Sunday 5th June 2016, Warsaw Workshop on Non-Standard DM

Semi-Annihilating Dark Matter

Andrew Spray Yi Cai 1509.08481 1511.09247 1606.xxxxx

Dark Matter = Ghosts?

Blinky

Inky

Pinky

Outline

- Semi-Annihilating Dark Matter
- Sommerfeld Enhancement and Semi-Annihilation
- A Systematic Effective Operator Analysis
- Conclusions

Semi-Annihilating Dark Matter

Symmetries

- * Traditional: stabilise Dark Matter with Z₂ Symmetry
 - Supersymmetry: R-Parity
 - Extra Dimensions: KK Parity

- Little Higgs: T-Parity
- Inert Doublet Model

Standard DM processes only

Symmetries

- Traditional: stabilise Dark Matter with Z₂ Symmetry
 - Supersymmetry: R-Parity
 - Extra Dimensions: KK Parity

- Little Higgs: T-Parity
- Inert Doublet Model

- Standard DM processes only
- Completely non-generic!
 Almost any other symmetry allows
 - Semi-Annihilation (D'Eramo & Thaler, 1003.5912)

Top-Down

- Composite Theories
 - Flavour and baryon symmetries
 D'Eramo & Thaler, 1003.5912
- Multi-Higgs Sectors
 - Subgroups of Higgs exchange symmetries
 Ivanov & Kreus, 1203.3426; Karam & Tamvakis, 1508.03031
- Supersymmetry
 - * Hidden sectors: Feldman et al 1004.0649
 - * Right-handed neutrinos: Gherhetta et al, 1502.07173

Semi-Annihilation

VS

Always have annihilation-like diagram

 Contributes to relic density & indirect signals

- Directly affects relic density & indirect signals
- Indirectly affects direct detection searches

Relic Density

Semi-annihilation is extra term in Boltzmann equation

$$\frac{dY_{\chi}}{dx} = \frac{sZ}{Hx} \left[\left(Y_{\chi}^2 - (Y_{\chi}^{eq})^2 \right) \langle \sigma v \rangle (\chi \chi \to SM) + \left(Y_{\chi}^2 - Y_{\chi'} \frac{(Y_{\chi}^{eq})^2}{Y_{\chi'}^{eq}} \right) \langle \sigma v \rangle (\chi \chi \to \chi' SM) + \dots \right]$$
Annihilation
Semi-annihilation

- * SA lowers relic density in single component models
- Multi-component dark sectors more complex
- Standard calculation at this point: micrOMEGAs 4.0 handles arbitrary one/two-DM models

Examples of Density Evolution

 Single particle, pure SA: looks like annihilation

Two-particle: SA lowers
 DM relic density

Bélanger et al, 1202.2962

Two particle: SA raises
 (one) DM relic density

9/30

Indirect Detection

- Other channel where SA plays a role
- Different kinematics
 - * Annihilation: $E_V = m_{\chi}$
 - * Semi-annihilation: $E_V = \frac{m_{\phi}^2 + 2m_{\chi}m_{\phi} + m_V^2}{2(m_{\chi} + m_{\phi})}$
- Possible uses:
 - Photon/neutrino lines, e.g. D'Eramo et al, 1210.7817, Aoki et al, 1408.1853
 - Boosted signals in direct detection experiments,
 Agashe et al, 1405.7370; Berger et al, 1410.2246; Kong et al, 1411.6632
 - Different spectrum of decay products

Fitting the GCE

* Minimal fermion SADM model

$$C \supset \frac{\mathcal{G}_{SM}}{2} \frac{\mathbb{Z}_4}{\Psi}$$

$$\frac{\Psi}{(1,1)_0} \frac{1}{2}$$

$$\mathcal{C} \supset \frac{1}{2} \lambda_{H\phi} H^{\dagger} H \phi^2 + y \phi \bar{\Psi}^c \Psi$$

* Fix mass difference small

Best-fit region fixing *y* with relic density

Sommerfeld Enhancement and Semi-Annihilation

A Next-to-Minimal Model

- Minimal gauged fermion flavour-neutral case:
 - * Z_4 Symmetry, Dirac Fermion Ψ + Real Scalar φ

