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disfavored by the fact that ultra-faint dwarfs appear to lie
on the continuation of the luminosity-metallicity relation of
more luminous dwarf galaxies [73].)

More practically, the extreme faintness of the majority of
dwarf satellites implies that we have a more or less complete
census of them only within the volume of ∼30–50 kpc of the
Milky Way [56, 74]. Figure 5 shows the distance to which the
dwarfs of a given luminosity are complete in the SDSS survey,
in which the faintest new dwarfs have been discovered. The
figure shows that we have a good census of the volume of
the Local Group only for the relatively bright luminosities
of the “classical” satellites. At the fainter luminosities of
the ultra-faint dwarfs, on the other hand, we can expect to
find many more systems at larger radii in the future deep
wide area surveys. The exact number we can expect to be
discovered depends on their uncertain radial distribution,
but given the numbers of already discovered dwarfs and
our current knowledge of the radial distribution of brighter
satellites (and expected radial distribution of subhalos), we
can reasonably expect that at least a hundred faint satellites
exist within 400 kpc of the Milky Way. This is illustrated in
Figure 6, which shows the luminosity function of the Milky
Way satellites corrected for the volume not yet surveyed
under different assumptions about radial distribution of the
satellites [56].

The basis for considering these extremely faint stellar
systems as bona fide galaxies is the fact that unlike star
clusters, they are dark matter dominated: that is, the total
mass within their stellar extent is much larger than the
stellar mass expected for old stellar populations [48]. The
total dynamical masses of these galaxies are derived using
kinematics of stars. (These faint dwarf spheroidal galaxies
do not have cold gas and therefore their mass profiles
cannot be measured using the gas rotation curve, as is
commonly done for more massive dIrr galaxies.) High-
resolution spectroscopy of the red giant stars in the vicinity
of each galaxy provides the radial velocities of these stars.
The radial velocities can then be modeled using using the
Jeans equilibrium equations to derive the total mass profile
[75–80]. This modeling requires certain assumptions about
the unknown shape of the stellar distribution and velocity
distribution of stars, as well as assumptions about the
shape and radial profile of the dark matter distribution.
The resulting mass profile, therefore, has some uncertainty
associated with these assumptions [75, 78, 80].

Additionally, the ultra-faint dwarfs follow scaling rela-
tions of the brighter classical satellites such as the luminosity-
metallicity relation [73] and, therefore, seem to be the low
luminosity brethren within the family of dSph galaxies.

3. Defining the Substructure Problem

As I noted above, comparison of theory and observations
in terms of the directly observable quantities such as
luminosities is possible only using a galaxy formation model.
These models, although actively explored [39, 81–87] (see
also Section 4.3) are considerably more uncertain than the
predictions of dissipationless simulations on the properties
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Figure 7: Comparison of the cumulative circular velocity functions,
N(> Vmax), of subhalos and dwarf satellites of the Milky Way within
the radius of 286 kpc (this radius is chosen to match the maximum
distance to observed satellites in the sample and is smaller than the
virial radius of the simulated halo, R337 = 326 kpc). The subhalo
VFs are plotted for the host halos with maximum circular velocities
of 160 km/s and 208 km/s that should bracket the Vmax of the actual
Milky Way halo. The VF for the observed satellites was constructed
using circular velocities estimated from the line-of-sight velocity
dispersions as Vmax =

√
3σr (see the discussion in the text for the

uncertainties of this conversion).

of dark matter subhalos. Given that observed dwarf satellites
are very dark matter dominated, the dissipative processes
leading to formation of their stellar component are expected
to have a limited effect on the distribution of the dynamically
dominant dark matter. Fruitful comparison between simula-
tion predictions and observations is, therefore, possible if a
quantity related to the total mass profile can be measured in
the latter.

The first attempts at such comparisons [8, 9] assumed
isotropy of the stellar orbits and converted the line-of-
sight velocity dispersion of stars in dSph satellites, σr ,
to estimate their maximum circular velocities as Vmax =√

3σr . The admittedly oversimplistic conversion was adopted
simply due to a lack of well-measured velocity profiles and
corresponding constraints on the mass distribution at the
time. Figure 7 shows such a comparison for the classical
satellites of the Milky Way and subhalo populations in
Milky Way-sized halos formed in the concordance ΛCDM
cosmology.(I did not include the new ultra-faint satellites in
the comparison both because their Vmax values are much
more uncertain and because their total number within
the virial radius requires uncertain corrections from the
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disfavored by the fact that ultra-faint dwarfs appear to lie
on the continuation of the luminosity-metallicity relation of
more luminous dwarf galaxies [73].)

More practically, the extreme faintness of the majority of
dwarf satellites implies that we have a more or less complete
census of them only within the volume of ∼30–50 kpc of the
Milky Way [56, 74]. Figure 5 shows the distance to which the
dwarfs of a given luminosity are complete in the SDSS survey,
in which the faintest new dwarfs have been discovered. The
figure shows that we have a good census of the volume of
the Local Group only for the relatively bright luminosities
of the “classical” satellites. At the fainter luminosities of
the ultra-faint dwarfs, on the other hand, we can expect to
find many more systems at larger radii in the future deep
wide area surveys. The exact number we can expect to be
discovered depends on their uncertain radial distribution,
but given the numbers of already discovered dwarfs and
our current knowledge of the radial distribution of brighter
satellites (and expected radial distribution of subhalos), we
can reasonably expect that at least a hundred faint satellites
exist within 400 kpc of the Milky Way. This is illustrated in
Figure 6, which shows the luminosity function of the Milky
Way satellites corrected for the volume not yet surveyed
under different assumptions about radial distribution of the
satellites [56].

The basis for considering these extremely faint stellar
systems as bona fide galaxies is the fact that unlike star
clusters, they are dark matter dominated: that is, the total
mass within their stellar extent is much larger than the
stellar mass expected for old stellar populations [48]. The
total dynamical masses of these galaxies are derived using
kinematics of stars. (These faint dwarf spheroidal galaxies
do not have cold gas and therefore their mass profiles
cannot be measured using the gas rotation curve, as is
commonly done for more massive dIrr galaxies.) High-
resolution spectroscopy of the red giant stars in the vicinity
of each galaxy provides the radial velocities of these stars.
The radial velocities can then be modeled using using the
Jeans equilibrium equations to derive the total mass profile
[75–80]. This modeling requires certain assumptions about
the unknown shape of the stellar distribution and velocity
distribution of stars, as well as assumptions about the
shape and radial profile of the dark matter distribution.
The resulting mass profile, therefore, has some uncertainty
associated with these assumptions [75, 78, 80].

Additionally, the ultra-faint dwarfs follow scaling rela-
tions of the brighter classical satellites such as the luminosity-
metallicity relation [73] and, therefore, seem to be the low
luminosity brethren within the family of dSph galaxies.

3. Defining the Substructure Problem

As I noted above, comparison of theory and observations
in terms of the directly observable quantities such as
luminosities is possible only using a galaxy formation model.
These models, although actively explored [39, 81–87] (see
also Section 4.3) are considerably more uncertain than the
predictions of dissipationless simulations on the properties
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Figure 7: Comparison of the cumulative circular velocity functions,
N(> Vmax), of subhalos and dwarf satellites of the Milky Way within
the radius of 286 kpc (this radius is chosen to match the maximum
distance to observed satellites in the sample and is smaller than the
virial radius of the simulated halo, R337 = 326 kpc). The subhalo
VFs are plotted for the host halos with maximum circular velocities
of 160 km/s and 208 km/s that should bracket the Vmax of the actual
Milky Way halo. The VF for the observed satellites was constructed
using circular velocities estimated from the line-of-sight velocity
dispersions as Vmax =

√
3σr (see the discussion in the text for the

uncertainties of this conversion).

of dark matter subhalos. Given that observed dwarf satellites
are very dark matter dominated, the dissipative processes
leading to formation of their stellar component are expected
to have a limited effect on the distribution of the dynamically
dominant dark matter. Fruitful comparison between simula-
tion predictions and observations is, therefore, possible if a
quantity related to the total mass profile can be measured in
the latter.

The first attempts at such comparisons [8, 9] assumed
isotropy of the stellar orbits and converted the line-of-
sight velocity dispersion of stars in dSph satellites, σr ,
to estimate their maximum circular velocities as Vmax =√

3σr . The admittedly oversimplistic conversion was adopted
simply due to a lack of well-measured velocity profiles and
corresponding constraints on the mass distribution at the
time. Figure 7 shows such a comparison for the classical
satellites of the Milky Way and subhalo populations in
Milky Way-sized halos formed in the concordance ΛCDM
cosmology.(I did not include the new ultra-faint satellites in
the comparison both because their Vmax values are much
more uncertain and because their total number within
the virial radius requires uncertain corrections from the
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disfavored by the fact that ultra-faint dwarfs appear to lie
on the continuation of the luminosity-metallicity relation of
more luminous dwarf galaxies [73].)

More practically, the extreme faintness of the majority of
dwarf satellites implies that we have a more or less complete
census of them only within the volume of ∼30–50 kpc of the
Milky Way [56, 74]. Figure 5 shows the distance to which the
dwarfs of a given luminosity are complete in the SDSS survey,
in which the faintest new dwarfs have been discovered. The
figure shows that we have a good census of the volume of
the Local Group only for the relatively bright luminosities
of the “classical” satellites. At the fainter luminosities of
the ultra-faint dwarfs, on the other hand, we can expect to
find many more systems at larger radii in the future deep
wide area surveys. The exact number we can expect to be
discovered depends on their uncertain radial distribution,
but given the numbers of already discovered dwarfs and
our current knowledge of the radial distribution of brighter
satellites (and expected radial distribution of subhalos), we
can reasonably expect that at least a hundred faint satellites
exist within 400 kpc of the Milky Way. This is illustrated in
Figure 6, which shows the luminosity function of the Milky
Way satellites corrected for the volume not yet surveyed
under different assumptions about radial distribution of the
satellites [56].

The basis for considering these extremely faint stellar
systems as bona fide galaxies is the fact that unlike star
clusters, they are dark matter dominated: that is, the total
mass within their stellar extent is much larger than the
stellar mass expected for old stellar populations [48]. The
total dynamical masses of these galaxies are derived using
kinematics of stars. (These faint dwarf spheroidal galaxies
do not have cold gas and therefore their mass profiles
cannot be measured using the gas rotation curve, as is
commonly done for more massive dIrr galaxies.) High-
resolution spectroscopy of the red giant stars in the vicinity
of each galaxy provides the radial velocities of these stars.
The radial velocities can then be modeled using using the
Jeans equilibrium equations to derive the total mass profile
[75–80]. This modeling requires certain assumptions about
the unknown shape of the stellar distribution and velocity
distribution of stars, as well as assumptions about the
shape and radial profile of the dark matter distribution.
The resulting mass profile, therefore, has some uncertainty
associated with these assumptions [75, 78, 80].

Additionally, the ultra-faint dwarfs follow scaling rela-
tions of the brighter classical satellites such as the luminosity-
metallicity relation [73] and, therefore, seem to be the low
luminosity brethren within the family of dSph galaxies.

3. Defining the Substructure Problem

As I noted above, comparison of theory and observations
in terms of the directly observable quantities such as
luminosities is possible only using a galaxy formation model.
These models, although actively explored [39, 81–87] (see
also Section 4.3) are considerably more uncertain than the
predictions of dissipationless simulations on the properties

1

10

100

N
(>

V
ci

rc
)

10 20 30 40 50 60 70

Vcirc (km/s)

ΛCDM satellites

Local group dwarfs

Figure 7: Comparison of the cumulative circular velocity functions,
N(> Vmax), of subhalos and dwarf satellites of the Milky Way within
the radius of 286 kpc (this radius is chosen to match the maximum
distance to observed satellites in the sample and is smaller than the
virial radius of the simulated halo, R337 = 326 kpc). The subhalo
VFs are plotted for the host halos with maximum circular velocities
of 160 km/s and 208 km/s that should bracket the Vmax of the actual
Milky Way halo. The VF for the observed satellites was constructed
using circular velocities estimated from the line-of-sight velocity
dispersions as Vmax =

√
3σr (see the discussion in the text for the

uncertainties of this conversion).

of dark matter subhalos. Given that observed dwarf satellites
are very dark matter dominated, the dissipative processes
leading to formation of their stellar component are expected
to have a limited effect on the distribution of the dynamically
dominant dark matter. Fruitful comparison between simula-
tion predictions and observations is, therefore, possible if a
quantity related to the total mass profile can be measured in
the latter.

