Observables cannot depend on choice of basis – they should be basis-independent, i.e. 

invariant under a change of basis.

› Most general U(2) matrix:



› All the parameters of the potential 

change under a U(2) basis 

transformation.

› Meaning: None of the parameters 

represent physical observables.

› Combinations of parameters can remain 

unchanged, for instance

› Meaning: These combinations represent 

physical observables.

Parameters transform under change of basis

Ref: Gunion & Haber, Phys. Rev. D 72, 095002 (2005) 4



› VEVs also change under basis 
transformations: 

› It is easy to show that

› Meaning:                          is a basis-
invariant quantity, hence a physical 
observable.        

Vacuum expectation values (VEVs)
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Most general form that conserves electric charge:

› We demand that the VEVs should 
represent a minimum of the potential

› Electroweak Symmetry Breaking:
Work out stationary-point equations by 
differentiating the potential with respect to 
the fields and put these to zero. 
[Ref. JHEP11 (2014) 084]. 

› Minimum enforced by demanding all 
physical scalars have positive squared 
masses (later).



› Each doublet is parametrized as:

› Massless charged goldstone fields G±

are extracted by introducing orthogonal 

states:

› H± represent the massive charged 

scalars 

› We work out the mass of the charged 

scalars:

› Performing a change of basis we find 

that  

› telling us that             is a basis invariant 

and therefore a physical observable 

(as it must be).

Parametrization of the doublets and the charged fields
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› Massless neutral goldstone field G0 is 
also extracted by introducing orthogonal 
states:

› We are left with three massive fields:
η1, η2 and η3, but these are not mass 
eigenstates.

› Mass terms given as

› Matrix elements are given  in 
[JHEP11(2014)084].

› We rotate into the physical fields by 

diagonalizing        using an orthogonal 

matrix R:

› Physical fields are now given as

Parametrization of the doublets and the neutral fields
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Transformations of mass matrix elements and rotation matrix 

elements under change of basis
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None of the squared mass matrix elements or rotation

matrix elements are invariants, and therefore they are

not observables:



Invariance of the neutral masses

› Combinations of squared mass matrix 

elements that are invariant are the trace, 

the sum of principal cofactors and the 

determinant, i.e.

› Are all found to be basis invariant, 

hence observable

› The eigenvalues of the squared mass 

matrix gives us the three neutral 

masses.

› Characteristic equation for eigenvalues:

› Eigenvalues (masses) are found to be

All masses are basis invariant,

hence observable
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Invariance of scalar couplings

› Some important scalar couplings

› These also turn out to be basis 

invariant, hence observables. 
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Invariance of gauge couplings

› Gauge couplings 

› Showing that these gauge couplings are 

invariant under a change of basis, 

hence they are observables.

› Most couplings are invariants. Some 

(the complex ones) are pseudo-

invariants (their absolute value is 

invariant).

› No surprise: Masses and couplings are 

invariants and possible to measure in 

experiments.
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› Introduce Vab tensor as:

› Transformation rules of Yab, Zabcd and

Vab tensors under change of basis:

Systematic construction of invariants by use of tensors.
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› We may now put together an arbitrary 
number of Y-, Z- and V-tensors and 
contract the indices with an odd-
numbered position with the indices with an  
even-numbered position to get an 
invariant quantity.

› Examples

› We already know these to be invariant!



› Invariants are observables and so 

they must be expressible in terms of 

observable couplings and masses

› How do we translate an invariant 

expression consisting of potential 

parameters/VEVs to an expression 

containing only masses and 

couplings?

› Choose to work in a particular basis 

(the Higgs-basis) and establish 

identities between observable 

quantities in this basis.

Systematic construction of CP-violating invariants by use of tensors
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› Promote your observables to 

invariant couplings.

› The identities established must 

then be valid in any basis.

› All observables (invariants) can 

be expressed in terms of the 11 

masses/couplings:



From parameters to masses and couplings via Higgs-basis

› Only one VEV is non-zero.

› Not unique, as one may still perform a 

U(1) transform on        without giving

a non-zero VEV.

› Stationary-point equations 
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› Charged scalar mass:

› Neutral mass matrix:

› Treat the above as seven equations and 

solve to get



› All parameters of the potential has now 

been replaced by scalar couplings and 

masses (and elements from the rotation 

matrix).

› Gauge couplings in the Higgs-basis

› Combinations of rotation matrix 

elements appearing in the invariants 

can all be expressed in terms of the 

three ei by utilizing the orthogonality of 

R. 

From parameters to masses and couplings via Higgs-basis

› Scalar couplings in the Higgs-basis.

› Treat as four equations and solve to get
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Applying the technique to CP-even invariants

› We already know

› Applying the technique outlined we arrive at 
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Applying the technique to CP-odd invariants

› CP-properties given by three CP-odd invariants

› Applying the technique outlined we immediately arrive at 

› Im J3 is a little more complicated:
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Vanishes when

Im J1 = Im J2 = 0



› Summary

› All observables can be 

written in terms of invariant 

quantities (masses and 

couplings).

› Simple, yet powerful method 

presented for translating 

invariants from parameters 

to observables.

CP properties of the 2HDM and Summary

› Put Im J1 = Im J2 = Im J30 = 0 and solve

6 distinct cases:

› Case 1: M1=M2=M3. Full mass 
degeneracy.

› Case 2: M1=M2 and e1q2 = e2q1

› Case 3: M2=M3 and e2q3 = e3q2

› Case 4: e1=0 and q1=0

› Case 5: e2=0 and q2=0

› Case 6: e3=0 and q3=0

If none of the above occur, then CP is 
broken!
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