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Electroweak	symmetry	breaking

• The	Standard	Model	(SM)	of	the	particle	physics
– Mass	generation	mechanism	is	confirmed	by	the	discovery	of	the	Higgs	boson	(h).
– The	SM	as	a	low-energy	effective	theory	is	established.	

• We	have	not	understood	the	structure	of	the	Higgs	sector.
– The	SM	has	minimal	Higgs	potential.

– Higgs	self-couplings	have	not	been	measured!

– Higgs	boson	couplings	might	be	deviated	from	the	SM.
– LHC	Run-I	results

• [ATLAS,	CMS	(2016)]
– Expected	accuracy

• ΔκV :	2%@HL-LHC	14TeV	3ab-1	 [ATLAS,	CMS	(2013)]
• ΔκV :	0.6%@ILC	250GeV	2ab-1[Durieux et	al.	(2017)]
• Δλhhh:16	(10)%@ILC	1TeV	2	(5)ab-1[Fujii et	al,	(2015)]

2

hVV,	hff,	hhh,	…
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Physics	behind	the	EW	symmetry	breaking

• New	physics	is	required	to	solve	BSM	phenomena	
• Baryon	asymmetry	of	the	Universe,	Existence	of	dark	matter,	Neutrino	oscillations,	Cosmic inflation,…

• BSM	might	be	related	to	the	extended	Higgs	sector	
• Electroweak	baryogenesis,	Radiative	neutrino	mass	models,	Higgs	inflation,	…

• Exploring	the	shape	of	the	Higgs	potential	is	important.
– EW	phase	transition	at	finite	temperature	(1st order?	2nd order	?)

– In	order	to	satisfy	the	3rd condition	of	Sakharov’s	conditions,	strongly 1stOPT
(sphaleron decoupling	criterion)	is	required	in	Electroweak	baryogenesis scenario

• 1st order	phase	transition	is	not	realized	in	the	SM	with	mh=125GeV.
• We	investigate	models	with	extended Higgs sector.	

3

1st order 2nd order

Dec.	2,	Scalars	2017,	University	of	Warsaw Toshinori	MATSUI	[KIAS]



/12

1st order	phase	transition
The	strength	of	phase	transition

(Assuming	one-field	&	high-T	approx.)
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1st order	phase	transition
Inert	Singlet	Model

Curtin,	Meade,	Yu,	1409.0005	(JHEP)

The	strength	of	phase	transition

(Assuming	one-field	&	high-T	approx.)

E.g.	Inert	Singlet	Model	(a	singlet	scalar	field	with	Z2 sym.)
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Expected	accuracy at	collider (Δλhhh/λhhh)
- 54%@HL-LHC	14TeV	3000fb-1	[CMS-PAS-FTR-15-002],	
- 27%@ILC	500GeV	4000fb-1	[Fujii	et	al,	1506.05992],
- 16% (10%)@ILC	1TeV	2000fb-1	(5000fb-1)	[Fujii	et	al,	1506.05992]
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1st order	phase	transition
Inert	Singlet	Model

Large	deviation	in	the	hhh coupling	is	required!	→ EWPT can	be	tested	at	future	colliders!

Curtin,	Meade,	Yu,	1409.0005	(JHEP)
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Correlation!!

↓
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One-step EW	phase	transition
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One-step EW	phase	transition

Two-step EW	phase	transition
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(N,	ms)	may	be	determined	from	GWs�

SensiOviOes�

eLISA	
arXiv:1512.06239�

M.	Kakizaki,	SK,	T.	Matsui,	Phys.	Rev.	D92	(2015)	no.11,115007�

DECIGO,	
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28,	094011	(2011)	
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One-step EW	phase	transition

Two-step EW	phase	transition

Two-step	EW	phase	transition

※ In	this	region,	Higgs	couplings	does	not	
deviate	from	the	SM	(nightmare	scenario)
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Nightmare	scenario

• Potential	barrier	with	1stOPT	can	be	realized	by	multi-step	PT
even	if	the	Higgs	couplings	do	not	deviate	from	SM.	

