Workshop on Non-Standard Dark Matter — Warsaw, Poland — 5 June 2016

Flavor-Mixed DM in Cosmology

M. Medvedev, University of Kansas

Outline

Cosmology

– small-scale problems in CDM

Quantum physics

- quantum evaporation

Cosmology again

– 2-component dark matter (2cDM)

Triumph on large scales

SDSS survey

ACDM on large scales - halo counts

ACDM on large scales - density profiles

 Dark Matter density profiles in halos described by Navarro-Frenk-White (NFW) profile fit galaxy cluster data

...but too much small-scale stuff

• substructure problem (missing satellites)

Klypin+ 1999 Kravtsov 2010

• substructure problem (missing satellites)

- substructure problem (missing satellites)
- too-big-to-fail problem

from Weinberg et al 2013 by Garrison-Kimmel, Boylan-Kolchin & Bullock

Yniguez et al. 2013

- substructure problem (missing satellites)
- too-big-to-fail problem

- substructure problem (missing satellites)
- too-big-to-fail problem
- core/cusp problem

Newman+ 2009

Kuzio de Naray et al. 2008

- substructure problem (missing satellites)
- too-big-to-fail problem
- core / cusp problem

Possible solutions

- Baryonic physics
 - NS feedback
 - outflows
 - modified star formation

• Dark Matter physics

Possible solutions

- Baryonic physics
 - NS feedback
 - outflows
 - modified star formation

Inconclusive

• Dark Matter physics

m

"just" a parameter

m

Τ

"just" a parameter

WDM - cannot solve satellites and cusp problem simultaneously: different scales

m

Τ

σ

"just" a parameter

WDM - cannot solve satellites and cusp problem simultaneously: different scales

SIDM - solves cusp problem only; cannot affect satellite counts

Т

σ

m

Т

σ

flavor

2-component particle

$$\begin{pmatrix} |\text{flavor}_1\rangle \\ |\text{flavor}_2\rangle \end{pmatrix} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} |\text{mass}_{\text{heavy}}\rangle \\ |\text{mass}_{\text{light}}\rangle \end{pmatrix}$$

Flavor is a quantum property that allows a particle to have several masses altogether, at the same time and vice versa

Illustrative model

Schrödinger equation

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

$$i\partial_{t} \begin{pmatrix} m_{h}(x,t) \\ m_{l}(x,t) \end{pmatrix} = \left[\begin{pmatrix} -\partial_{xx}^{2}/2m_{h} & 0 \\ 0 & -\partial_{xx}^{2}/2m_{l} - \Delta m \end{pmatrix} + \begin{pmatrix} m_{h}\phi(x) & 0 \\ 0 & m_{l}\phi(x) \end{pmatrix} + \begin{pmatrix} V_{hh} & V_{hl} \\ V_{lh} & V_{ll} \end{pmatrix} \right] \begin{pmatrix} m_{h}(x,t) \\ m_{l}(x,t) \end{pmatrix}$$

$$H_{free} \qquad H_{grav} \qquad V$$

$$\begin{pmatrix} V_{hh} & V_{hl} \\ V_{hh} & V_{ll} \end{pmatrix} = U \begin{pmatrix} V_{1} & 0 \\ 0 & 0 \end{pmatrix} U^{\dagger}$$

(MM, J Phys A 2010) 17

No flavor mixing case

No flavor mixing case

With flavor mixing

With flavor mixing

Space-Time diagram

A trapped particle + scattering + flavor mixing

(MM, J Phys A 2010)

A trapped particle + scattering + flavor mixing

(MM, J Phys A 2010)

"Münchhausen effect"

Baron von Münchhausen lifted himself (and his horse) out of the mud by pulling on his own pigtail.

> It is one of the "true" stories from *"The Surprising Adventures of Baron Munchhausen"* by R.E. Raspe

2-component flavor-mixed DM (2cDM)

Dark Matter — stable 2-component mixed particle

Neutralinos Sterile neutrinos Axion+photon

. . .

