Higgs-Flavon mixing and Dark Matter?

Venus Keus

University of Helsinki & Helsinki Institute of Physics

In collaboration with K. Huitu & N. Koivunen & O. Lebedev work in progress

Planck 2017

- 2 The Froggatt-Nielsen mechanism
- Oiscrete Froggat-Nielsen symmetry
- Charged Lepton Flavour Violating (CLFV) bounds
- 5 Dark Matter

Introduction	FN mechanism	Discrete FN symmetry	CLFV bounds	DM	Summary
•0	0000000	0000	00	000	0
			and the second		

The Standard Model and its shortcomings

- A Higgs boson discovered
- No significant deviation from the SM
- No signs of new physics

But no explanation for

• Dark Matter

• ...

- Fermion mass hierarchy
- Vacuum stability

= ~ ~ ~

Introduction O•	FN mechanism	Discrete FN symmetry	CLFV bounds	DM 000	Summary O
Motivatio	n				

- Yukawa couplings in SM are free parameters with no explanation for the hierarchy among them.
- The Froggatt-Nielsen mechanism naturally generates the SM Yukawa couplings by introducing a complex scalar field (flavon) which acquires a VEV.
- The Yukawa matrix is then given in terms of the flavon VEV.

In the absence of CPV, Higgs-flavon mixing leads to:

- $h \text{ and } \operatorname{Re} \phi \implies \text{two states } H_1 \text{ and } H_2.$
- third state $\mathrm{Im}\phi$

Introduction	FN mechanism	Discrete FN symmetry	CLFV bounds	DM	Summary
00	000000	0000	00	000	0

The Froggatt-Nielsen mechanism with a leptophilic flavon

< □ > < 同 >

900 E E E 4 E

Introduction	FN mechanism	Discrete FN symmetry	CLFV bounds	DM	Summary
00	000000	0000	00	000	O
Froggatt-	Nielsen me	echanism			

A Higgs doublet and a flavon singlet:

$$H = \begin{pmatrix} 0 \\ rac{v_h + h}{\sqrt{2}} \end{pmatrix}, \quad \Phi = \begin{pmatrix} rac{v_\phi + \phi}{\sqrt{2}} \end{pmatrix}, \quad ext{with} \quad \phi = ext{Re}\phi + i ext{Im}\phi$$

The effective operators after integrating out the heavy fermions:

$$c_{ij} \left(\frac{\Phi}{\Lambda}\right)^{n_{ij}} \bar{f}_{L,i} f_{R,j} H$$

Introduction	FN mechanism	Discrete FN symmetry	CLFV bounds	DM	Summary
00	000000	0000	00	000	0

Each vertex is U(1) symmetric:

$$c_{ij} \left(\frac{\Phi}{\Lambda}\right)^{n_{ij}} \bar{f}_{L,i} f_{R,j} H, \qquad q_{\bar{L},i} + q_{R,j} + q_h + q_{\phi} n_{ij} = 0$$

Particle	f _{L,i}	f _{R,i}	Н	Φ
U(1) charge	$q_{\bar{L},i}$	q _{R,i}	q_h	$oldsymbol{q}_{\phi}$

After SSB:

$$\mathcal{L}_{Yukawa} \supset c_{ij} \left(rac{\mathbf{v}_{\phi}}{\sqrt{2}\Lambda}
ight)^{-rac{1}{q_{\phi}}(q_{\bar{L},i}+q_{R,j}+q_{h})} ar{f}_{L,i} f_{R,j} rac{h}{\sqrt{2}}$$

The SM Yukawa coupling $(q_{\phi}=-1,q_{h}=0)$

$$Y_{ij} = c_{ij} \ \epsilon^{(\overline{q_{\bar{L},i} + q_{R,j})}}$$
 with $\epsilon = rac{v_{\phi}}{\sqrt{2}\Lambda}$

Introduction 00	FN mechanism	Discrete FN symmetry	CLFV bounds 00	DM 000	Summary O
What ϵ to	o choose?				