• In	the	models	with	the	unbroken	discrete	symmetry (such	as	
Z2,	Z3,	…)	or	mixing	angle=0,	it	is	difficult	to	test	at	colliders.

• We	expect	the	observations	of	the	gravitational	waves	as	a	
new	technique	to	detect	the	signal	of	the	1stOPT.	

5Dec.	2,	Scalars	2017,	University	of	Warsaw Toshinori	MATSUI	[KIAS]
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Gravitational waves
〜 Probing	the Higgs potential by GW observations〜

Dec.	2,	Scalars	2017,	University	of	Warsaw

1st Gen.
2nd Gen.
3rd Gen.

Ground-based	
interferometers	

Pulsar	Timing	Array
(PTA)

Space-based	
interferometers	

LIGO	and	Virgo	have detected	
gravitational	waves	directly!	

Sensitivity	of	GW	detectors http://rhcole.com/apps/GWplotter/

“GW150914”,	PRL.	116,	061102	(2016),	
“GW151226”,	PRL.	116,	241103	(2016),	
“GW170104”,	PRL.	118,	221101	(2017),
“GW170608”,	arXiv:1711.05578,
“GW170814”,	PRL.	119,	141101	(2017),
“GW170817”,	PRL.	119,	161101	(2017)

BH-BH

NS-NS
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Gravitational waves
〜 Probing	the Higgs potential by GW observations〜

1st Gen.
2nd Gen.
3rd Gen.

Ground-based	
interferometers	

Pulsar	Timing	Array
(PTA)

http://rhcole.com/apps/GWplotter/Sensitivity	of	GW	detectors

LIGO	and	Virgo	have detected	
gravitational	waves	directly!	

Space-based	
interferometers	

Electroweak	phase	transition

Red	shifted	frequency:	

EWPT	can	be	explored	at	future	
observations	(LISA/DECIGO)!
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GWs	from	1stOPT

@T=Tt
Prediction*

(Observable)

(Model)

Characteristic parameters of	1stOPT
・ α is defined as																						.	(ρrad is	energy	density	of	rad.)

- Latent	heat:

α	~ “Normalized	difference	of	the	potential	minima”

・ β	is	defined	as																			 .	→

- Bubble	nucleation	rate	:	
- 3-dim.	Euclidean	action:	
β-1 ~ “Transition	time”

Relic	abundance	of	GWs

“Sound waves”	(Compressional plasma) [n=1,	m=2]
“Bubble collision”	(Envelope	approximation) [n=2,	m=2]
“Magnetohydrodynamic turbulence in	the plasma”	[n=2,	m=3/2]
→Exact	formulae	based	on	the	numerical	simulation	are	shown	in	C.	Caprini et	al.,	JCAP1604, 001 (2016)

Veff(φ, T)

T
= T

*T
= T

c

T
=
0

φ*

Potential barrier

Phase Transition
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10-5 10-3 10-1 101
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G
W
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Sound	wave

collision

turbulence
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J.	Kehayias and	S.	Profumo,	JCAP1003,	003	(2010)

Correlation!!
φ/T ↑ ⇨ (α ↑,	β	↓)	⇨ ΩGW ↑

Dec.	2,	Scalars	2017,	University	of	Warsaw Toshinori	MATSUI	[KIAS]



/12

Z3-symmetric	model

• Higgs	sector	[As→0:	Z2 model	limit]

– complex	singlet	scalar:

• Phase	transition	patterns
– One-step (										,	large						)

– Two-step (										)

– Three-step
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Allowed	region	of	strongly 1stOPT	via	multi-step	PT
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arXiv:1706.09721	[hep-ph],	Z.	Kang,	P.	Ko,	TM