The first attempts at such comparisons [8, 9] assumed
isotropy of the stellar orbits and converted the line-of-
sight velocity dispersion of stars in dSph satellites, σr ,
to estimate their maximum circular velocities as Vmax =√

3σr . The admittedly oversimplistic conversion was adopted
simply due to a lack of well-measured velocity profiles and
corresponding constraints on the mass distribution at the
time. Figure 7 shows such a comparison for the classical
satellites of the Milky Way and subhalo populations in
Milky Way-sized halos formed in the concordance ΛCDM
cosmology.(I did not include the new ultra-faint satellites in
the comparison both because their Vmax values are much
more uncertain and because their total number within
the virial radius requires uncertain corrections from the

CDM

Local 
Group
dwarfs

ΛCDM problems — small scales

9

• substructure problem 
(missing satellites)

• too-big-to-fail problem

Fig. 2. The missing satellite and “too big to fail” problems. (Left) Projected dark matter distribution (600 kpc on a side) of a simulated, 1012M
�

CDM halo
(Garrison-Kimmel, Boylan-Kolchin, & Bullock, in preparation). As in Figure 1, the numerous small subhalos far exceed the number of known Milky Way satellites. Circles mark
the nine most massive subhalos. (Right) Spatial distribution of the “classical” satellites of the Milky Way. The central densities of the subhalos in the left panel are too high
to host the dwarf satellites in the right panel, predicting stellar velocity dispersions higher than observed. The diameter of the outer sphere in the right panel is 300 kpc; relative
to the simulation prediction (and to the Andromeda galaxy) the Milky Way’s satellite system is unusually centrally concentrated (Yniguez et al. 2013).

ciency of converting baryons to stars remains surprisingly low
(⇠ 0.1%� 1%) well above the photoionization threshold, and
it is unclear which if any of the ultra-faint dwarfs are “fossils”
from before the epoch of reionization (Bovill & Ricotti 2009).
Despite the gaps in understanding, it seems reasonable for now
to regard the relation between low mass subhalos and ultra-
faint dwarfs as a puzzle of galaxy formation physics rather
than a contradiction of CDM.

Instead, attention has focused recently on the most lumi-
nous satellites. Circles in Figure 2 mark the nine most mas-
sive subhalos in the simulation, which one would expect to
host galaxies like the Milky Way’s “classical” dwarf satellites.
However, the mass in the central regions of these subhalos
exceeds the mass inferred from stellar dynamics of observed
dwarfs, by a factor ⇠ 5 (Boylan-Kolchin et al. 2011, 2012;
Springel et al. 2008; Parry et al. 2012). While it is pos-
sible in principle that these massive subhalos are dark and
that the observed dwarfs reside in less massive hosts, this
outcome seems physically unlikely; in the spirit of the times,
Boylan-Kolchin et al. (2011) titled this conflict “too big to
fail.” The degree of discrepancy varies with the particular re-
alization of halo substructure and with the mass of the main
halo, but even for a halo mass at the low end of estimates
for the Milky Way the discrepancy appears too large to be a
statistical fluke, and a similar conflict is found in the satellite
system of the Andromeda galaxy (Tollerud et al. 2012). While
“missing satellites” in low mass subhalos may be explained by
baryonic e↵ects, the “too big to fail” problem arises in more
massive systems whose gravitational potential is dominated
by dark matter. In its present form, therefore, the satellite
puzzle looks much like the cusp-core problem: numerical sim-
ulations of CDM structure formation predict too much mass
in the central regions of halos and subhalos. Indeed, Walker
& Peñarrubia (2011), Amorisco et al. (2013), and others have
reported evidence that the Milky Way satellites Fornax and
Sculptor have cored density profiles.

Solutions in Baryonic Physics?
When the cusp-core problem was first identified, the conven-
tional lore was that including baryonic physics would only
exacerbate the problem by adiabatically contracting the dark
matter density distribution (Blumenthal et al. 1986; Flores
& Primack 1994). Navarro, Eke, & Frenk (1996) proposed
a scenario, which seemed extreme at the time, for producing
a cored dark matter distribution: dissipative baryons draw
in the dark matter orbits adiabatically by slowly deepening
the gravitational potential, then release them suddenly when
the supernova feedback of a vigorous starburst blows out a
substantial fraction of the baryonic material, leaving the dark
matter halo less concentrated than the one that would have
formed in the absence of baryons. Since then, hydrodynamic
simulations have greatly improved in numerical resolution and
in the sophistication with which they model star formation
and supernova feedback. With the combination of a high gas
density threshold for star formation and e�cient feedback,
simulations successfully reproduce the observed stellar and
cold gas fractions of field galaxies. The ejection of low angular
momentum gas by feedback plays a critical role in suppressing
the formation of stellar bulges in dwarf galaxies (Governato et
al. 2010), another long-standing problem in early simulations
of galaxy formation. The episodic gas outflows also produce
rapid fluctuations of the gravitational potential, in contrast to
the steady growth assumed in adiabatic contraction models.

Figure 3, based on Governato et al. (2012), illustrates the
impact of this episodic feedback on the dark matter density
profile. In the left panel, the upper dot-dashed curve shows
the final halo profile of an N-body simulation run with grav-
ity and dark matter only. Other curves show the evolution of
the dark matter density profile in a hydrodynamic simulation
with star formation and feedback, from the same initial con-
ditions. Over time, the central dark matter density drops,
and the cuspy profile is transformed to one with a nearly
constant density core (lower solid curve). Pontzen & Gov-
ernato (2012) present an analytic model that accurately de-
scribes this transformation (and its dependence on simulation
assumptions); essentially, the rapid fluctuations in the central
potential pump energy into the dark matter particle orbits, so
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disfavored by the fact that ultra-faint dwarfs appear to lie
on the continuation of the luminosity-metallicity relation of
more luminous dwarf galaxies [73].)

More practically, the extreme faintness of the majority of
dwarf satellites implies that we have a more or less complete
census of them only within the volume of ∼30–50 kpc of the
Milky Way [56, 74]. Figure 5 shows the distance to which the
dwarfs of a given luminosity are complete in the SDSS survey,
in which the faintest new dwarfs have been discovered. The
figure shows that we have a good census of the volume of
the Local Group only for the relatively bright luminosities
of the “classical” satellites. At the fainter luminosities of
the ultra-faint dwarfs, on the other hand, we can expect to
find many more systems at larger radii in the future deep
wide area surveys. The exact number we can expect to be
discovered depends on their uncertain radial distribution,
but given the numbers of already discovered dwarfs and
our current knowledge of the radial distribution of brighter
satellites (and expected radial distribution of subhalos), we
can reasonably expect that at least a hundred faint satellites
exist within 400 kpc of the Milky Way. This is illustrated in
Figure 6, which shows the luminosity function of the Milky
Way satellites corrected for the volume not yet surveyed
under different assumptions about radial distribution of the
satellites [56].

The basis for considering these extremely faint stellar
systems as bona fide galaxies is the fact that unlike star
clusters, they are dark matter dominated: that is, the total
mass within their stellar extent is much larger than the
stellar mass expected for old stellar populations [48]. The
total dynamical masses of these galaxies are derived using
kinematics of stars. (These faint dwarf spheroidal galaxies
do not have cold gas and therefore their mass profiles
cannot be measured using the gas rotation curve, as is
commonly done for more massive dIrr galaxies.) High-
resolution spectroscopy of the red giant stars in the vicinity
of each galaxy provides the radial velocities of these stars.
The radial velocities can then be modeled using using the
Jeans equilibrium equations to derive the total mass profile
[75–80]. This modeling requires certain assumptions about
the unknown shape of the stellar distribution and velocity
distribution of stars, as well as assumptions about the
shape and radial profile of the dark matter distribution.
The resulting mass profile, therefore, has some uncertainty
associated with these assumptions [75, 78, 80].

Additionally, the ultra-faint dwarfs follow scaling rela-
tions of the brighter classical satellites such as the luminosity-
metallicity relation [73] and, therefore, seem to be the low
luminosity brethren within the family of dSph galaxies.

3. Defining the Substructure Problem

As I noted above, comparison of theory and observations
in terms of the directly observable quantities such as
luminosities is possible only using a galaxy formation model.
These models, although actively explored [39, 81–87] (see
also Section 4.3) are considerably more uncertain than the
predictions of dissipationless simulations on the properties
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Figure 7: Comparison of the cumulative circular velocity functions,
N(> Vmax), of subhalos and dwarf satellites of the Milky Way within
the radius of 286 kpc (this radius is chosen to match the maximum
distance to observed satellites in the sample and is smaller than the
virial radius of the simulated halo, R337 = 326 kpc). The subhalo
VFs are plotted for the host halos with maximum circular velocities
of 160 km/s and 208 km/s that should bracket the Vmax of the actual
Milky Way halo. The VF for the observed satellites was constructed
using circular velocities estimated from the line-of-sight velocity
dispersions as Vmax =

√
3σr (see the discussion in the text for the

uncertainties of this conversion).

of dark matter subhalos. Given that observed dwarf satellites
are very dark matter dominated, the dissipative processes
leading to formation of their stellar component are expected
to have a limited effect on the distribution of the dynamically
dominant dark matter. Fruitful comparison between simula-
tion predictions and observations is, therefore, possible if a
quantity related to the total mass profile can be measured in
the latter.

The first attempts at such comparisons [8, 9] assumed
isotropy of the stellar orbits and converted the line-of-
sight velocity dispersion of stars in dSph satellites, σr ,
to estimate their maximum circular velocities as Vmax =√

3σr . The admittedly oversimplistic conversion was adopted
simply due to a lack of well-measured velocity profiles and
corresponding constraints on the mass distribution at the
time. Figure 7 shows such a comparison for the classical
satellites of the Milky Way and subhalo populations in
Milky Way-sized halos formed in the concordance ΛCDM
cosmology.(I did not include the new ultra-faint satellites in
the comparison both because their Vmax values are much
more uncertain and because their total number within
the virial radius requires uncertain corrections from the
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Fig. 2. The missing satellite and “too big to fail” problems. (Left) Projected dark matter distribution (600 kpc on a side) of a simulated, 1012M
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CDM halo
(Garrison-Kimmel, Boylan-Kolchin, & Bullock, in preparation). As in Figure 1, the numerous small subhalos far exceed the number of known Milky Way satellites. Circles mark
the nine most massive subhalos. (Right) Spatial distribution of the “classical” satellites of the Milky Way. The central densities of the subhalos in the left panel are too high
to host the dwarf satellites in the right panel, predicting stellar velocity dispersions higher than observed. The diameter of the outer sphere in the right panel is 300 kpc; relative
to the simulation prediction (and to the Andromeda galaxy) the Milky Way’s satellite system is unusually centrally concentrated (Yniguez et al. 2013).

ciency of converting baryons to stars remains surprisingly low
(⇠ 0.1%� 1%) well above the photoionization threshold, and
it is unclear which if any of the ultra-faint dwarfs are “fossils”
from before the epoch of reionization (Bovill & Ricotti 2009).
Despite the gaps in understanding, it seems reasonable for now
to regard the relation between low mass subhalos and ultra-
faint dwarfs as a puzzle of galaxy formation physics rather
than a contradiction of CDM.

Instead, attention has focused recently on the most lumi-
nous satellites. Circles in Figure 2 mark the nine most mas-
sive subhalos in the simulation, which one would expect to
host galaxies like the Milky Way’s “classical” dwarf satellites.
However, the mass in the central regions of these subhalos
exceeds the mass inferred from stellar dynamics of observed
dwarfs, by a factor ⇠ 5 (Boylan-Kolchin et al. 2011, 2012;
Springel et al. 2008; Parry et al. 2012). While it is pos-
sible in principle that these massive subhalos are dark and
that the observed dwarfs reside in less massive hosts, this
outcome seems physically unlikely; in the spirit of the times,
Boylan-Kolchin et al. (2011) titled this conflict “too big to
fail.” The degree of discrepancy varies with the particular re-
alization of halo substructure and with the mass of the main
halo, but even for a halo mass at the low end of estimates
for the Milky Way the discrepancy appears too large to be a
statistical fluke, and a similar conflict is found in the satellite
system of the Andromeda galaxy (Tollerud et al. 2012). While
“missing satellites” in low mass subhalos may be explained by
baryonic e↵ects, the “too big to fail” problem arises in more
massive systems whose gravitational potential is dominated
by dark matter. In its present form, therefore, the satellite
puzzle looks much like the cusp-core problem: numerical sim-
ulations of CDM structure formation predict too much mass
in the central regions of halos and subhalos. Indeed, Walker
& Peñarrubia (2011), Amorisco et al. (2013), and others have
reported evidence that the Milky Way satellites Fornax and
Sculptor have cored density profiles.