DM halos — self-gravitating ensembles of mass eigenstates

 \ket{h} , \ket{l}

Mass-conversions and quantum evaporation

$$|h\rangle + |l\rangle \rightarrow |l\rangle + |l\rangle$$

DM halos

Energy conservation:

$$2 \frac{1}{2} (m_l v_l^2) = (m_h - m_l) c^2$$
$$v \sim v_{kick} = c (\Delta m/m_l)^{1/2}$$

if $v_{kick} \gg v_{escape}$

dwarf halos destroyed

if $v_{kick} \ll v_{escape}$

central cusps softened

1

h

Technical: Interaction of 2-comp particles

Wave-functions

$$|ff\rangle \equiv \begin{pmatrix} \alpha \alpha \\ \alpha \beta \\ \beta \alpha \\ \beta \beta \end{pmatrix} \equiv \begin{pmatrix} \alpha_1 \alpha_2(\mathbf{x}_1, \mathbf{x}_2, t) \\ \alpha_1 \beta_2(\mathbf{x}_1, \mathbf{x}_2, t) \\ \beta_1 \alpha_2(\mathbf{x}_1, \mathbf{x}_2, t) \\ \beta_1 \beta_2(\mathbf{x}_1, \mathbf{x}_2, t) \end{pmatrix} \qquad |mm\rangle \equiv \begin{pmatrix} hh \\ hl \\ lh \\ ll \end{pmatrix} \equiv \begin{pmatrix} h_1 h_2(\mathbf{x}_1, \mathbf{x}_2, t) \\ h_1 l_2(\mathbf{x}_1, \mathbf{x}_2, t) \\ l_1 h_2(\mathbf{x}_1, \mathbf{x}_2, t) \\ l_1 l_2(\mathbf{x}_1, \mathbf{x}_2, t) \end{pmatrix}$$

Mixing

$$|ff\rangle = U_2 |mm\rangle$$

$$U_2 \equiv U \otimes U = \begin{pmatrix} \cos^2 \theta & -\cos \theta \sin \theta & -\cos \theta \sin \theta & \sin^2 \theta \\ \cos \theta \sin \theta & \cos^2 \theta & -\sin^2 \theta & -\cos \theta \sin \theta \\ \cos \theta \sin \theta & -\sin^2 \theta & \cos^2 \theta & -\cos \theta \sin \theta \\ \sin^2 \theta & \cos \theta \sin \theta & \cos \theta \sin \theta & \cos^2 \theta \end{pmatrix}$$

Interaction

$$\tilde{V} = \begin{pmatrix} V_{\alpha\alpha} & 0 & 0 & 0\\ 0 & V_{\alpha\beta} & 0 & 0\\ 0 & 0 & V_{\beta\alpha} & 0\\ 0 & 0 & 0 & V_{\beta\beta} \end{pmatrix}$$

$$V = U_2^{\dagger} \tilde{V} U_2 = \begin{pmatrix} A & E & E & D \\ E & C & D & F \\ E & D & C & F \\ D & F & F & B \end{pmatrix}$$

$$A = \frac{1}{8} [3V_{\alpha\alpha} + 2V_{\alpha\beta} + 3V_{\beta\beta} + 4(V_{\alpha\alpha} - V_{\beta\beta})\cos 2\theta + (V_{\alpha\alpha} - 2V_{\alpha\beta} + V_{\beta\beta})\cos 4\theta],$$

$$B = \frac{1}{8} [3V_{\alpha\alpha} + 2V_{\alpha\beta} + 3V_{\beta\beta} - 4(V_{\alpha\alpha} - V_{\beta\beta})\cos 2\theta + (V_{\alpha\alpha} - 2V_{\alpha\beta} + V_{\beta\beta})\cos 4\theta],$$

$$C = \frac{1}{8} [V_{\alpha\alpha} + 6V_{\alpha\beta} + V_{\beta\beta} - (V_{\alpha\alpha} - 2V_{\alpha\beta} + V_{\beta\beta})\cos 4\theta],$$

$$D = \frac{1}{4} [V_{\alpha\alpha} - 2V_{\alpha\beta} + V_{\beta\beta}]\sin^2 2\theta,$$

$$E = -\frac{1}{4} [V_{\alpha\alpha} - V_{\beta\beta} + (V_{\alpha\alpha} - 2V_{\alpha\beta} + V_{\beta\beta})\cos 2\theta]\sin 2\theta,$$

$$F = -\frac{1}{4} [V_{\alpha\alpha} - V_{\beta\beta} - (V_{\alpha\alpha} - 2V_{\alpha\beta} + V_{\beta\beta})\cos 2\theta]\sin 2\theta,$$