Dec.	2,	Scalars	2017,	University	of	Warsaw Toshinori	MATSUI	[KIAS]
□:	2nd order	EWPT	(one-step)

▲:Two-step	PT (Z2-like	case),	★:	Two-step	PT	(large	As case),	●:	Three-step	PT
1st order	EW	phase	transitions	with	multi-step
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Transition	temperatures
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Gravitational	waves	from	1stOPT
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Conclusions
• We	have	not	understood	the	shape of the Higgs	potential.
• Basically,	1stOPT	which	is	realized	by	models	with	extended	Higgs	sector	

can	be	tested	at	the	colliders by	measuring	the	Higgs	cubic	coupling.

• However,	there	is	another	case:	“nightmare	scenario”,	when	we	consider	a	
scenario	that	the	potential	barrier	is	created	by	“the	multi-step	PT”.

• In	this	talk,	we	have	focused	on	a	model	with	unbroken	discrete	symmetry.	
• We	have	shown	that,	even	if	it	is	difficult	to	test	at	the	colliders,

– GW	is	significantly	enhanced	by	the	strongly	1stOPT
– GW	can	be	detected	by	future	interferometers	such	as	LISA/DECIGO
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Back Up
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Electroweak Baryogenesis

28

Effective	potential

T
!
T c

T
"
T c

T
#
T c

Veff!$, T"
$$c

Broken	phase Symmetric	phase

CP

B

Sphaleron decoupling	condition	
is	required to	explain	sufficient	
#B	in	broken	phase.	

(Sphaleron Rate)<<(Expansion	Rate)	

“Condition	of	strongly 1st order EWPT”

nB frozen Equilibrium
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Triple Higgs boson coupling measurements

• HL-LHC	(14TeV,	3000fb-1)
Δλhhh/λhhh~50%(gg→hh)

• ILC1000-up	(500/1000GeV,	1600+2500fb-1)
Δλhhh/λhhh~10%(ee→ννhh)

Snowmass	Higgs	working	group,	
arXiv:1310.8361	[hep-ex]

K.Fujii et	al., arXiv:1506.05992	[hep-ex]
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Theoretical constraints
• Perturbative unitarity:

• Vacuum	stability:	

• Landau	pole:	

• Oblique	parameters	(S,	T,	U):	

S.	Baek,	P.	Ko,	W.	I.	Park	and	E.	Senaha,	JHEP	1211,	116	(2012)
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Direct searches for the additional Higgs boson 
in the HSM at the LHC

31

Upper	limit	on	the	Higgs	mixing	angle
[Robens,	Stefaniak (2016)]

Constraints	on	the	Higgs	
boson	coupling

Excluded	(95%	CL)

(= cos ✓)

| sin ✓|

Dec.	2,	Scalars	2017,	University	of	Warsaw Toshinori	MATSUI	[KIAS]



/12

Multi-field analysis of EWPT

• EWPT:	
@T=Tc ,

• Diverse	patterns	of	the	EWPT:	

• EW	phase	needs	to	be	the	global	min.:	

• Public	tool	“CosmoTransition”	(Python	code)	is	used.	

K.	Funakubo,	S.	Tao	and	F.	Toyoda,	Prog.	Theor.	Phys.	114,	369	(2005)	(NMSSM)
K.	Fuyuto and	E.	Senaha, Phys.	Rev.	D	90,	no.	1,	015015	(2014) (HSM)

EW

IISYM

I

B

A

D
C
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Dark	Matter:	Z2-like	case(As→0)

Curtin, Meade, Yu, 1409.0005
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Dark	Matter:	finite	As
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semi-annihilation is realized for small λsh
[Belanger,	Kannike,	Pukhovd, Raidal, 1211.1014]

However, the parameter regions which realize  
the strongly 1stOPT are not explained whole of the 
observed DM relic density.
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Models	of	1stOPT

J.	Kehayias and	S.	Profumo,	JCAP1003,	003	(2010)

Higgs	potential	by	high	temperature	approximation

As	the	simplest	model,	
we	have investigated	
the	O(N)	model.	