$$Y = \begin{pmatrix} \epsilon^3 & \\ & \epsilon^2 & \\ & & \epsilon \end{pmatrix}, \qquad Y = \begin{pmatrix} \epsilon^6 & \\ & \epsilon^4 & \\ & & \epsilon^3 \end{pmatrix}$$
$$\epsilon = 0.01 \qquad \qquad \epsilon = 0.1$$

Introduction 00	FN mechanism 0000●00	Discrete FN symmetry	CLFV bounds	DM 000	Summary O
What ch	narges to ass	sign?			

$$Y = \left(egin{array}{cc} \epsilon^3 & & \ & \epsilon^2 & \ & & \epsilon \end{array}
ight), \qquad \epsilon = 0.01$$

ĒL	e _R	$\bar{\mu}_L$	μ_{R}	$\bar{\tau}_L$	$ au_{R}$
2	1	1	1	0	1

$$Y = \left(egin{array}{cc} \epsilon^6 & & \ & \epsilon^3 & \ & & \epsilon^3 \end{array}
ight), \qquad \epsilon = 0.1$$

ĒL	e _R	$\bar{\mu}_L$	μ_{R}	$\bar{\tau}_L$	$ au_{R}$
6	0	3	0	3	0

Introduction	FN mechanism	Discrete FN symmetry	CLFV bounds	DM	Summary
00	0000000	0000	00	000	0

Leptonic part of the Lagrangian

$$\mathcal{L}_{eff} \supset rac{v_h}{\sqrt{2}} \; Y_{ij} \; \left(1 + rac{h}{v_h} + n_{ij} rac{\phi}{v_\phi}
ight) ec{l}_{L,i} \, l_{R,j}'$$

Diagonalising the Yukawa matrix

$$Y_{
m diag} = U_L Y_{ij} U_R^{\dagger}$$

In the lepton mass basis

$$\mathcal{L}_{eff} \supset \bar{l}_L M_{\text{diag}} l_R + \frac{h}{\sqrt{2}} \bar{l}_L Y_{\text{diag}} l_R + \frac{v_h}{v_\phi} \frac{\phi}{\sqrt{2}} \bar{l}_{L,i} \kappa_{ij} l_{R,j} + h.c.$$

CLFV processes with coupling

$$\tilde{\kappa}_{ij} = \frac{v_h \kappa_{ij}}{\sqrt{2}v_\phi} = \left[y_j \sum_{k=1}^3 q_{\bar{L},k} (U_L)_{ik} (U_L)_{jk}^* + y_i \sum_{k=1}^3 q_{R,k} (U_R)_{ik} (U_R)_{jk}^* \right]$$

< ∃ >

EL OQO

Introduction	FN mechanism	Discrete FN symmetry	CLFV bounds	DM	Summary
00		0000	00	000	O
The scale	ar potential				

$$V(H,\Phi) = -\mu_h^2(H^{\dagger}H) + \lambda_h(H^{\dagger}H)^2 - \mu_{\phi}^2(\Phi^{\dagger}\Phi) + \lambda_{\phi}(\Phi^{\dagger}\Phi)^2 + \lambda_{h\phi}(H^{\dagger}H)(\Phi^{\dagger}\Phi)$$

with

$$H = \begin{pmatrix} 0 \\ rac{v_h + h}{\sqrt{2}} \end{pmatrix}, \qquad \Phi = \begin{pmatrix} rac{v_\phi + \phi}{\sqrt{2}} \end{pmatrix}, \quad ext{with} \quad \phi = ext{Re}\phi + i ext{Im}\phi$$

The physical states

$$\left(\begin{array}{c} H_1\\ H_2 \end{array}\right) \equiv \left(\begin{array}{c} \cos\theta & \sin\theta\\ -\sin\theta & \cos\theta \end{array}\right) \left(\begin{array}{c} h\\ \operatorname{Re}\phi \end{array}\right)$$

where

$$\tan 2\theta = \frac{\lambda_{h\phi} v_h v_\phi}{\lambda_h v_h^2 - \lambda_\phi v_\phi^2}$$