Solutions in Baryonic Physics?
When the cusp-core problem was first identified, the conven-
tional lore was that including baryonic physics would only
exacerbate the problem by adiabatically contracting the dark
matter density distribution (Blumenthal et al. 1986; Flores
& Primack 1994). Navarro, Eke, & Frenk (1996) proposed
a scenario, which seemed extreme at the time, for producing
a cored dark matter distribution: dissipative baryons draw
in the dark matter orbits adiabatically by slowly deepening
the gravitational potential, then release them suddenly when
the supernova feedback of a vigorous starburst blows out a
substantial fraction of the baryonic material, leaving the dark
matter halo less concentrated than the one that would have
formed in the absence of baryons. Since then, hydrodynamic
simulations have greatly improved in numerical resolution and
in the sophistication with which they model star formation
and supernova feedback. With the combination of a high gas
density threshold for star formation and e�cient feedback,
simulations successfully reproduce the observed stellar and
cold gas fractions of field galaxies. The ejection of low angular
momentum gas by feedback plays a critical role in suppressing
the formation of stellar bulges in dwarf galaxies (Governato et
al. 2010), another long-standing problem in early simulations
of galaxy formation. The episodic gas outflows also produce
rapid fluctuations of the gravitational potential, in contrast to
the steady growth assumed in adiabatic contraction models.

Figure 3, based on Governato et al. (2012), illustrates the
impact of this episodic feedback on the dark matter density
profile. In the left panel, the upper dot-dashed curve shows
the final halo profile of an N-body simulation run with grav-
ity and dark matter only. Other curves show the evolution of
the dark matter density profile in a hydrodynamic simulation
with star formation and feedback, from the same initial con-
ditions. Over time, the central dark matter density drops,
and the cuspy profile is transformed to one with a nearly
constant density core (lower solid curve). Pontzen & Gov-
ernato (2012) present an analytic model that accurately de-
scribes this transformation (and its dependence on simulation
assumptions); essentially, the rapid fluctuations in the central
potential pump energy into the dark matter particle orbits, so
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disfavored by the fact that ultra-faint dwarfs appear to lie
on the continuation of the luminosity-metallicity relation of
more luminous dwarf galaxies [73].)

More practically, the extreme faintness of the majority of
dwarf satellites implies that we have a more or less complete
census of them only within the volume of ∼30–50 kpc of the
Milky Way [56, 74]. Figure 5 shows the distance to which the
dwarfs of a given luminosity are complete in the SDSS survey,
in which the faintest new dwarfs have been discovered. The
figure shows that we have a good census of the volume of
the Local Group only for the relatively bright luminosities
of the “classical” satellites. At the fainter luminosities of
the ultra-faint dwarfs, on the other hand, we can expect to
find many more systems at larger radii in the future deep
wide area surveys. The exact number we can expect to be
discovered depends on their uncertain radial distribution,
but given the numbers of already discovered dwarfs and
our current knowledge of the radial distribution of brighter
satellites (and expected radial distribution of subhalos), we
can reasonably expect that at least a hundred faint satellites
exist within 400 kpc of the Milky Way. This is illustrated in
Figure 6, which shows the luminosity function of the Milky
Way satellites corrected for the volume not yet surveyed
under different assumptions about radial distribution of the
satellites [56].

The basis for considering these extremely faint stellar
systems as bona fide galaxies is the fact that unlike star
clusters, they are dark matter dominated: that is, the total
mass within their stellar extent is much larger than the
stellar mass expected for old stellar populations [48]. The
total dynamical masses of these galaxies are derived using
kinematics of stars. (These faint dwarf spheroidal galaxies
do not have cold gas and therefore their mass profiles
cannot be measured using the gas rotation curve, as is
commonly done for more massive dIrr galaxies.) High-
resolution spectroscopy of the red giant stars in the vicinity
of each galaxy provides the radial velocities of these stars.
The radial velocities can then be modeled using using the
Jeans equilibrium equations to derive the total mass profile
[75–80]. This modeling requires certain assumptions about
the unknown shape of the stellar distribution and velocity
distribution of stars, as well as assumptions about the
shape and radial profile of the dark matter distribution.
The resulting mass profile, therefore, has some uncertainty
associated with these assumptions [75, 78, 80].

Additionally, the ultra-faint dwarfs follow scaling rela-
tions of the brighter classical satellites such as the luminosity-
metallicity relation [73] and, therefore, seem to be the low
luminosity brethren within the family of dSph galaxies.

3. Defining the Substructure Problem

As I noted above, comparison of theory and observations
in terms of the directly observable quantities such as
luminosities is possible only using a galaxy formation model.
These models, although actively explored [39, 81–87] (see
also Section 4.3) are considerably more uncertain than the
predictions of dissipationless simulations on the properties

1

10

100

N
(>

V
ci

rc
)

10 20 30 40 50 60 70

Vcirc (km/s)

ΛCDM satellites

Local group dwarfs

Figure 7: Comparison of the cumulative circular velocity functions,
N(> Vmax), of subhalos and dwarf satellites of the Milky Way within
the radius of 286 kpc (this radius is chosen to match the maximum
distance to observed satellites in the sample and is smaller than the
virial radius of the simulated halo, R337 = 326 kpc). The subhalo
VFs are plotted for the host halos with maximum circular velocities
of 160 km/s and 208 km/s that should bracket the Vmax of the actual
Milky Way halo. The VF for the observed satellites was constructed
using circular velocities estimated from the line-of-sight velocity
dispersions as Vmax =

√
3σr (see the discussion in the text for the

uncertainties of this conversion).

of dark matter subhalos. Given that observed dwarf satellites
are very dark matter dominated, the dissipative processes
leading to formation of their stellar component are expected
to have a limited effect on the distribution of the dynamically
dominant dark matter. Fruitful comparison between simula-
tion predictions and observations is, therefore, possible if a
quantity related to the total mass profile can be measured in
the latter.

The first attempts at such comparisons [8, 9] assumed
isotropy of the stellar orbits and converted the line-of-
sight velocity dispersion of stars in dSph satellites, σr ,
to estimate their maximum circular velocities as Vmax =√

3σr . The admittedly oversimplistic conversion was adopted
simply due to a lack of well-measured velocity profiles and
corresponding constraints on the mass distribution at the
time. Figure 7 shows such a comparison for the classical
satellites of the Milky Way and subhalo populations in
Milky Way-sized halos formed in the concordance ΛCDM
cosmology.(I did not include the new ultra-faint satellites in
the comparison both because their Vmax values are much
more uncertain and because their total number within
the virial radius requires uncertain corrections from the
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Fig. 2. The missing satellite and “too big to fail” problems. (Left) Projected dark matter distribution (600 kpc on a side) of a simulated, 1012M
�

CDM halo
(Garrison-Kimmel, Boylan-Kolchin, & Bullock, in preparation). As in Figure 1, the numerous small subhalos far exceed the number of known Milky Way satellites. Circles mark
the nine most massive subhalos. (Right) Spatial distribution of the “classical” satellites of the Milky Way. The central densities of the subhalos in the left panel are too high
to host the dwarf satellites in the right panel, predicting stellar velocity dispersions higher than observed. The diameter of the outer sphere in the right panel is 300 kpc; relative
to the simulation prediction (and to the Andromeda galaxy) the Milky Way’s satellite system is unusually centrally concentrated (Yniguez et al. 2013).

ciency of converting baryons to stars remains surprisingly low
(⇠ 0.1%� 1%) well above the photoionization threshold, and
it is unclear which if any of the ultra-faint dwarfs are “fossils”
from before the epoch of reionization (Bovill & Ricotti 2009).
Despite the gaps in understanding, it seems reasonable for now
to regard the relation between low mass subhalos and ultra-
faint dwarfs as a puzzle of galaxy formation physics rather
than a contradiction of CDM.

Instead, attention has focused recently on the most lumi-
nous satellites. Circles in Figure 2 mark the nine most mas-
sive subhalos in the simulation, which one would expect to
host galaxies like the Milky Way’s “classical” dwarf satellites.
However, the mass in the central regions of these subhalos
exceeds the mass inferred from stellar dynamics of observed
dwarfs, by a factor ⇠ 5 (Boylan-Kolchin et al. 2011, 2012;
Springel et al. 2008; Parry et al. 2012). While it is pos-
sible in principle that these massive subhalos are dark and
that the observed dwarfs reside in less massive hosts, this
outcome seems physically unlikely; in the spirit of the times,
Boylan-Kolchin et al. (2011) titled this conflict “too big to
fail.” The degree of discrepancy varies with the particular re-
alization of halo substructure and with the mass of the main
halo, but even for a halo mass at the low end of estimates
for the Milky Way the discrepancy appears too large to be a
statistical fluke, and a similar conflict is found in the satellite
system of the Andromeda galaxy (Tollerud et al. 2012). While
“missing satellites” in low mass subhalos may be explained by
baryonic e↵ects, the “too big to fail” problem arises in more
massive systems whose gravitational potential is dominated
by dark matter. In its present form, therefore, the satellite
puzzle looks much like the cusp-core problem: numerical sim-
ulations of CDM structure formation predict too much mass
in the central regions of halos and subhalos. Indeed, Walker
& Peñarrubia (2011), Amorisco et al. (2013), and others have
reported evidence that the Milky Way satellites Fornax and
Sculptor have cored density profiles.

Solutions in Baryonic Physics?
When the cusp-core problem was first identified, the conven-
tional lore was that including baryonic physics would only
exacerbate the problem by adiabatically contracting the dark
matter density distribution (Blumenthal et al. 1986; Flores
& Primack 1994). Navarro, Eke, & Frenk (1996) proposed
a scenario, which seemed extreme at the time, for producing
a cored dark matter distribution: dissipative baryons draw
in the dark matter orbits adiabatically by slowly deepening
the gravitational potential, then release them suddenly when
the supernova feedback of a vigorous starburst blows out a
substantial fraction of the baryonic material, leaving the dark
matter halo less concentrated than the one that would have
formed in the absence of baryons. Since then, hydrodynamic
simulations have greatly improved in numerical resolution and
in the sophistication with which they model star formation
and supernova feedback. With the combination of a high gas
density threshold for star formation and e�cient feedback,
simulations successfully reproduce the observed stellar and
cold gas fractions of field galaxies. The ejection of low angular
momentum gas by feedback plays a critical role in suppressing
the formation of stellar bulges in dwarf galaxies (Governato et
al. 2010), another long-standing problem in early simulations
of galaxy formation. The episodic gas outflows also produce
rapid fluctuations of the gravitational potential, in contrast to
the steady growth assumed in adiabatic contraction models.

Figure 3, based on Governato et al. (2012), illustrates the
impact of this episodic feedback on the dark matter density
profile. In the left panel, the upper dot-dashed curve shows
the final halo profile of an N-body simulation run with grav-
ity and dark matter only. Other curves show the evolution of
the dark matter density profile in a hydrodynamic simulation
with star formation and feedback, from the same initial con-
ditions. Over time, the central dark matter density drops,
and the cuspy profile is transformed to one with a nearly
constant density core (lower solid curve). Pontzen & Gov-
ernato (2012) present an analytic model that accurately de-
scribes this transformation (and its dependence on simulation
assumptions); essentially, the rapid fluctuations in the central
potential pump energy into the dark matter particle orbits, so
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Fig. 1. The cusp-core problem. (Left) An optical image of the galaxy F568-3 (small inset, from the Sloan Digital Sky Survey) is superposed on the the dark matter
distribution from the “Via Lactea” cosmological simulation of a Milky Way-mass cold dark matter halo (Diemand et al. 2007). In the simulation image, intensity encodes the
square of the dark matter density, which is proportional to annihilation rate and highlights low mass substructure. (Right) The measured rotation curve of F568-3 (points)
compared to model fits assuming a cored dark matter halo (blue solid curve) or a cuspy dark matter halo with an NFW profile (red dashed curve, concentration c = 9.2,
V200 = 110 km s�1). The dotted green curve shows the contribution of baryons (stars+gas) to the rotation curve, which is included in both model fits. An NFW halo
profile overpredicts the rotation speed in the inner few kpc. Note that the rotation curve is measured over roughly the scale of the 40 kpc inset in the left panel.

typical for galaxy mass halos. When normalized to match the
observed rotation at large radii, the NFW halo overpredicts
the rotation speed in the inner few kpc, by a factor of two or
more.

Early theoretical discussions of the cusp-core problem de-
voted considerable attention to the predicted central slope of
the density profiles and to the e↵ects of finite numerical reso-
lution and cosmological parameter choices on the simulation
predictions (see Ludlow et al. 2013 for a recent, state-of-the-
art discussion). However, the details of the profile shape are
not essential to the conflict; the basic problem is that CDM
predicts too much dark matter in the central few kpc of typical
galaxies, and the tension is evident at scales where vc(r) has
risen to ⇠ 1/2 of its asymptotic value (see, e.g., Alam, Bul-
lock, & Weinberg 2002; Kuzio de Naray & Spekkens 2011).
On the observational side, the most severe discrepancies be-
tween predicted and observed rotation curves arise for fairly
small galaxies, and early discussions focused on whether beam
smearing or non-circular motions could artificially suppress
the measured vc(r) at small radii. However, despite uncer-
tainties in individual cases, improvements in the observations,
sample sizes, and modeling have led to a clear overall picture:
a majority of galaxy rotation curves are better fit with cored
dark matter profiles than with NFW-like dark matter profiles,
and some well observed galaxies cannot be fit with NFW-like
profiles, even when one allows halo concentrations at the low
end of the theoretically predicted distribution and accounts for
uncertainties in modeling the baryon component (e.g., Kuzio
de Naray et al. 2008). Resolving the cusp-core problem there-
fore requires modifying the halo profiles of typical spiral galax-
ies away from the profiles that N-body simulations predict for
collisionless CDM.