・ E : thermal	coupling (the	non-decoupling	effects	due	to	the	additional	boson loop)	
・ –e : non-thermal coupling (the	field	mixing	of	the	Higgs	boson	with	additional	scalar	fields)

↑

↓

Kakizaki,	Kanemura,	TM,
PRD	92,	115007	(2015);	

Hashino,	Kakizaki,	Kanemura,	TM,
PRD	94,	015005	(2016)
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Models	of	1stOPT

J.	Kehayias and	S.	Profumo,	JCAP1003,	003	(2010)

Higgs	potential	by	high	temperature	approximation

・ E : thermal	coupling (the	non-decoupling	effects	due	to	the	additional	boson loop)	
・ –e : non-thermal coupling (the	field	mixing	of	the	Higgs	boson	with	additional	scalar	fields)

↑

↓

As	the	simplest	model,	
we	have investigated	
Z3 symmetric	model.	

arXiv:1706.09721	[hep-ph],	
Kang,	Ko,	TM
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Models	of	1stOPT
Higgs	potential	by	high	temperature	approximation

``O(N) model’’
M.Kakizaki,	S.Kanemura,	T.Matsui, Phys.	Rev.	D	92,	no.	11,	115007	(2015)

- O(N)	is	not	broken	→Common	mass	of	Si:	
- Model	parameters:	(N,mS, μS)
- 1stOPT:

・ E : thermal	coupling (the	non-decoupling	effects	due	to	the	additional	boson loop)	
・ –e : non-thermal coupling (the	field	mixing	of	the	Higgs	boson	with	additional	scalar	fields)

N iso-singlet	fields	with	O(N)	sym.

↑

↓
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Excluded by
unitarity bound
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M.Kakizaki,	S.Kanemura,	T.Matsui, Phys.	Rev.	D	92,	no.	11,	115007	(2015)

Δλhhh

9

φc /Tc↗⇒ Δλhhh↗
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For	larger	mS,	Γ/H4|T=Tt=1
cannot	be	realized.

For	small	mS ,	φc/Tc>1	
cannot	be	satisfied.

M.Kakizaki,	S.Kanemura,	T.Matsui, Phys.	Rev.	D	92,	no.	11,	115007	(2015)

9

φc /Tc↗⇒ Δλhhh↗
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Higgs	singlet	model
S:	a	real	singlet

<0

Sym.	phase

EW	phase

:	transition	angle	at	finite-T

K.	Hashino,	M.	Kakizaki,	S.	Kanemura,	T.	Matsui, P.	Ko,	PLB	766,	49	(2017)
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8

θ:	mixing	angle(Universality)
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Higgs	singlet	model

The	synergy between	the	precision	measurements	of	
various	Higgs	boson	couplings	and	GWs at	future	experiments is important!

S:	a	real	singlet

<0

Sym.	phase

EW	phase

:	transition	angle	at	finite-T

K.	Hashino,	M.	Kakizaki,	S.	Kanemura,	T.	Matsui, P.	Ko,	PLB	766,	49	(2017)

8

θ:	mixing	angle(Universality)
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Gravitational	wave	
observations
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eLISA design	decided	

eLISA cosmology	WG	report,	arXiv:1512.06239 [JCAP(2016)]
C1	: old	LISA	configuration

・Number	of	laser	links	: 6,	corresponding	to	3 interferometer	arms
→ Determined	at	eLISA symposium (Sept.	2016,	U.	of	Zurich)	http://www.physik.uzh.ch/events/lisa2016
・Arm	length	:	2	- 5	million	km
・Duration	:	3	- 10	years	data	taking
・Noise	level	:	N2 (LISA	pathfinder	expected)	is	10	times	larger	than	N1	(LISA	pathfinder	required)
→ Determined	by	receiving	the	pathfinder	result [PRL116,	231101	(2016)]