Venus Keus (Helsinki)

Introduction	FN mechanism	Discrete FN symmetry	CLFV bounds	DM	Summary
00	0000000	0000	00	000	0

Discrete Froggatt-Nielsen symmetry

< □ > < 同 >

Introduction	FN mechanism	Discrete FN symmetry	CLFV bounds	DM	Summary
00	0000000	0000	00	000	O
The scala	r potential				

$$V(H, \Phi) = -\mu_h^2(H^{\dagger}H) + \lambda_h(H^{\dagger}H)^2 - \mu_{\phi}^2(\Phi^{\dagger}\Phi) + \lambda_{\phi}(\Phi^{\dagger}\Phi)^2 + \lambda_{h\phi}(H^{\dagger}H)(\Phi^{\dagger}\Phi) + \tilde{m}^2\Phi^2 + h.c.$$

with

$$H = \begin{pmatrix} 0 \\ rac{v_h + h}{\sqrt{2}} \end{pmatrix}, \qquad \Phi = \begin{pmatrix} rac{v_\phi + \phi}{\sqrt{2}} \end{pmatrix}, \quad ext{with} \quad \phi = ext{Re}\phi + i ext{Im}\phi$$

The physical states H_1 , H_2 and $\text{Im}\phi$ with masses

$$m_{H_1} = 125 \,\, {
m GeV}, \,\,\, m_{H_2} \sim {
m few} \,\, {
m hundred} \,\, {
m GeV} \ m_{{
m Im}\phi} \sim ilde{m}$$

Introduction	FN mechanism	Discrete FN symmetry	CLFV bounds	DM	Summary
00	0000000		00	000	O
The cou	plings to le	otons			

The physical states H_1 , H_2 and $\mathrm{Im}\phi$ couplings to leptons

$$\tilde{\kappa_{ij}} = \frac{v_h}{\sqrt{2}v_\phi} \left[y_j \sum_{k=1}^3 |q_{\bar{L},k}| (U_L)_{ik} (U_L)_{jk}^* + y_i \sum_{k=1}^3 |q_{R,k}| (U_R)_{ik} (U_R)_{jk}^* \right]$$

$$\tilde{\eta_{ij}} = \frac{v_h}{\sqrt{2}v_\phi} \left[y_j \sum_{k=1}^3 q_{\bar{L},k} (U_L)_{ik} (U_L)_{jk}^* + y_i \sum_{k=1}^3 q_{R,k} (U_R)_{ik} (U_R)_{jk}^* \right]$$

where

$$\mathcal{L} \supset \left[\cos \theta \; \frac{Y_{ij}^{\text{diag}}}{\sqrt{2}} + \sin \theta \; \widetilde{\kappa}_{ij} \right] \overline{l_i} P_R l_j \; H_1 + \left[-\sin \theta \; \frac{Y_{ij}^{\text{diag}}}{\sqrt{2}} + \cos \theta \; \widetilde{\kappa}_{ij} \right] \overline{l_i} P_R l_j \; H_2$$
$$+ i \widetilde{\eta}_{ij} \; \overline{l_i} P_R l_j \; \text{Im}\phi + \text{h.c.}$$

Introduction	FN mechanism 0000000	Discrete FN symmetry	CLFV bounds 00	DM 000	Summary O
Our cha	rge assignm	ent			

The discrete charge assignments for $\epsilon = 0.1$

Particle	eL	e _R	μ_L	μ_R	$ au_L$	$ au_{R}$	Н	ϕ
Charge	6	0	-3	0	-3	0	0	-1

The texture leading to a long-lived DM

$$Y = \begin{pmatrix} \epsilon^6 & \epsilon^6 & \epsilon^6 \\ \epsilon^3 & \epsilon^3 & \epsilon^3 \\ \epsilon^3 & \epsilon^3 & \epsilon^3 \end{pmatrix}$$