Figure 2 illustrates the “missing satellite” problem. The
left panel shows the projected dark matter density distribu-
tion of a 1012M

�

CDM halo formed in a cosmological N-body
simulation. Because CDM preserves primordial fluctuations
down to very small scales, halos today are filled with enormous
numbers of subhalos that collapse at early times and preserve
their identities after falling into larger systems. Prior to 2000,
there were only nine dwarf satellite galaxies known within the

⇠ 250 kpc virial radius of the Milky Way halo (illustrated
in the right panel), with the smallest having stellar velocity
dispersions ⇠ 10 km s�1. Klypin et al. (1999) and Moore et
al. (1999b) predicted a factor ⇠ 5 � 20 more subhalos above
a corresponding velocity threshold in their simulated Milky
Way halos. Establishing the “correspondence” between satel-
lite stellar dynamics and subhalo properties is a key technical
point (Stoehr et al. 2002), which we will return to below, but
a prima facie comparison suggests that the predicted satellite
population far exceeds the observed one.

Fortunately (or perhaps unfortunately), the missing satel-
lite problem seems like it could be solved fairly easily by
baryonic physics. In particular, the velocity threshold at
which subhalo and dwarf satellite counts diverge is close to
the ⇠ 30 km s�1 value at which heating of intergalactic gas
by the ultraviolet photoionizing background should suppress
gas accretion onto halos, which could plausibly cause these
halos to remain dark (Bullock, Kravtsov, & Weinberg 2000;
Benson et al. 2002; Somerville 2002). Alternatively, super-
novae and stellar winds from the first generation of stars could
drive remaining gas out of the shallow potential wells of these
low mass halos. Complicating the situation, searches using
the Sloan Digital Sky Survey have discovered another ⇠ 15
“ultra-faint” satellites with luminosities of only 103 � 105L

�

(e.g., Willman et al. 2005; Belokurov et al. 2007). The high-
latitude SDSS imaging covered only ⇠ 20% of the sky, and
many of the newly discovered dwarfs are so faint that they
could only be seen to 50-100 kpc (Koposov et al. 2008; Walsh
et al. 2009), so extrapolating to the full volume within the
Milky Way virial radius suggests a population of several hun-
dred faint dwarf satellites (Tollerud et al. 2008). Estimates
from stellar dynamics imply that the mass of dark matter in
the central 0.3 kpc of the host subhalos is M0.3 ⇡ 107M

�

across an enormous range of luminosities, L ⇠ 103 � 107L
�

(encompassing the “classical” dwarf spheroidals as well as the
SDSS dwarfs), which suggests that the mapping between halo
mass and luminosity becomes highly stochastic near this mass
threshold (Strigari et al. 2008). The luminosity function of
the faint and ultra-faint dwarfs can be explained by semi-
analytic models invoking photoionization and stellar feedback
(e.g., Koposov et al. 2009; Macciò et al. 2009), though the e�-
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Figure 11. Left: logarithmic slope of the density profile inferred from (g) NFW fits to weak and strong lensing and stellar kinematics. For comparison, Einasto profiles
with α = 0.129 and 0.219 are plotted, bracketing the range noted by Navarro et al. (2004) in cluster simulations; here r−2 is fixed to the median rs inferred in NFW
fits. Navarro et al. (2004) used such a profile to fit the inner regions of clusters in their N-body simulations. All confidence regions are 68%. Right: density profiles
inferred from (g) NFW fits to the combined data set. The BCG profile is also shown, using the M∗/L ratios inferred in the gNFW model, along with the X-ray gas
profile provided by S. Allen (Section 5.3). For reference, the dashed line gives a gNFW extrapolation of the hot gas outside the range of the X-ray data.
(A color version of this figure is available in the online journal.)
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the b, c, and los orientations compatible with the observed q
and prior distributions p(c) and p(b|c) from the N-body DM
simulations presented by Jing & Suto (2002), as suggested by
Gavazzi (2005). We find that the radius along the los is > 0.6
(2σ ) of the average radius in the plane of the sky; that is, strong
compression along the los is unlikely. Furthermore, interaction
with baryons tends to make halos rounder and less triaxial than
those in pure DM simulations (Gustafsson et al. 2006; Debattista
et al. 2008; Abadi et al. 2009).

Gavazzi (2005) has estimated the error on the enclosed
mass as inferred from kinematic data by assuming spherical
symmetry, when the actual mass distribution is a prolate (oblate)
ellipsoid aligned with major (minor) axis along the los. A
prolate halo would exacerbate the discrepancy we find with
NFW, since stars move faster along the major axis, and hence
dynamical masses are overestimated. An oblate halo with short

axis along the los causes an downward bias in dynamical
mass, which is !30% for the above limit on c. This bias
can be approximately compensated by increasing the velocity
dispersion measurements by 15%. Repeating our combined
gNFW analysis with this modification yields β < 0.57 (68%;
β < 0.92, 95% CL).

We therefore believe our results are robust against likely pro-
jection effects, although the significances may vary. Neverthe-
less, recognizing that triaxiality has a complicated effect on
dynamical masses, and the possible inadequacy of simple mod-
els in the present situation (e.g., the simplifying assumptions
by Gavazzi 2005 of a spheroidal halo aligned with the los and
massless tracers), we intend to pursue this issue more rigorously
in future work, both observationally and in modeling. Addition-
ally, a larger sample will allow us to assess the likelihood that
chance alignments of triaxial halos can explain our findings.

5.2. Velocity Dispersion Measurements and Modeling

In our dynamical modeling, we assumed isotropic stellar
orbits and a Gaussian LOSVD. Since the mass distribution
inferred from a velocity dispersion profile depends on the
anisotropy tensor, the effects of these assumptions must be
considered. Orbital structure has been studied extensively in
local samples of cD, cluster, and field elliptical galaxies (e.g.,
Gerhard et al. 1998; Saglia et al. 2000; Kronawitter et al. 2000;
Gerhard et al. 2001; Thomas et al. 2005, 2007, see also Kelson
et al. 2002 and references), and also in a few distant early-type
galaxies (Treu & Koopmans 2004). The broad consensus is that
orbital structure in the inner regions is remarkably consistent:
along the major axis, orbits range from isotropic to slightly
radially biased, with the isotropy parameter β typically !0.3
and up to ≈0.5. Moreover, deviations from a Gaussian LOSVD
are small, with h3 and h4 typically a few percent and (rarely) up
to 10%. At the radii we probe (!0.4Re), radial bias causes the
projected velocity dispersion to be higher than would be seen
for isotropic orbits in the same mass distribution (Binney &
Tremaine 1987, Figure 4-13). Accounting for radial anisotropy
would thus strengthen our results (i.e., force β downward).
Tangential bias at these radii is quite rare; however, Sand et al.
(2004) considered this possibility and estimated β would be
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disfavored by the fact that ultra-faint dwarfs appear to lie
on the continuation of the luminosity-metallicity relation of
more luminous dwarf galaxies [73].)

More practically, the extreme faintness of the majority of
dwarf satellites implies that we have a more or less complete
census of them only within the volume of ∼30–50 kpc of the
Milky Way [56, 74]. Figure 5 shows the distance to which the
dwarfs of a given luminosity are complete in the SDSS survey,
in which the faintest new dwarfs have been discovered. The
figure shows that we have a good census of the volume of
the Local Group only for the relatively bright luminosities
of the “classical” satellites. At the fainter luminosities of
the ultra-faint dwarfs, on the other hand, we can expect to
find many more systems at larger radii in the future deep
wide area surveys. The exact number we can expect to be
discovered depends on their uncertain radial distribution,
but given the numbers of already discovered dwarfs and
our current knowledge of the radial distribution of brighter
satellites (and expected radial distribution of subhalos), we
can reasonably expect that at least a hundred faint satellites
exist within 400 kpc of the Milky Way. This is illustrated in
Figure 6, which shows the luminosity function of the Milky
Way satellites corrected for the volume not yet surveyed
under different assumptions about radial distribution of the
satellites [56].

The basis for considering these extremely faint stellar
systems as bona fide galaxies is the fact that unlike star
clusters, they are dark matter dominated: that is, the total
mass within their stellar extent is much larger than the
stellar mass expected for old stellar populations [48]. The
total dynamical masses of these galaxies are derived using
kinematics of stars. (These faint dwarf spheroidal galaxies
do not have cold gas and therefore their mass profiles
cannot be measured using the gas rotation curve, as is
commonly done for more massive dIrr galaxies.) High-
resolution spectroscopy of the red giant stars in the vicinity
of each galaxy provides the radial velocities of these stars.
The radial velocities can then be modeled using using the
Jeans equilibrium equations to derive the total mass profile
[75–80]. This modeling requires certain assumptions about
the unknown shape of the stellar distribution and velocity
distribution of stars, as well as assumptions about the
shape and radial profile of the dark matter distribution.
The resulting mass profile, therefore, has some uncertainty
associated with these assumptions [75, 78, 80].

Additionally, the ultra-faint dwarfs follow scaling rela-
tions of the brighter classical satellites such as the luminosity-
metallicity relation [73] and, therefore, seem to be the low
luminosity brethren within the family of dSph galaxies.

3. Defining the Substructure Problem

As I noted above, comparison of theory and observations
in terms of the directly observable quantities such as
luminosities is possible only using a galaxy formation model.
These models, although actively explored [39, 81–87] (see
also Section 4.3) are considerably more uncertain than the
predictions of dissipationless simulations on the properties
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Figure 7: Comparison of the cumulative circular velocity functions,
N(> Vmax), of subhalos and dwarf satellites of the Milky Way within
the radius of 286 kpc (this radius is chosen to match the maximum
distance to observed satellites in the sample and is smaller than the
virial radius of the simulated halo, R337 = 326 kpc). The subhalo
VFs are plotted for the host halos with maximum circular velocities
of 160 km/s and 208 km/s that should bracket the Vmax of the actual
Milky Way halo. The VF for the observed satellites was constructed
using circular velocities estimated from the line-of-sight velocity
dispersions as Vmax =

√
3σr (see the discussion in the text for the

uncertainties of this conversion).

of dark matter subhalos. Given that observed dwarf satellites
are very dark matter dominated, the dissipative processes
leading to formation of their stellar component are expected
to have a limited effect on the distribution of the dynamically
dominant dark matter. Fruitful comparison between simula-
tion predictions and observations is, therefore, possible if a
quantity related to the total mass profile can be measured in
the latter.

The first attempts at such comparisons [8, 9] assumed
isotropy of the stellar orbits and converted the line-of-
sight velocity dispersion of stars in dSph satellites, σr ,
to estimate their maximum circular velocities as Vmax =√

3σr . The admittedly oversimplistic conversion was adopted
simply due to a lack of well-measured velocity profiles and
corresponding constraints on the mass distribution at the
time. Figure 7 shows such a comparison for the classical
satellites of the Milky Way and subhalo populations in
Milky Way-sized halos formed in the concordance ΛCDM
cosmology.(I did not include the new ultra-faint satellites in
the comparison both because their Vmax values are much
more uncertain and because their total number within
the virial radius requires uncertain corrections from the
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Fig. 2. The missing satellite and “too big to fail” problems. (Left) Projected dark matter distribution (600 kpc on a side) of a simulated, 1012M
�

CDM halo
(Garrison-Kimmel, Boylan-Kolchin, & Bullock, in preparation). As in Figure 1, the numerous small subhalos far exceed the number of known Milky Way satellites. Circles mark
the nine most massive subhalos. (Right) Spatial distribution of the “classical” satellites of the Milky Way. The central densities of the subhalos in the left panel are too high
to host the dwarf satellites in the right panel, predicting stellar velocity dispersions higher than observed. The diameter of the outer sphere in the right panel is 300 kpc; relative
to the simulation prediction (and to the Andromeda galaxy) the Milky Way’s satellite system is unusually centrally concentrated (Yniguez et al. 2013).

ciency of converting baryons to stars remains surprisingly low
(⇠ 0.1%� 1%) well above the photoionization threshold, and
it is unclear which if any of the ultra-faint dwarfs are “fossils”
from before the epoch of reionization (Bovill & Ricotti 2009).
Despite the gaps in understanding, it seems reasonable for now
to regard the relation between low mass subhalos and ultra-
faint dwarfs as a puzzle of galaxy formation physics rather
than a contradiction of CDM.