- Dirac "Wino" plus Higgs-portal Singlet
 - Fermion now directly couples to SM
- * Same 4 new parameters: $m_{\Psi}, m_{\phi}, \lambda_{H\phi}, y$

Enhanced (Semi-)Annihilation

- * When $m_{\Psi} \gg m_W$, weak force is long-range
- Sommerfeld Effect:
 - Non-perturbative effect
 - Must be included for fermion triplet

 Ψ Φ Φ
- New Two-Body States
 - * Q = 0, S = 1 state: { $\chi^+\chi^-$ } vs { $\Psi^+\overline{\Psi}^-$, $\Psi^0\Psi^0$, $\Psi^-\overline{\Psi}^+$ }
 - * Semi-annihilating initial states $\Psi\Psi/\overline{\Psi}\overline{\Psi}$
- Required custom code (biggest hurdle!)

Ψ

h

Resonances

- Scalar mediates attractive force
- * Deeper potential with increasing y
- Resonance moves to lower fermion masses

Thermal Cross Sections

- Sommerfeld effect:
 - Increases cross sections by orders of magnitude
 - Relatively more important for semi-annihilation
 - Annihilation cross sections generally larger

Evaluating the Relic Density

 $m_{\Psi} = 2 \text{ TeV}, m_{\varphi} = 158 \text{ GeV}$

- Sommerfeld Effect:
 - * Lowers relic density
 - (Semi-)Annihilations have continued effect at late time
- Semi-annihilations enhanced

Focus on SA Regions

- * Fix one DM mass and vary other
- * SA most important when $m_\phi < m_\psi < 2 m_\phi$

Small y Parameter Space

- * Ψ/ϕ freeze out independently
- Upper region
 - * $\Psi\Psi
 ightarrow {
 m SM}$ sets fermion relic density
 - * $\phi \phi \rightarrow FF$ sets scalar relic density
 - Lower region:
 - * $\Psi\Psi
 ightarrow{
 m SM}$ sets fermion relic density
 - * $\phi\phi \to {\rm SM}$ sets scalar relic density
- Collider/DD/ID bounds
- All regions with correct relic density can be excluded

Including Semi-Annihilation

Upper region

- * $\Psi \phi \rightarrow \Psi V$ heavily affects scalar density
- * $\Psi \Psi \rightarrow \phi V$ weakly alters fermion density
- Lower region
 - * $\Psi\Psi \rightarrow \phi V$ hugely changes fermion relic density, extends to higher masses
 - Scalar abundance largely unchanged
- Indirect constraints much weaker, tightly focused on resonance
- Still can rule out all regions with correct relic density

A Systematic Effective Operator Analysis

Strategy

- Approaches thus far somewhat ad hoc
- Can we systematically analyse the model space of Semi-Annihilating Dark Matter?
- Many variables: dark matter particles, couplings, etc

Strategy

- Approaches thus far somewhat ad hoc
- Can we systematically analyse the model space of Semi-Annihilating Dark Matter?
- Many variables: dark matter particles, couplings, etc
- Simplifying Framework: Effective Operators Integrate out Heavy Mediators

The EFT Language

- Strengths:
 - Simple & complete classification of terms
 - Good for non-relativistic processes: indirect detection, direct detection (irrelevant), relic density?
- * Weaknesses:
 - Not good at colliders, but SA is unimportant there
 - * Additional terms for annihilation might be necessary

Assumptions

- DM is neutral and stable
 - Can be scalar or fermion
 - * Initially assume total gauge singlet; will generalise
- * Focus on $2 \rightarrow 2$ processes
 - All operators to dimension 6
 - Leading terms at dimension 7
- Dark sector may be multicomponent
 - Possible for multiple stable fields
 - Possible for light (SA-relevant) unstable fields