▲ 토 ▶ 토 ㅌ ㅋ ㅋ ٩ @

A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Introduction	FN mechanism	Discrete FN symmetry	CLFV bounds	DM	Summary
00	0000000	0000	● 0	000	0
- ·					

F	Bound	s from	CLFV	processes
-	Jound	5 110111		processes

Observable	Present limit	Experiment
$BR(\mu o eee)$	$1.0 imes 10^{-12}$	SINDRUM
BR(au o eee)	$3.0 imes10^{-8}$	HFAG
$BR(au o \mu \mu \mu)$	$2.0 imes10^{-8}$	HFAG
$BR(\mu o e\gamma)$	5.7×10^{-13}	MEG
$BR(au o \mu \gamma)$	4.4×10^{-8}	HFAG
$BR(au o e\gamma)$	3.3×10^{-8}	HFAG
$CR(\mu\text{-}e, Au)$	$7.0 imes 10^{-13}$	SINDRUM II

00	000000	0000	0	000	0
		the second second second	· T /		

00	0000000	0000	00	•00	0
1.10.11	C 1 .				

Lifetime of decaying Dark Matter

Lifetime of DM

$$au_{DM} = rac{1}{{{\Gamma _{{
m{Im}}\phi o \gamma \gamma }}}} > ~~6.612 imes 10^{32} rac{1}{ev} ~~$$
 age of the universe

- ullet for $m_{{
 m Im}\phi}=10$ KeV $\Rightarrow v_{\phi}\sim 10^6 GeV$
- ullet for $m_{{
 m Im}\phi}=1$ MeV $\Rightarrow v_{\phi}\sim 10^{13} GeV$

< <p>I > < </p>

1 = 1 = 1 = 1 = 1 = 1 = 1

Direct Detection of Dark Matter

Direct detection experiments are not sensitive to such low masses $(m_{DM} \sim 10 \text{ KeV} - 1 \text{ MeV})$

EL OQA

00	0000000	0000	00	000	0
Introduction	FN mechanism	Discrete FN symmetry	CLFV bounds	DM	Summary

CMB constraints on decaying DM

Assuming $au_{DM}\gtrsim 10^{17}$ s (age of the universe)

DM will only contribute to 10^{-8} of observed relic density

If $m_{{
m Im}\phi}$ is 100% of DM:

- $m_{{
 m Im}\phi}=10$ KeV $v_{\phi}\sim 10^{10} \, GeV$
- ullet for $m_{{
 m Im}\phi}=1$ MeV $v_{\phi}\sim 10^{17}\,GeV$

ELE NOR

Introduction 00	FN mechanism 0000000	Discrete FN symmetry	CLFV bounds	DM 000	Summary •
Summary					

- Froggatt-Nielsen mechanism predicts a complex flavon responsible for producing the SM fermion Yukawa couplings.
- In the case of a lepto-philic FN mechanism, the imaginary part of the flavon could be very long-lived \sim the age of the universe.
- It will only contribute negligibly to the observed Dark Matter relic density due to constraints from CMB anisotropy.
- Requiring this particle to account for 100% of the observed DM density, derives the model into "un-observable" realms.

< = ► = = < < <

BACKUP SLIDES

Venus Keus (Helsinki)

▲ □ ▶ < ⓓ ▶ < ▤ ▶ < ▤ ▶ < ▤ ▶ < ▤ ▶ < ▤ ▷ < ▤ ▷ < ≧ □
 Planck 2017 22/21

How to observe this?

At an e^+e^- collider

-

< D > < D > <</pre>

▲ 토 ▶ 토 ㅌ ㅋ ㅋ ٩ @

Relic density of Dark Matter

Main production channels of DM in early universe

Sac

Freeze-in vs. Freeze-out

(borrowed from S. West's talk in ULB in 2010)

Venus Keus (Helsinki)

Planck 2017 25/21

 $\exists \rightarrow$

三日 のへの

How much Higgs-flavon mixing is allowed?

Excluded at 95 % CL by direct searches (red), precision tests (gray), and H_1 couplings measurements (yellow). [Falkowski *et al* (2015)]

Sac