Instead, attention has focused recently on the most lumi-
nous satellites. Circles in Figure 2 mark the nine most mas-
sive subhalos in the simulation, which one would expect to
host galaxies like the Milky Way’s “classical” dwarf satellites.
However, the mass in the central regions of these subhalos
exceeds the mass inferred from stellar dynamics of observed
dwarfs, by a factor ⇠ 5 (Boylan-Kolchin et al. 2011, 2012;
Springel et al. 2008; Parry et al. 2012). While it is pos-
sible in principle that these massive subhalos are dark and
that the observed dwarfs reside in less massive hosts, this
outcome seems physically unlikely; in the spirit of the times,
Boylan-Kolchin et al. (2011) titled this conflict “too big to
fail.” The degree of discrepancy varies with the particular re-
alization of halo substructure and with the mass of the main
halo, but even for a halo mass at the low end of estimates
for the Milky Way the discrepancy appears too large to be a
statistical fluke, and a similar conflict is found in the satellite
system of the Andromeda galaxy (Tollerud et al. 2012). While
“missing satellites” in low mass subhalos may be explained by
baryonic e↵ects, the “too big to fail” problem arises in more
massive systems whose gravitational potential is dominated
by dark matter. In its present form, therefore, the satellite
puzzle looks much like the cusp-core problem: numerical sim-
ulations of CDM structure formation predict too much mass
in the central regions of halos and subhalos. Indeed, Walker
& Peñarrubia (2011), Amorisco et al. (2013), and others have
reported evidence that the Milky Way satellites Fornax and
Sculptor have cored density profiles.

Solutions in Baryonic Physics?
When the cusp-core problem was first identified, the conven-
tional lore was that including baryonic physics would only
exacerbate the problem by adiabatically contracting the dark
matter density distribution (Blumenthal et al. 1986; Flores
& Primack 1994). Navarro, Eke, & Frenk (1996) proposed
a scenario, which seemed extreme at the time, for producing
a cored dark matter distribution: dissipative baryons draw
in the dark matter orbits adiabatically by slowly deepening
the gravitational potential, then release them suddenly when
the supernova feedback of a vigorous starburst blows out a
substantial fraction of the baryonic material, leaving the dark
matter halo less concentrated than the one that would have
formed in the absence of baryons. Since then, hydrodynamic
simulations have greatly improved in numerical resolution and
in the sophistication with which they model star formation
and supernova feedback. With the combination of a high gas
density threshold for star formation and e�cient feedback,
simulations successfully reproduce the observed stellar and
cold gas fractions of field galaxies. The ejection of low angular
momentum gas by feedback plays a critical role in suppressing
the formation of stellar bulges in dwarf galaxies (Governato et
al. 2010), another long-standing problem in early simulations
of galaxy formation. The episodic gas outflows also produce
rapid fluctuations of the gravitational potential, in contrast to
the steady growth assumed in adiabatic contraction models.

Figure 3, based on Governato et al. (2012), illustrates the
impact of this episodic feedback on the dark matter density
profile. In the left panel, the upper dot-dashed curve shows
the final halo profile of an N-body simulation run with grav-
ity and dark matter only. Other curves show the evolution of
the dark matter density profile in a hydrodynamic simulation
with star formation and feedback, from the same initial con-
ditions. Over time, the central dark matter density drops,
and the cuspy profile is transformed to one with a nearly
constant density core (lower solid curve). Pontzen & Gov-
ernato (2012) present an analytic model that accurately de-
scribes this transformation (and its dependence on simulation
assumptions); essentially, the rapid fluctuations in the central
potential pump energy into the dark matter particle orbits, so
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Fig. 1. The cusp-core problem. (Left) An optical image of the galaxy F568-3 (small inset, from the Sloan Digital Sky Survey) is superposed on the the dark matter
distribution from the “Via Lactea” cosmological simulation of a Milky Way-mass cold dark matter halo (Diemand et al. 2007). In the simulation image, intensity encodes the
square of the dark matter density, which is proportional to annihilation rate and highlights low mass substructure. (Right) The measured rotation curve of F568-3 (points)
compared to model fits assuming a cored dark matter halo (blue solid curve) or a cuspy dark matter halo with an NFW profile (red dashed curve, concentration c = 9.2,
V200 = 110 km s�1). The dotted green curve shows the contribution of baryons (stars+gas) to the rotation curve, which is included in both model fits. An NFW halo
profile overpredicts the rotation speed in the inner few kpc. Note that the rotation curve is measured over roughly the scale of the 40 kpc inset in the left panel.

typical for galaxy mass halos. When normalized to match the
observed rotation at large radii, the NFW halo overpredicts
the rotation speed in the inner few kpc, by a factor of two or
more.

Early theoretical discussions of the cusp-core problem de-
voted considerable attention to the predicted central slope of
the density profiles and to the e↵ects of finite numerical reso-
lution and cosmological parameter choices on the simulation
predictions (see Ludlow et al. 2013 for a recent, state-of-the-
art discussion). However, the details of the profile shape are
not essential to the conflict; the basic problem is that CDM
predicts too much dark matter in the central few kpc of typical
galaxies, and the tension is evident at scales where vc(r) has
risen to ⇠ 1/2 of its asymptotic value (see, e.g., Alam, Bul-
lock, & Weinberg 2002; Kuzio de Naray & Spekkens 2011).
On the observational side, the most severe discrepancies be-
tween predicted and observed rotation curves arise for fairly
small galaxies, and early discussions focused on whether beam
smearing or non-circular motions could artificially suppress
the measured vc(r) at small radii. However, despite uncer-
tainties in individual cases, improvements in the observations,
sample sizes, and modeling have led to a clear overall picture:
a majority of galaxy rotation curves are better fit with cored
dark matter profiles than with NFW-like dark matter profiles,
and some well observed galaxies cannot be fit with NFW-like
profiles, even when one allows halo concentrations at the low
end of the theoretically predicted distribution and accounts for
uncertainties in modeling the baryon component (e.g., Kuzio
de Naray et al. 2008). Resolving the cusp-core problem there-
fore requires modifying the halo profiles of typical spiral galax-
ies away from the profiles that N-body simulations predict for
collisionless CDM.

Figure 2 illustrates the “missing satellite” problem. The
left panel shows the projected dark matter density distribu-
tion of a 1012M

�

CDM halo formed in a cosmological N-body
simulation. Because CDM preserves primordial fluctuations
down to very small scales, halos today are filled with enormous
numbers of subhalos that collapse at early times and preserve
their identities after falling into larger systems. Prior to 2000,
there were only nine dwarf satellite galaxies known within the

⇠ 250 kpc virial radius of the Milky Way halo (illustrated
in the right panel), with the smallest having stellar velocity
dispersions ⇠ 10 km s�1. Klypin et al. (1999) and Moore et
al. (1999b) predicted a factor ⇠ 5 � 20 more subhalos above
a corresponding velocity threshold in their simulated Milky
Way halos. Establishing the “correspondence” between satel-
lite stellar dynamics and subhalo properties is a key technical
point (Stoehr et al. 2002), which we will return to below, but
a prima facie comparison suggests that the predicted satellite
population far exceeds the observed one.

Fortunately (or perhaps unfortunately), the missing satel-
lite problem seems like it could be solved fairly easily by
baryonic physics. In particular, the velocity threshold at
which subhalo and dwarf satellite counts diverge is close to
the ⇠ 30 km s�1 value at which heating of intergalactic gas
by the ultraviolet photoionizing background should suppress
gas accretion onto halos, which could plausibly cause these
halos to remain dark (Bullock, Kravtsov, & Weinberg 2000;
Benson et al. 2002; Somerville 2002). Alternatively, super-
novae and stellar winds from the first generation of stars could
drive remaining gas out of the shallow potential wells of these
low mass halos. Complicating the situation, searches using
the Sloan Digital Sky Survey have discovered another ⇠ 15
“ultra-faint” satellites with luminosities of only 103 � 105L

�

(e.g., Willman et al. 2005; Belokurov et al. 2007). The high-
latitude SDSS imaging covered only ⇠ 20% of the sky, and
many of the newly discovered dwarfs are so faint that they
could only be seen to 50-100 kpc (Koposov et al. 2008; Walsh
et al. 2009), so extrapolating to the full volume within the
Milky Way virial radius suggests a population of several hun-
dred faint dwarf satellites (Tollerud et al. 2008). Estimates
from stellar dynamics imply that the mass of dark matter in
the central 0.3 kpc of the host subhalos is M0.3 ⇡ 107M

�

across an enormous range of luminosities, L ⇠ 103 � 107L
�

(encompassing the “classical” dwarf spheroidals as well as the
SDSS dwarfs), which suggests that the mapping between halo
mass and luminosity becomes highly stochastic near this mass
threshold (Strigari et al. 2008). The luminosity function of
the faint and ultra-faint dwarfs can be explained by semi-
analytic models invoking photoionization and stellar feedback
(e.g., Koposov et al. 2009; Macciò et al. 2009), though the e�-

2 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author
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Figure 11. Left: logarithmic slope of the density profile inferred from (g) NFW fits to weak and strong lensing and stellar kinematics. For comparison, Einasto profiles
with α = 0.129 and 0.219 are plotted, bracketing the range noted by Navarro et al. (2004) in cluster simulations; here r−2 is fixed to the median rs inferred in NFW
fits. Navarro et al. (2004) used such a profile to fit the inner regions of clusters in their N-body simulations. All confidence regions are 68%. Right: density profiles
inferred from (g) NFW fits to the combined data set. The BCG profile is also shown, using the M∗/L ratios inferred in the gNFW model, along with the X-ray gas
profile provided by S. Allen (Section 5.3). For reference, the dashed line gives a gNFW extrapolation of the hot gas outside the range of the X-ray data.
(A color version of this figure is available in the online journal.)
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Figure 12. Marginalized posterior probability density for β, as inferred from
the combined fit to weak lensing, strong lensing, and kinematic data. The effects
of the systematic effects discussed in Sections 5.1–5.4 on the 68% upper limit
are illustrated by arrows.

the b, c, and los orientations compatible with the observed q
and prior distributions p(c) and p(b|c) from the N-body DM
simulations presented by Jing & Suto (2002), as suggested by
Gavazzi (2005). We find that the radius along the los is > 0.6
(2σ ) of the average radius in the plane of the sky; that is, strong
compression along the los is unlikely. Furthermore, interaction
with baryons tends to make halos rounder and less triaxial than
those in pure DM simulations (Gustafsson et al. 2006; Debattista
et al. 2008; Abadi et al. 2009).

Gavazzi (2005) has estimated the error on the enclosed
mass as inferred from kinematic data by assuming spherical
symmetry, when the actual mass distribution is a prolate (oblate)
ellipsoid aligned with major (minor) axis along the los. A
prolate halo would exacerbate the discrepancy we find with
NFW, since stars move faster along the major axis, and hence
dynamical masses are overestimated. An oblate halo with short

axis along the los causes an downward bias in dynamical
mass, which is !30% for the above limit on c. This bias
can be approximately compensated by increasing the velocity
dispersion measurements by 15%. Repeating our combined
gNFW analysis with this modification yields β < 0.57 (68%;
β < 0.92, 95% CL).

We therefore believe our results are robust against likely pro-
jection effects, although the significances may vary. Neverthe-
less, recognizing that triaxiality has a complicated effect on
dynamical masses, and the possible inadequacy of simple mod-
els in the present situation (e.g., the simplifying assumptions
by Gavazzi 2005 of a spheroidal halo aligned with the los and
massless tracers), we intend to pursue this issue more rigorously
in future work, both observationally and in modeling. Addition-
ally, a larger sample will allow us to assess the likelihood that
chance alignments of triaxial halos can explain our findings.

5.2. Velocity Dispersion Measurements and Modeling

In our dynamical modeling, we assumed isotropic stellar
orbits and a Gaussian LOSVD. Since the mass distribution
inferred from a velocity dispersion profile depends on the
anisotropy tensor, the effects of these assumptions must be
considered. Orbital structure has been studied extensively in
local samples of cD, cluster, and field elliptical galaxies (e.g.,
Gerhard et al. 1998; Saglia et al. 2000; Kronawitter et al. 2000;
Gerhard et al. 2001; Thomas et al. 2005, 2007, see also Kelson
et al. 2002 and references), and also in a few distant early-type
galaxies (Treu & Koopmans 2004). The broad consensus is that
orbital structure in the inner regions is remarkably consistent:
along the major axis, orbits range from isotropic to slightly
radially biased, with the isotropy parameter β typically !0.3
and up to ≈0.5. Moreover, deviations from a Gaussian LOSVD
are small, with h3 and h4 typically a few percent and (rarely) up
to 10%. At the radii we probe (!0.4Re), radial bias causes the
projected velocity dispersion to be higher than would be seen
for isotropic orbits in the same mass distribution (Binney &
Tremaine 1987, Figure 4-13). Accounting for radial anisotropy
would thus strengthen our results (i.e., force β downward).
Tangential bias at these radii is quite rare; however, Sand et al.
(2004) considered this possibility and estimated β would be

r-1 
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Flavor is a quantum property that allows a particle to have 
several masses altogether, at the same time and vice versa

B. Pontekorvo
Zh. Teor. Exp Fiz (1957); Soviet JETP (1958) 
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21

The particle can leak out of 

(or “evaporate” from) 

the gravitational potential, 

i.e., it can become unbound 

scatterer

ϕ(x)

(MM, J Phys A 2010)
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The particle can leak out of 

(or “evaporate” from) 

the gravitational potential, 

i.e., it can become unbound 

scatterer

ϕ(x)

The particle can leak out of (or “evaporate” from) the 
gravitational potential, i.e., it can become unbound 

(MM, J Phys A 2010)
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Baron von Münchhausen lifted himself 
(and his horse) out of the mud by pulling 
on his own pigtail.