ESA	approval	:	June,	2017
Launch	:	2034

Extra	budget	was	estimated	

Properties	of	the	representative	eLISA configurations
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Prospects	for	LIGO/Virgo	
• LIGO	1st RUN	(2015/09/12-

2016/01/19)
• LIGO	2nd RUN	(from	the	fall	2016)

– 15-25%	improvement	in	
sensitivity	performance	over	
1st RUN

– The	event	rate	will	be	
increased	by 1.5-2 times Frequency/Hz
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Pulsar	Timing	Array

• The	main	idea	behind	pulsar	timing	array	(PTA)	is	to	
use	ultra-stable	millisecond	pulsars	as	beacons	for	
detecting	GW	in	the	nano-Hz	range	(10−9 −	10−7 Hz).	

• Pulsars	are	neutron	stars	with	rapid	rotation	and	
strong	magnetic	field.	Period	from	few	seconds	to	
few	milliseconds.
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Pulsar	Timing	Array

• Current limit:	ΩGWh2>~10-9
• EPTA	Collaboration	[Mon.	Not.	Roy.	Astron.	Soc.	453,	no.	3,	2576	(2015) [arXiv:1504.03692]]
• NANOGrav Collaboration	[Astrophys.	J.	821,	no.	1,	13	(2016) [arXiv:1508.03024]]

• International	Pulsar	Timing	Array	(IPTA):	combined	
three	PTAs	[PPTA	(Australian),	EPTA	(European)*,	
NanoGrav (North	American)].	*EPTA	consists	of	5	radio	telescopes

• 1st data	release	Mon.	Not.	Roy.	Astron.	Soc.	458,	1267	(2016) [arXiv:1602.03640]

• Expected limit:	ΩGWh2>~10-12 Publ.	Astron.	Soc.	Austral.	30,	17	(2013) [arXiv:1210.6130]	

• Square	Kilometer	Array (SKA)
: The	next	great	advancement	in	radio	astronomy

• Expected limit:	ΩGWh2>~10-15 https://www.skatelescope.org
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Gravitational	wave	
from	1st order	phase	transition
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Estimation of the relic	abundance

• Wave	eq.	from	Einstein	eq.	in	weak	field	approximation

• Stochastic	backgrounds	of	GWs

M.	Kamionkowski,	PRD49,	2837 (1994)

Efficiency	factor
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Input

Phase transition - Bubble	configuration
Model parameters

Bubble	nucleation	rate:	
3-dim.	Euclidean	action:	

each

�(T ) � T 4e�S(T )

Potential:

Eq.	of	motion:

Search	the	“escape	point”							.

:	initial	condition

r0: size of critical	bubble

Broken	
phase

Symmetric	
phase
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Phase transition - Transition	temperature

Input

→Definition	of	phase	transition	temperature	Tt

(H:	Hubble	parameter)

Model parameters

Bubble	nucleation	rate:	
3-dim.	Euclidean	action:	

�(T ) � T 4e�S(T )

102.6 102.8 103.0 103.2 103.4 T!GeV"1

2

3

4

5
!#H4 K.	Kohri et	al.,	arXiv:1405.4166

Tt

Phase	transition	completes
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GWs from 1stOPT

⇆

Input

Model parameters

Definition	of	phase	transition	temperature	Tt

Behavior of S3/T↑ 51Dec.	2,	Scalars	2017,	University	of	Warsaw Toshinori	MATSUI	[KIAS]
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GWs from 1stOPT

Definition	of	phase	transition	temperature	Tt

⇆
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Model	parameters	are	constrained.	