Step One: Constructing Operators

Write down all operators consistent with assumptions

Scalar

*	Fermion

Operator	Definition
$ar{\mathcal{O}}_5^{H\phi}$	$\frac{1}{6} s^{ijk} \phi_i \phi_j \phi_k H^{\dagger} H$
$\bar{\mathcal{O}}_7^{Z\phi}$	$\frac{1}{2} x_Z^{ijk} \phi_i \phi_j (\partial_\mu \phi_k) (H^{\dagger} \overrightarrow{D^{\mu}} H)$
$\bar{\mathcal{O}}_7^{H\phi}$	$\frac{1}{2} x_h^{ijk} (\partial_\mu \phi_i) (\partial^\mu \phi_j) \phi_k H^{\dagger} H$
$\bar{\mathcal{O}}_7^{B\phi}$	$\frac{1}{6} a^{ijk} B^{\mu\nu} (\partial_{\mu} \phi_i) (\partial_{\nu} \phi_j) \phi_k$
$\bar{\mathcal{O}}_7^{BB\phi}$	$\frac{1}{6} s^{ijk} \phi_i \phi_j \phi_k B^{\mu\nu} B_{\mu\nu}$
$\bar{\mathcal{O}}_7^{WW\phi}$	$\frac{1}{6}s^{ijk}\phi_i\phi_j\phi_kW^{a\mu\nu}W^a_{\mu\nu}$

Operator	Definition	
$ar{\mathcal{O}}_7^{ u\chi L}$	$\frac{1}{2} x_L^{ijk} (\bar{\chi}_i^c P_L \chi_j) \left(H^{\dagger} \bar{L}_L \chi_k \right)$	
$ar{\mathcal{O}}_7^{ u\chi R}$	$x_R^{ijk}(\bar{\chi}_i^c P_R \chi_j) \left(H^{\dagger} \bar{L}_L \chi_k\right)$	
$ar{\mathcal{O}}_7^{ u\chi T_S}$	$\frac{1}{6} a^{ijk} (\bar{\chi}_i^c \sigma^{\mu\nu} \chi_j) \left(H^{\dagger} \bar{L}_L \sigma_{\mu\nu} \chi_k \right)$	
$ar{\mathcal{O}}_7^{ u\chi T_A}$	$\frac{i}{6} a^{ijk} \epsilon_{\mu\nu\rho\sigma} (\bar{\chi}_i^c \sigma^{\mu\nu} \chi_j) \left(H^{\dagger} \bar{L}_L \sigma^{\rho\sigma} \chi_k \right)$	

Small number of operators

Step One: Constructing Operators

Write down all operators consistent with assumptions

Scalar

Operator	Definition
$ar{\mathcal{O}}_5^{H\phi}$	$rac{1}{6} s^{ijk} \phi_i \phi_j \phi_k H^\dagger H$
$\mathcal{O}_7^{\mathcal{I}\phi}$	$\frac{1}{2} x_{Z_{ijk}}^{ij\kappa} \phi_i \phi_j (\partial_\mu \phi_k) (H^{\dagger} D^{\mu} H)$
$\mathcal{O}_{7}^{H\phi}$	$\frac{1}{2} x_h^{ij\kappa} (\partial_\mu \phi_i) (\partial^\mu \phi_j) \phi_k H^{\dagger} H$
$O_7^{D\phi}$	$\frac{\frac{1}{6}a^{ijk}B^{\mu\nu}(\partial_{\mu}\phi_{i})(\partial_{\nu}\phi_{j})\phi_{k}}{1-\cdots}$
$\mathcal{O}_7^{BB\phi}$	$\frac{1}{6} s^{ijk} \phi_i \phi_j \phi_k B^{\mu\nu} B_{\mu\nu}$
$\mathcal{O}_7^{VV VV \phi}$	$\frac{1}{6} s^{ijk} \phi_i \phi_j \phi_k W^{a\mu\nu} W^a_{\mu\nu}$