It is one of the “true” stories from 
“The Surprising Adventures of Baron 
Munchhausen” by R.E. Raspe
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Dark Matter — stable 2-component mixed particle

∣h⟩ , ∣l⟩ DM halos — self-gravitating ensembles of mass 
eigenstates  

∣h⟩ + ∣l⟩ ➞ ∣l⟩ + ∣l⟩
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2 ½(ml vl 2) = (mh - ml) c2

v  ~  vkick = c (∆m/ml) 1/2  

if vkick ≪ vescape

central cusps softened

if vkick ≫ vescape

dwarf halos destroyed

Energy conservation:

DM halos

24(MM, J Phys A, 2010; JCAP 2014)
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1 General theory of flavor-mixed self-interacting dark mat-
ter

The propagation (mass) and interaction (flavor) eigenstates of mixed particles are related by
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(although the states hl and lh are identical for indistinguishable particles by symmetry, we
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❖ Gadget, 50 Mpc/h box, standard ΛCDM cosmology 
❖ At each step:

✦ Pairs of nearest neighbors are identified
✦ Densities of each species are found at each particle location
✦ Conversion probabilities are calculated
✦ Monte-Carlo module is used for conversions
✦ Energy-momentum is manifestly conserved in every interaction

❖  2 free parameters: σ(v)/m [with σ∝(v/vk)-1] and ∆m/m [or vk=c(2∆m/m)1/2]

Implementation
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code as smooth-particle-hydro (SPH) particles but with-
out hydro-force acceleration. To model particles’ binary
interactions, we use the Monte-Carlo technique together
with the “binary collision approximation” [38, 40], which
is reliable for weakly collisional systems. The Monte-
Carlo particle interaction module works as follows. For
each randomly chosen projectile particle, si, a nearest
neighbor is found; this is the target particle, ti (the sub-
script i stands for ‘initial’, i.e. before the interaction).
This procedure identifies the type and velocity of each
particle in the interacting pair, i.e., the input channel.
For each input channel, siti there always are four output
channels, sf tf (here f stands for ‘final’, i.e., after the in-
teraction), namely: hh, hl, lh and ll. We compute the
probabilities for each process siti ! sf tf as follows:

Psiti!sf tf = (⇢ti/mti)�siti!sf tf |vti � vsi |�t ⇥(Esf tf )
(3)

where �siti!sf tf = �
si

(v) is the cross-section given by
Eq. (1), vti � vsi is the relative velocity of particles in
the pair, ⇢ti is the density of target species, �t is the it-
eration time-step and ⇥(Esf tf ) is the Heaviside function
which ensures that the process is kinematically allowed
(i.e., negative final kinetic energy, Esf tf < 0, means the
process cannot occur). The densities ⇢ti of each species
at each particle’s position are computed using the appro-
priately modified density routine used in the SPH mod-
ule of the original code. Whether an interaction occurs
and through which channel it proceeds is determined by
random drawing in accordance with the computed prob-
abilities. Kinematics of all interactions is computed in
the center of mass frame, where the momentum is con-
served manifestly. If a scattering occurs, the particles are
given random antiparallel velocities (in the center of mass
frame) with magnitudes set by the energy and momen-
tum conservation laws. If a conversion occurs, then (i)
the type of one or both particles is changed accordingly,
(ii) the magnitudes of the final velocities are computed
accounting for the �mc2 given or taken, depending on
the type of conversion and (iii) these velocities are as-
signed to particles in antiparallel directions in the center
of mass frame. If no interaction occurs, the particle ve-
locities and types remain intact. After this, the pair is
marked inactive until the next time-step. This process is
repeated for all active particles at each time step.

Simulations reported here were performed using
XSEDE high performance computing systems Trestles

and Ranger. The 2cDM runs have 2 ⇥ 4003 = 128 mil-
lion SPH-DM particles (in 2cDM, the initial numbers of
h and l particles are equal) in the box of 50h�1 Mpc
(comoving) with the force resolution scale of 3.5h�1 kpc,
and the reference ⇤CDM run has 2 ⇥ 6403 ⇡ 524 mil-
lion particles and the force resolution of 2.2h�1 kpc. Our
box size was optimized to be large enough to be a rep-
resentative sample the universe volume, yet it provides
reasonable resolution at small scales. All the runs are

DM-only simulations using the standard cosmological pa-
rameters ⌦m = 0.3,⌦

⇤

= 0.7,⌦b = 0 and h = 0.7. Initial
conditions are generated using N-GenIC code with the
Eisenstein-Hu spectrum model, with �

8

= 0.9 and the
initial redshift z = 50. Post-processing was done with
AHF code [60], which was used to construct the halo
mass and velocity functions, analyze halo density pro-
files, etc. Simulations of SIDM have also been done for
the same cosmological parameters. They fully confirm
earlier studies, e.g., the inability to resolve the substruc-
ture problem, hence these results are not reported here.
A number of simulations were performed to explore a
range of the 2cDM model parameters �m/m and �/m,
to compare with the reference CDM and SIDM models
and to check for numerical convergence. All the results
will be reported in detail elsewhere; here we show the
most important ones.
Results. — Simulations with large mass di↵erence

mh � ml (not presented here) grossly disagree with the
observational data, so this case is omitted from further
consideration. In passing we note that mass segregation
caused by collisions, in which heavier species tending to
settle closer to the halo center, is negligible here because
�m/m ⌧ 1.
The DM distribution at z = 0 for the 2cDM and

⇤CDM models are presented in Fig. 1, which show the
zoomed-in region of 5 Mpc across. One can see the re-
duced number of subhalos and the less concentrated cen-
tral parts in the 2cDM case. The 2cDM parameters used
are �m/m ' 10�8, which corresponds to vk = 50 km/s,
and �/m = 0.75 cm2/g at v

0

⇠ vk, which is fully consis-
tent with observational constraints on the SIDM cross-
section [41–47, 53]. For these values, the 2cDM circular
velocity function matches the Local Group data the best,
as is illustrated in Fig. 2. This figure shows the num-
ber of halos with the maximum circular velocity above a
certain value, N(> Vc,max

) versus Vc,max

, for 2cDM and
⇤CDM; the data points are from [3, 4]. The amount of
substructure is volume-dependent, so we appropriately
renormalized the data points to reproduce the results of
Refs. [3, 4] using the velocity function from our ⇤CDM
simulation; the procedure is legitimate for a scale-free er-
godic distribution of DM substructure. However, no data
rescaling of any kind is done for the substructure velocity
functions of two individual Milky Way-like halos shown
in the inset. In both cases, the agreement with 2cDM is
much better than with ⇤CDM.
Scanning though the 2cDM model parameters, we have

found that vk uniquely determines the position of the
break in the velocity function, V break

c,max

' vk, whereas
�/m determines the slope below the break. By compar-
ing simulations with observational data, we determined
vk (and consequently �m/m) rather accurately to be
around ⇠ 50 � 70 km/s. Interestingly, a similar value
of a characteristic velocity . 100 km/s was found in an-
other independent analysis of survey data [5]. The ‘best

2

Model. — First, we postulate that dark matter par-
ticles are flavor mixed. Generally, a mixed particle of
a particular flavor ↵ is a superposition of several mass-
eigenstates |f↵i = a

1

|m
1

i+ a
2

|m
2

i+ . . . , where |fi and
|mi denote wave-functions being flavor and mass eigen-
states, and a

1

, a
2

, . . . are complex constants being the el-
ements of a unitary matrix. For the sake of simplicity, we
consider the simplest model of a flavor-mixed DM parti-
cle involving only two mass eigenstates and, correspond-
ingly, two flavors [55, 56], i.e., the two-component dark
matter (2cDM) model. The masses of the mass eigen-
states are mh and ml < mh, referred to as ‘heavy’ and
‘light’. Since mass eigenstates generally have di↵erent ve-
locities [57, 58], they propagate along di↵erent geodesics.
Hence, they can be spatially separated by gravity during
structure formation: the eigenstates with smaller speeds
become trapped in a growing DM halo earlier than the
faster ones. The DM halos are, thus, self-gravitating en-
sembles of non-overlapping wave-packets of heavy and
light eigenstates.

Second, we also postulate that DM particles can inter-
act with each other non-gravitationally with some cross-
section, which can generally be velocity dependent. Any
cross-section model, �

si

(v), that is consistent with exist-
ing SIDM constraints can equally well be utilized in our
2cDM model. It is customary in cosmology to parame-
terize it as follows:

�
si

(v) = � (v/v
0

)�a , (1)

where � and a are parameters and v
0

is a normaliza-
tion constant. Previous studies and observational data
allow for a & 1 [41, 43, 53], so a = 1 is used in simu-
lations reported here. This 1/v-dependence is also nat-
ural for mass-eigenstate conversions [56]. Observations
can constrain the ratio �/m, there m is the DM particle
mass. The allowed range is 0.1 . �/m . O(1) cm2/g for
the assumed normalization v

0

= 100 km/s [41, 43, 53].
Simulations with larger values of �/m start to disagree
with observations; too small values mean that DM is ef-
fectively collisionless on cosmologically scales of interest.
We use the value of �/m = 0.75 cm2/g in our simulation
reported here.

The dynamics of non-relativistic mixed particles is rich
and can be rather unusual. It has been shown that elastic
scattering of mixed particles can cause their mass eigen-
state conversions because of the non-diagonal elements
of the flavor interaction matrix in the mass basis [55].
For example, a collision of a mass eigenstate |mhi with
another particle can lead to either the usual elastic scat-
tering |mhi ! |mhi or the conversion |mhi ! |mli,
or simply h ! l. Let’s consider the latter and as-
sume, for simplicity, that the initial velocity is vanish-
ing. Conservation of energy in the h ! l conversion is
mhc2 = mlc2 + mlv2/2. Thus, the light eigenstate gets

a velocity kick v = c [2(mh �ml)/ml]
1/2 in a random

direction (the other particle also gets a recoil, so the to-
tal momentum is conserved). Our simulations indicate
that the high mass-degeneracy case, mh ' ml = m and
�m ⌘ (mh �ml) ⌧ m, fits observations the best. Thus
we define the ‘kick velocity’ parameter

vk = c
p

2�m/m, (2)

which can be used in place of the mass di↵erence parame-
ter, �m/m. If this kick velocity exceeds the escape veloc-
ity from a DM halo, a part of the particle’s wave-function
– the resultant l-eigenstate – will escape from the halo,
thus decreasing the particle’s probability to be in that
halo and, hence, the halo’s total mass. Such irreversible
escape of flavor-mixed particles from a gravitational po-
tential well was referred to as the “quantum evaporation”
[55, 56]. It was suggested that quantum evaporation can
simultaneously soften the density cusps and reduce the
number of subhalos. In contrast, the structure on large
scales where the escape velocities are much larger than
vk is una↵ected.
Interactions of two mixed particles involves all possi-

ble combinations of mass-eigenstate pairs in the input
and output channels. Full quantum mechanical descrip-
tion is presented elsewhere [56]. The m-conversions in
which one or two heavy eigenstates are converted into
the lighter states, hh ! hl, hh ! ll and hl ! ll, can
lead to the quantum evaporation. Because of the energy-
momentum conservation, the kinetic energy of the eigen-
states in heavy-to-light conversions increases by �mc2

in processes like hh ! hl and twice as much in hh ! ll.
The reverse processes hl ! hh, ll ! hl and ll ! hh and
can also occur if kinematically allowed, i.e., if the initial
kinetic energy is large enough to produce a heavy eigen-
state. Finally, the elastic scattering processes ll ! ll,
hl ! hl and hh ! hh can occur as well.

It was shown that complete evaporation of a halo is
possible depending on the values the m-conversion cross-
sections and the initial DM composition [56] – all depend
on the mixing angle. For our simulations, we chose one of
such cases: the maximal mixing and, hence, equal initial
numbers of h and l eigenstates. In general, the scattering
and conversion cross-sections are related: they depend on
the flavor interaction strengths and the mixing angle (see
[56] for details). We are primarily interested in the ef-
fect of m-conversions. The conversion cross-section is the
largest for the maximal mixing and is equal to the elastic
cross-section, so we use Eq. (1) in all interactions. Note
that 2cDM reduces to SIDM in the case of the vanishing
mixing angle [56].