Input

Model parameters

R.	Apreda et	al.,	NPB631,	342	(2002)
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Phase transition - Characteristic parameters

@T=Tt

・ α is defined as																		.	(ρrad is	energy	density	of	rad.)
- Latent	heat:

“Normalized	difference	of	the	potential	minima”

・ β is	defined	as																			 .	→
“~How	fast	the	minimum	goes	down”

cf.	U=-F+T(dF/dT)

Input

Model parameters
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GWs from 1stOPT
C.	Caprini et	al.,	JCAP1604, 001 (2016)

r0: size of critical	bubble

Bubble is spherical
No GW occurs

Expanding
bubbles of the broken phase
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GWs from 1stOPT
C.	Caprini et	al.,	JCAP1604, 001 (2016)

r0: size of critical	bubble

Spherical symmetry is violated	by bubble collisions

(Typical	radius	of	colliding	bubbles)																																														(Horizon	size),	
Transition	time:
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GWs from 1stOPT
“Magnetohydrodynamic
turbulence in	the plasma”

“Bubble collision”
(Envelope approximation)

C.	Caprini et	al.,	JCAP1604, 001 (2016)

“Sound waves”
(Compressional plasma)
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Relic	abundance	of	GWs

@

@

@

@T=Tt

Prediction*

(Observable)

(*)	C.	Caprini et	al.,	JCAP1604, 001 (2016)

Relic	abundance	of	GWs @ peak frequency

Input

Model parameters
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We	improve	our	analysis	in	accordance	with	the recent simulation	result.	

Origins of GWs from EWPT
C.	Caprini et	al.,	arXiv:1512.06239	[astro-ph.CO] (review)
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Recent work of other souse of GW “sound wave”
M.	Hindmarsh,	et	al., PRL	112,	041301	(2014);	arXiv:1504.03291	[astro-ph.CO].
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Origins of GWs from EWPT

@

@

@

・Efficiency	factor κ(vb , α)

・Vacuum bubble velocity vb

C.	Caprini et	al.,	arXiv:1512.06239	[astro-ph.CO] (review)
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Origins of GWs from EWPT

@

@

@

・Efficiency	factor κ(vb , α)

・Vacuum bubble velocity vb

J.R.Espinosa,	et	al,	JCAP	1006,	028	(2010)

C.	Caprini et	al.,	arXiv:1512.06239	[astro-ph.CO] (review)
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Origins of GWs from EWPT

@

@

@

The result from resent simulation

Hindmarsh,	Huber,	Rummukainen,	Weir,	
PRD	92,	no.	12,	123009	(2015)

・The	fraction	of	bulk	motion	from	the	bubble	walls	

・Efficiency	factor κ(vb , α)

・Vacuum bubble velocity vb

J.R.Espinosa,	et	al,	JCAP	1006,	028	(2010)

C.	Caprini et	al.,	arXiv:1512.06239	[astro-ph.CO] (review)
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(α,	βtilde)	⇔ (f,	ΩGWh2)new

Β " 103, Tt " 50 GeV
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(α,	βtilde)_exp. by New	spectra (Tt=50GeV)
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(α,	βtilde)_exp. by New	spectra (Tt=100GeV)
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Efficiency	factor κ(vb , α)
J.	R.	Espinosa,	et	al,	JCAP	1006,	028	(2010)

66Dec.	2,	Scalars	2017,	University	of	Warsaw Toshinori	MATSUI	[KIAS]



/12

ξJ is	same
as our vb(α)

J.	R.	Espinosa, et al.
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J.	R.	Espinosa,	et	al.,
JCAP 1006,	028	(2010)

↓Our	calculation

J.	M.	No, PRD 84,	
124025	(2011)
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Contour	plot	of	α on	(ξw, v+) plane

Diffusion upper
bound of EWBG

α is	given	by	effective	potential.	

J.	M.	No, PRD84,	124025	(2011)

EWBG	requires	small	ξw
⇆GW requires large
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Contour	plot	of	v+ on	(ξw, α)	plane
α is	given	by	effective	potential.	

J.	M.	No, PRD84,	124025	(2011)

EWBG	requires	small	ξw
⇆GW requires large
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