(MM, JCAP 2014)

Complete evaporation of 2-comp. particles

(MM, JCAP 2014)

Implementation

- * Gadget, 50 Mpc/h box, standard ΛCDM cosmology
- At each step:
 - Pairs of nearest neighbors are identified
 - Densities of each species are found at each particle location
 - Conversion probabilities are calculated
 - Monte-Carlo module is used for conversions
 - Energy-momentum is manifestly conserved in every interaction
- * 2 free parameters: $\sigma(v)/m$ [with $\sigma \propto (v/v_k)^{-1}$] and $\Delta m/m$ [or $v_k = c(2\Delta m/m)^{1/2}$]

$$P_{s_i t_i \to s_f t_f} = (\rho_{t_i}/m_{t_i}) \sigma_{s_i t_i \to s_f t_f} | \mathbf{v}_{t_i} - \mathbf{v}_{s_i} | \Delta t \ \Theta(E_{s_f t_f})$$

$$\sigma_{s_i t_i \to s_f t_f} = \sigma_{si}(v) = \sigma (v/v_0)^{-a}$$

$$a = 1$$

No change on large scales

CDM

No change on large scales

No change on large scales

Less substructure on small scales

(MM, PRL 2014)

Less substructure on small scales

Velocity function

(MM, PRL 2014)

Key parameters

Density profiles

Slopes of density profiles

We fit density profiles with function $\rho = r^{\alpha}/(1+r^{\beta})$ and evaluating α at r = 7 kpc/h

(MM, PRL 2014)

2cDM predictions

(MM, PRL 2014)

2cDM vs SIDM

 $\sigma_{conv}(v)$ — determines slope $\sigma_{scatt}(v)$ — determines core $\Delta m/m$ (or v_k) — determines break σ(v) — determines cores-- nothing can reduce substructure

-- gravi-thermal collapse - stronger cusps r⁻² unless fine tune $\sigma(v)$ - H_0

How robust is the model?

How robust is the 2cDM model?

Just one example

(Todoroki & MM, in prep.)

How robust is the 2cDM model?

Just one example

(Todoroki & MM, in prep.)

2cDM vs others

2cDM looks like any multi-species / composite DM -- allows "reactions" $Y \rightarrow X$

excited, inelastic, exothermal DM,...

early universe "catastrophe"

(MM, JCAP 2014)

Not a problem for 2cDM: conversions do not occur before structure formation starts (needed to separate mass states)

 $\sigma_{\rm conv}^{\rm fst} \sim (\Delta m/m)^4 \sigma_{\rm conv}$ after structure formation before structure formation

Conclusions

- "quantum evaporation" a new effect (MVM 2010)
- * 2cDM:
 - can solve all small-scale problems simultaneously
 - $\sigma(v) \sim 0.1...0.01$ consistent with all constraints
 - $\Delta m/m \sim 10^{-8} \iff v_k \sim 50-100 \text{ km/s}$
- 2cDM predicts
 - break in mass function: suppression at $M_{vir} \le 10^{10} M_{\odot}$
 - *inelastic* recoils with $\Delta E \sim \Delta mc^2$ in direct detection DM
 - γ -ray annihilation line *triplet* with $\Delta E_{\gamma} = \frac{1}{2} \Delta mc^2$, (if $m_{\chi} \sim 100$ GeV, then $\Delta E_{\gamma} \sim \Delta m \sim \text{keV}$)
 - direct detection DM recoil may depend on target species

ISSN 1751-8113

Journal of Physics A Mathematical and Theoretical

113

PRL 113 (7), 070201-079901, 15 August 2014 (256 total pages)

7

Volume 43 Number 37 17 September 2010

iopscience.org/jphysa

IOP Publishing

Published by American Physical Society

Volume 113, Number 7