Numerical implementation. — The physics of interac-
tions of mixed particles was implemented in the publicly
available cosmological TreePM/SPH code [59] Gadget-2.
We simulate two types of DM particles representing h
and l mass eigenstates; the total numbers of each type
can change due to particle conversions. In order to imple-
ment interactions of DM particles, they are treated in the
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code as smooth-particle-hydro (SPH) particles but with-
out hydro-force acceleration. To model particles’ binary
interactions, we use the Monte-Carlo technique together
with the “binary collision approximation” [38, 40], which
is reliable for weakly collisional systems. The Monte-
Carlo particle interaction module works as follows. For
each randomly chosen projectile particle, si, a nearest
neighbor is found; this is the target particle, ti (the sub-
script i stands for ‘initial’, i.e. before the interaction).
This procedure identifies the type and velocity of each
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(i.e., negative final kinetic energy, Esf tf < 0, means the
process cannot occur). The densities ⇢ti of each species
at each particle’s position are computed using the appro-
priately modified density routine used in the SPH mod-
ule of the original code. Whether an interaction occurs
and through which channel it proceeds is determined by
random drawing in accordance with the computed prob-
abilities. Kinematics of all interactions is computed in
the center of mass frame, where the momentum is con-
served manifestly. If a scattering occurs, the particles are
given random antiparallel velocities (in the center of mass
frame) with magnitudes set by the energy and momen-
tum conservation laws. If a conversion occurs, then (i)
the type of one or both particles is changed accordingly,
(ii) the magnitudes of the final velocities are computed
accounting for the �mc2 given or taken, depending on
the type of conversion and (iii) these velocities are as-
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box size was optimized to be large enough to be a rep-
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ing SIDM constraints can equally well be utilized in our
2cDM model. It is customary in cosmology to parame-
terize it as follows:

�
si

(v) = � (v/v
0

)�a , (1)

where � and a are parameters and v
0

is a normaliza-
tion constant. Previous studies and observational data
allow for a & 1 [41, 43, 53], so a = 1 is used in simu-
lations reported here. This 1/v-dependence is also nat-
ural for mass-eigenstate conversions [56]. Observations
can constrain the ratio �/m, there m is the DM particle
mass. The allowed range is 0.1 . �/m . O(1) cm2/g for
the assumed normalization v

0

= 100 km/s [41, 43, 53].
Simulations with larger values of �/m start to disagree
with observations; too small values mean that DM is ef-
fectively collisionless on cosmologically scales of interest.
We use the value of �/m = 0.75 cm2/g in our simulation
reported here.

The dynamics of non-relativistic mixed particles is rich
and can be rather unusual. It has been shown that elastic
scattering of mixed particles can cause their mass eigen-
state conversions because of the non-diagonal elements
of the flavor interaction matrix in the mass basis [55].
For example, a collision of a mass eigenstate |mhi with
another particle can lead to either the usual elastic scat-
tering |mhi ! |mhi or the conversion |mhi ! |mli,
or simply h ! l. Let’s consider the latter and as-
sume, for simplicity, that the initial velocity is vanish-
ing. Conservation of energy in the h ! l conversion is
mhc2 = mlc2 + mlv2/2. Thus, the light eigenstate gets

a velocity kick v = c [2(mh �ml)/ml]
1/2 in a random

direction (the other particle also gets a recoil, so the to-
tal momentum is conserved). Our simulations indicate
that the high mass-degeneracy case, mh ' ml = m and
�m ⌘ (mh �ml) ⌧ m, fits observations the best. Thus
we define the ‘kick velocity’ parameter

vk = c
p

2�m/m, (2)

which can be used in place of the mass di↵erence parame-
ter, �m/m. If this kick velocity exceeds the escape veloc-
ity from a DM halo, a part of the particle’s wave-function
– the resultant l-eigenstate – will escape from the halo,
thus decreasing the particle’s probability to be in that
halo and, hence, the halo’s total mass. Such irreversible
escape of flavor-mixed particles from a gravitational po-
tential well was referred to as the “quantum evaporation”
[55, 56]. It was suggested that quantum evaporation can
simultaneously soften the density cusps and reduce the
number of subhalos. In contrast, the structure on large
scales where the escape velocities are much larger than
vk is una↵ected.
Interactions of two mixed particles involves all possi-

ble combinations of mass-eigenstate pairs in the input
and output channels. Full quantum mechanical descrip-
tion is presented elsewhere [56]. The m-conversions in
which one or two heavy eigenstates are converted into
the lighter states, hh ! hl, hh ! ll and hl ! ll, can
lead to the quantum evaporation. Because of the energy-
momentum conservation, the kinetic energy of the eigen-
states in heavy-to-light conversions increases by �mc2

in processes like hh ! hl and twice as much in hh ! ll.
The reverse processes hl ! hh, ll ! hl and ll ! hh and
can also occur if kinematically allowed, i.e., if the initial
kinetic energy is large enough to produce a heavy eigen-
state. Finally, the elastic scattering processes ll ! ll,
hl ! hl and hh ! hh can occur as well.

It was shown that complete evaporation of a halo is
possible depending on the values the m-conversion cross-
sections and the initial DM composition [56] – all depend
on the mixing angle. For our simulations, we chose one of
such cases: the maximal mixing and, hence, equal initial
numbers of h and l eigenstates. In general, the scattering
and conversion cross-sections are related: they depend on
the flavor interaction strengths and the mixing angle (see
[56] for details). We are primarily interested in the ef-
fect of m-conversions. The conversion cross-section is the
largest for the maximal mixing and is equal to the elastic
cross-section, so we use Eq. (1) in all interactions. Note
that 2cDM reduces to SIDM in the case of the vanishing
mixing angle [56].

Numerical implementation. — The physics of interac-
tions of mixed particles was implemented in the publicly
available cosmological TreePM/SPH code [59] Gadget-2.
We simulate two types of DM particles representing h
and l mass eigenstates; the total numbers of each type
can change due to particle conversions. In order to imple-
ment interactions of DM particles, they are treated in the
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vk=c(2∆m/m)1/2

σ∗=σ/m

vk increases
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-- nothing can reduce substructure

-- gravi-thermal collapse 
- stronger cusps r-2 unless fine tune σ(v) - H0
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Figure 1. Dark matter density projection of the entire box of 3h�1Mpc side length.

Figure 2. The thick solid gray line is CDM. The dotted, dashed, solid, and dash-dot lines correspond to � = 0.01, 0.1, 1 and 10,
respectively. The black circles are directly from Klypin et al. (1999) and the gray squares are taken from Simon & Geha (2007) with the
normalized magnitude of the number of halos.

function’s dependency on the magnitude of the dark matter
cross-section. That is, the controlling agent for the circular
velocity function is the conversion power ac rather than the
scattering power as. This can also be established by com-
paring the panels column by column (again, except for the
bottom row and (-2,-2)), for each column behaves identically
regardless of the scattering power as.

• We also explored the three cases of as = �4 (the fourth
row).

In addition to the strong influence of the conversion power
ac, there are general features that are commonly seen in
most of the cases tested as follows:

• The dark matter cross-section determines the cumula-
tive number of satellites in general, while preserving the
slope of the function in the lower end. In most cases, the
function deviates more for a larger cross-section, especially
this is seen prominently for the cases with the conversion
power ac = 0 (the third row). This trend, however, seems to

4

simply increasing � cannot be the satisfactory solution while
preserving the � in the acceptable range (Rocha et al. 2013).

• The too-big-to-fail problem has been raised by Boylan-
Kolchin et al. (2011) that the MW is missing massive dark
subhaloes unlike ⇤CDM simulations predict (see also Moore
et al. 1999). This implies there has to be a mechanism that
suppresses the massive subhaloes, while preserving reduced
dark spheroidal populations in the low-mass end. A simple
SIDM does not seem to resolve this issue, but the velocity-
dependance of the DM cross section might directly address
the problem.

• To verify that the model is convincing enough to be a
good model, it needs to be tested on di↵erent mass scales;
(i) dwarfs (ii) MW-type and (iii) galaxy cluster. This needs
to be accompanied with multiple-diagnostics to check the
degree of agreement, which also works as ways to constrain
the cross-section that is the most important parameter to
be explored.

• Theoretical works seem to indicate that there is a gen-
eral consensus on the plausible range of �. Some authors
show �/m = 1 cm2g�1 produces inner density that are too
low to be in agreement with observations (e.g. Rocha et al.
2013) (studied spiral galaxies and galaxy clusters; 1010 -
1015M�). Randall et al. (2008) found a very similar con-
strain from their N-body merging bullet cluster simulations.

• Observations: Markevitch et al. (2004) estimated �/m
< 1 cm2g�1 from the Bullet Cluster based on the gravita-
tional lensing.

• DM self-interactions with baryons have been studied
by some authors. (Vogelsberger et al. 2014)-studied dwarfs
⇠ 1010M� with SIDM and velocity-dependent cross section,
ruling out 10cm2g�1] It seems that the consensus is that
the SIDM does not significantly alter the stellar concentra-
tion and distribution (although Vogelsberger finds that the
stellar mass distribution is slightly expanded with a reduced
density at the central region (< 1kpc) due to SIDM).

2 METHODS

• We implemented the self-interacting flavor-mixed two-
component DM (2cDM) model in the TreePM/SPH code
GADGET-3 Springel (2005). The numerical implementa-
tions closely follow what is presented in Medvedev (2014b)
with some upgrades and optimizations. The model’s detailed
theoretical foundations are described in Medvedev (2010,
2014a), and we only present the important aspects of the
models in this paper. In the SPH simulations, dark matter,
gas, and star are all represented as an ensemble of particles.
The gas is the only type of particle that interacts each other
both gravitationally and non-gravitationally through hydro-
dynamical forces. In this paper we present the results from
N-body simulations and do not consider gas and stars with
baryonic physics.

In the 2cDM model, two important physical processes are
considered: elastic scatterings and the mass eigenstate con-
versions. These core physics is what sets the 2cDM model
apart from the generic self-interacting dark matter (SIDM)
model. Within the framework of the 2cDM, the DM par-
ticles are assumed to consist of two mass eigenstates of h

(’heavy’) and l (’light’), and they are allowed to be converted
from one another through inelastic scattering without cre-

ating/destroying additional particles. Following Medvedev
(2014b), we assume the di↵erence in the two mass eigen-
states (�m ⌘ mh �ml) to be many orders smaller than the
mean DM mass as �m/m ⇠ 10�8. The initial total number
of each DM species is assumed to be 50:50 at the starting
redshift. The mass-conversion between h and l could occur
via multiple processes (hh ! ll, hh ! hl, hl ! ll, etc) by
conserving energy and momentum. The process of which
’heavy’ is converted into ’light’ e↵ectively causes ’evapora-
tion’ of the light DM particle — i.e., if the resultant ki-
netic energy carried by the light DM particle exceeds the
escape velocity of the associated gravitational potential, the
light DM particle breaks free and escape, leaving behind
its heavy counterpart in the potential. The other process in
which ’light’ is converted into ’heavy’ could also occur if it
is kinematically allowed.

• We use the Monte-Carlo technique for modeling the
DM self-interactions under the assumption of binary col-
lision that is appropriate for a system of weakly-interacting
particles. The probabilities of the interaction processes that
can occur during the time interval of �t are computed as

Pij!i0j0 = (⇢j/mj)�ij!i0j0 |vj � vi |�t ⇥(Ei0j0), (1)

where ⇢j/mj is the number density of the target particle,
� is the velocity-dependent DM cross-section, vj � vi is the
initial relative velocity of the interacting pair, and ⇥(Ei0j0)
is the Heaviside function that screens out kinematically for-
bidden processes with negative final kinetic energy Ei0j0 < 0.
Our implementation ensures that the probability of the vast
majority of the interactions is kept below ⇠0.001 for this
approximation to be valid.

• The velocity-dependent cross-section is parametrized as

�(v) =

⇢
�(v/v0)

as for scattering
�(v/v0)

ac for conversion
(2)

where the power a for scattering and conversion are inde-
pendently treated. It allows us to choose a range of possible
values for as and ac, and one of the main goals of this pa-
per is to explore the range of possibilities. Among all the
possibilities, (as, ac) = (�2,�2) is the most interesting case
based on the quantum mechanical argument that gives the
maximum conversion as follows. Consider the initial and fi-
nal states in a binary interaction. The cross section’s depen-
dency on the scattering and conversion can then be written
as

⇢
�s(v) = �i!i / |1� Sii|2 / 1/v2

�c(v) = �i!f / |Sif |2 / 1/v2
(3)

where S is the scattering matrix. By the unitarity condition
we require

P
|S|2 = |Sii|2 + |Sif |2 = 1 so that if we have

Sif = 1, which is immediately followed by Sii = 0, we ob-
tain the maximum �s and �c. It also has a nice symmetry
in respect of the velocity dependence. Excepting the spe-
cial case of (�2,�2), all the other possible cases require a
correction to the cross section in order to more accurately
describe the e↵ect of the detailed balance in the forward and
reverse momenta after the scattering:

�fi = (pf/pi)
2�if . (4)

As a result, for the cases other than (�2,�2), we require to
multiply � in Eq. (1) with the pre-factor of � in Eq. (4).

2

Figure 1. Dark matter density projection of the entire box of 3h�1Mpc side length.

Figure 2. The thick solid gray line is CDM. The dotted, dashed, solid, and dash-dot lines correspond to � = 0.01, 0.1, 1 and 10,
respectively. The black circles are directly from Klypin et al. (1999) and the gray squares are taken from Simon & Geha (2007) with the
normalized magnitude of the number of halos.

function’s dependency on the magnitude of the dark matter
cross-section. That is, the controlling agent for the circular
velocity function is the conversion power ac rather than the
scattering power as. This can also be established by com-
paring the panels column by column (again, except for the
bottom row and (-2,-2)), for each column behaves identically
regardless of the scattering power as.

• We also explored the three cases of as = �4 (the fourth
row).

In addition to the strong influence of the conversion power
ac, there are general features that are commonly seen in
most of the cases tested as follows:

• The dark matter cross-section determines the cumula-
tive number of satellites in general, while preserving the
slope of the function in the lower end. In most cases, the
function deviates more for a larger cross-section, especially
this is seen prominently for the cases with the conversion
power ac = 0 (the third row). This trend, however, seems to

4

consistent with 

observations

(as, ac)

SUBSTRUCTURE

(Todoroki & MM, in prep.)
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simply increasing � cannot be the satisfactory solution while
preserving the � in the acceptable range (Rocha et al. 2013).

• The too-big-to-fail problem has been raised by Boylan-
Kolchin et al. (2011) that the MW is missing massive dark
subhaloes unlike ⇤CDM simulations predict (see also Moore
et al. 1999). This implies there has to be a mechanism that
suppresses the massive subhaloes, while preserving reduced
dark spheroidal populations in the low-mass end. A simple
SIDM does not seem to resolve this issue, but the velocity-
dependance of the DM cross section might directly address
the problem.

• To verify that the model is convincing enough to be a
good model, it needs to be tested on di↵erent mass scales;
(i) dwarfs (ii) MW-type and (iii) galaxy cluster. This needs
to be accompanied with multiple-diagnostics to check the
degree of agreement, which also works as ways to constrain
the cross-section that is the most important parameter to
be explored.

• Theoretical works seem to indicate that there is a gen-
eral consensus on the plausible range of �. Some authors
show �/m = 1 cm2g�1 produces inner density that are too
low to be in agreement with observations (e.g. Rocha et al.
2013) (studied spiral galaxies and galaxy clusters; 1010 -
1015M�). Randall et al. (2008) found a very similar con-
strain from their N-body merging bullet cluster simulations.

• Observations: Markevitch et al. (2004) estimated �/m
< 1 cm2g�1 from the Bullet Cluster based on the gravita-
tional lensing.

• DM self-interactions with baryons have been studied
by some authors. (Vogelsberger et al. 2014)-studied dwarfs
⇠ 1010M� with SIDM and velocity-dependent cross section,
ruling out 10cm2g�1] It seems that the consensus is that
the SIDM does not significantly alter the stellar concentra-
tion and distribution (although Vogelsberger finds that the
stellar mass distribution is slightly expanded with a reduced
density at the central region (< 1kpc) due to SIDM).

2 METHODS

• We implemented the self-interacting flavor-mixed two-
component DM (2cDM) model in the TreePM/SPH code
GADGET-3 Springel (2005). The numerical implementa-
tions closely follow what is presented in Medvedev (2014b)
with some upgrades and optimizations. The model’s detailed
theoretical foundations are described in Medvedev (2010,
2014a), and we only present the important aspects of the
models in this paper. In the SPH simulations, dark matter,
gas, and star are all represented as an ensemble of particles.
The gas is the only type of particle that interacts each other
both gravitationally and non-gravitationally through hydro-
dynamical forces. In this paper we present the results from
N-body simulations and do not consider gas and stars with
baryonic physics.

In the 2cDM model, two important physical processes are
considered: elastic scatterings and the mass eigenstate con-
versions. These core physics is what sets the 2cDM model
apart from the generic self-interacting dark matter (SIDM)
model. Within the framework of the 2cDM, the DM par-
ticles are assumed to consist of two mass eigenstates of h

(’heavy’) and l (’light’), and they are allowed to be converted
from one another through inelastic scattering without cre-

ating/destroying additional particles. Following Medvedev
(2014b), we assume the di↵erence in the two mass eigen-
states (�m ⌘ mh �ml) to be many orders smaller than the
mean DM mass as �m/m ⇠ 10�8. The initial total number
of each DM species is assumed to be 50:50 at the starting
redshift. The mass-conversion between h and l could occur
via multiple processes (hh ! ll, hh ! hl, hl ! ll, etc) by
conserving energy and momentum. The process of which
’heavy’ is converted into ’light’ e↵ectively causes ’evapora-
tion’ of the light DM particle — i.e., if the resultant ki-
netic energy carried by the light DM particle exceeds the
escape velocity of the associated gravitational potential, the
light DM particle breaks free and escape, leaving behind
its heavy counterpart in the potential. The other process in
which ’light’ is converted into ’heavy’ could also occur if it
is kinematically allowed.

• We use the Monte-Carlo technique for modeling the
DM self-interactions under the assumption of binary col-
lision that is appropriate for a system of weakly-interacting
particles. The probabilities of the interaction processes that
can occur during the time interval of �t are computed as

Pij!i0j0 = (⇢j/mj)�ij!i0j0 |vj � vi |�t ⇥(Ei0j0), (1)

where ⇢j/mj is the number density of the target particle,
� is the velocity-dependent DM cross-section, vj � vi is the
initial relative velocity of the interacting pair, and ⇥(Ei0j0)
is the Heaviside function that screens out kinematically for-
bidden processes with negative final kinetic energy Ei0j0 < 0.
Our implementation ensures that the probability of the vast
majority of the interactions is kept below ⇠0.001 for this
approximation to be valid.

• The velocity-dependent cross-section is parametrized as

�(v) =

⇢
�(v/v0)

as for scattering
�(v/v0)

ac for conversion
(2)

where the power a for scattering and conversion are inde-
pendently treated. It allows us to choose a range of possible
values for as and ac, and one of the main goals of this pa-
per is to explore the range of possibilities. Among all the
possibilities, (as, ac) = (�2,�2) is the most interesting case
based on the quantum mechanical argument that gives the
maximum conversion as follows. Consider the initial and fi-
nal states in a binary interaction. The cross section’s depen-
dency on the scattering and conversion can then be written
as

⇢
�s(v) = �i!i / |1� Sii|2 / 1/v2

�c(v) = �i!f / |Sif |2 / 1/v2
(3)

where S is the scattering matrix. By the unitarity condition
we require

P
|S|2 = |Sii|2 + |Sif |2 = 1 so that if we have

Sif = 1, which is immediately followed by Sii = 0, we ob-
tain the maximum �s and �c. It also has a nice symmetry
in respect of the velocity dependence. Excepting the spe-
cial case of (�2,�2), all the other possible cases require a
correction to the cross section in order to more accurately
describe the e↵ect of the detailed balance in the forward and
reverse momenta after the scattering:

�fi = (pf/pi)
2�if . (4)

As a result, for the cases other than (�2,�2), we require to
multiply � in Eq. (1) with the pre-factor of � in Eq. (4).
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Figure 1. Dark matter density projection of the entire box of 3h�1Mpc side length.

Figure 2. The thick solid gray line is CDM. The dotted, dashed, solid, and dash-dot lines correspond to � = 0.01, 0.1, 1 and 10,
respectively. The black circles are directly from Klypin et al. (1999) and the gray squares are taken from Simon & Geha (2007) with the
normalized magnitude of the number of halos.

function’s dependency on the magnitude of the dark matter
cross-section. That is, the controlling agent for the circular
velocity function is the conversion power ac rather than the
scattering power as. This can also be established by com-
paring the panels column by column (again, except for the
bottom row and (-2,-2)), for each column behaves identically
regardless of the scattering power as.

• We also explored the three cases of as = �4 (the fourth
row).

In addition to the strong influence of the conversion power
ac, there are general features that are commonly seen in
most of the cases tested as follows:

• The dark matter cross-section determines the cumula-
tive number of satellites in general, while preserving the
slope of the function in the lower end. In most cases, the
function deviates more for a larger cross-section, especially
this is seen prominently for the cases with the conversion
power ac = 0 (the third row). This trend, however, seems to
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consistent with 

observations

(as, ac)
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2cDM looks like any multi-species/composite DM -- allows "reactions" Y→X

early universe "catastrophe"

excited, inelastic, exothermal DM,...

high-z low-z z=0 (now)

freeze-out:
small σa 

X-Y decoupling:
large σSI

Y abundance suppressed  
~ exp(𝛥E/T)

Not a problem for 2cDM: conversions do not occur before 
structure formation starts (needed to separate mass states)

(MM, JCAP 2014)
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where

⌘ =
p
2 exp


��2
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2

~2

�✓
1 +

4�2
0kTmh

~2

◆1/4

⇠
p
2 e�1 (1 + 4/3)1/4 ⇠ O(1). (6.13)

Thus, in this case the overlap is negligible,

I(1) ⇠ (m
l

/m
h

)1/2 ⌧ 1. (6.14)

We have found that mass eigenstates can rapidly become well-separated in a gravita-
tional field, where they propagate along significantly di↵erent geodesics, or in flat space-time,
where the local gravitational fields are extremely weak, provided there masses are very dif-
ferent. However, if the mass eigenstates have degenerate masses and are propagating in
Minkovsky space, their wave-packets spread much more rapidly than their centroids move
apart. These mass eigenstates thus remain nearly perfectly overlapped at all times, I(1) ' 1.
Should it be identically unity, no conversions would occur. Due to the slight non-overlap,
the conversion amplitude is small but nonzero, being a factor of (�m/m)2 smaller than
the conversion amplitude in the case of complete separation of the wave-packets. Thus the
conversion cross-section in flat space-time, being proportional to the amplitude squared, is
much smaller than that when mass eigenstates are well-separated, e.g., in the presence of
su�ciently strong gravitational field, thus

�fst
conv ⇠ (�m/m)4�conv, (6.15)

if �m ⌧ m and �fst
conv ⇠ �conv otherwise.

7 Implications

There are interesting cosmological implications of the obtained results.
The first implication concerns with cosmological neutrinos. Neutrinos from the cosmic

neutrino background (CNB) have recently become non-relativistic; their thermal velocities
are vth ' 81(1+ z)(eV/m

⌫

) km s�1 [6], which is of the order of a few hundred to a thousand
km/s, hence they can be trapped in dark matter halos of large galaxies and galaxy clusters [7].
Scattering of neutrinos o↵ matter, though weak (but it can be greatly enhanced by coherent
e↵ects [8]), will result in their mass eigenstate conversions and escape.

Detectors on Earth, if they will ultimately be able to detect CNB neutrinos, should
see the fractional deviation from the uniform composition of order unity for upward vs.
downward going relic neutrinos. Indeed, the non-relativistic neutrino-nucleon cross-section is
�0 ' G2

F

E2
⌫

' 5⇥10�56(E
⌫

/eV)2 cm2 with G
F

being the Fermi constant of weak interactions.
Thus, for the heaviest species, assuming E2

⌫

' �m2
23 ' 0.0027 eV2, we have �0 ' 1.4 ⇥

10�58 cm2. The e↵ect of coherent scattering increases the cross-section tremendously [8]:
�
⌫

' �0Z
2N2, where Z is the charge of atomic nuclei, N ' nV

�

is the number of nuclei in the
volume V

�

' (4⇡/3)�3
dB, n is the number density of nuclei and �dB = h/(m

⌫

vth) ⇠ 0.5 cm
is the neutrino de Broglie wavelength at z = 0 (note, it is independent of m

⌫

for CNB
neutrinos). For Earth, Z ' 25, n ' 1023 cm�3, so the CNB neutrino cross-section in Earth is
�CNB ' 2⇥10�10 cm2. The characteristic number density of the coherent scatterers in Earth
is n

�

' 1/V
�

and the typical distance neutrinos travel in Earth is its diameter, d ' 109 cm,

– 18 –

before structure formation
after structure formation



❖ “quantum evaporation” – a new effect (MVM 2010)  

❖ 2cDM:
✦ can solve all small-scale problems simultaneously
✦ σ(v) ~ 0.1...0.01 – consistent with all constraints
✦ ∆m/m ~ 10–8   ⇔  vk ~ 50-100 km/s 

❖  2cDM predicts
✦ break in mass function: suppression at Mvir ≤1010 M⊙ 

✦ inelastic recoils with ∆E~ ∆mc2 in direct detection DM 
✦ γ-ray annihilation line triplet with ∆Eγ = ½ ∆mc2,  

(if mχ ~ 100 GeV, then ∆Eγ ~ ∆m ~  keV)
✦ direct detection DM recoil may depend on target species  

Conclusions
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