Operator	Definition	
$\bar{\mathcal{O}}_7^{ u\chi L}$	$\frac{1}{2} x_L^{ijk} (\bar{\chi}_i^c P_L \chi_j) \left(H^{\dagger} \bar{L}_L \chi_k \right)$	
$\mathcal{O}_7^{ u\chi R}$	$x_R^{ij\kappa}(\bar{\chi}_i^c P_R \chi_j) \left(H^{\dagger} \bar{L}_L \chi_k \right)$	
$ar{\mathcal{O}}_7^{ u\chi T_S}$	$\frac{1}{6} a^{ijk} (\bar{\chi}_i^c \sigma^{\mu\nu} \chi_j) \left(H^{\dagger} \bar{L}_L \sigma_{\mu\nu} \chi_k \right)$	
$ar{\mathcal{O}}_7^{ u\chi T_A}$	$\frac{i}{6} a^{ijk} \epsilon_{\mu\nu\rho\sigma} (\bar{\chi}_i^c \sigma^{\mu\nu} \chi_j) \left(H^{\dagger} \bar{L}_L \sigma^{\rho\sigma} \chi_k \right)$	

Fermion

- Small number of operators
- Even fewer for unique DM

Step Two: Constraints

- Limits from Fermi (left) and IceCube (right)
- Connection to relic density in progress

More Operators

Scalar and Fermion DM

Operator	Definition
$\bar{\mathcal{O}}_6^{\nu\phi}$	$\frac{1}{2} s^{ij} \phi_i \phi_j \left(H^{\dagger} \bar{L}_L \chi \right)$
$\bar{\mathcal{O}}_6^{H\chi S}$	$rac{1}{2}s^{ij}(ar{\chi}^c_i\chi_j)\phiH^\dagger H$
$\bar{\mathcal{O}}_{6}^{H\chi P}$	$\frac{1}{2}s^{ij}(\bar{\chi}^c_i\gamma^5\chi_j)\phi H^{\dagger}H$
$\bar{\mathcal{O}}_6^{B\chi}$	$\frac{1}{2} a^{ij} (\bar{\chi}_i^c \sigma^{\mu u} \chi_j) \phi B_{\mu u}$
$\bar{\mathcal{O}}_7^{ u\phi}$	$\frac{1}{2} a^{ij} \left(\phi_i \overleftrightarrow{\partial_{\mu}} \phi_j \right) (H^{\dagger} \bar{L}_L \gamma^{\mu} \chi)$
$\bar{\mathcal{O}}_7^{Z\chi V}$	$\frac{1}{2} a^{ij} (\bar{\chi}_i^c \gamma^\mu \chi_j) \phi \left(H^\dagger \overleftrightarrow{D_\mu} H \right)$
$\bar{\mathcal{O}}_7^{Z\chi A}$	$\frac{1}{2} s^{ij} (\bar{\chi}_i^c \gamma^\mu \gamma^5 \chi_j) \phi \left(H^\dagger \overleftrightarrow{D_\mu} H \right)$
$\bar{\mathcal{O}}_7^{H\chi V}$	$\frac{1}{2} a^{ij} (\bar{\chi}_i^c \gamma^\mu \chi_j) (\phi \overleftrightarrow{\partial_\mu} (H^\dagger H))$
$\bar{\mathcal{O}}_7^{H\chi A}$	$\frac{1}{2} s^{ij} (\bar{\chi}_i^c \gamma^\mu \gamma^5 \chi_j) (\phi \overleftrightarrow{\partial_\mu} (H^{\dagger} H))$

More Operators

Scalar and Fermion DM

Gauge charged Dark Partners

Operator	Definition
$\bar{\mathcal{O}}_6^{\nu\phi}$	$\frac{1}{2} s^{ij} \phi_i \phi_j \left(H^{\dagger} \bar{L}_L \chi \right)$
$\bar{\mathcal{O}}_6^{H\chi S}$	$rac{1}{2}s^{ij}(ar\chi^c_i\chi_j)\phiH^\dagger H$
$\bar{\mathcal{O}}_6^{H\chi P}$	$rac{1}{2} \bar{s}^{ij} (ar{\chi}^c_i \gamma^5 \chi_j) \phi H^\dagger H$
$\bar{\mathcal{O}}_6^{B\chi}$	$rac{1}{2} a^{ij} (ar{\chi}^c_i \sigma^{\mu u} \chi_j) \phi B_{\mu u}$
$\bar{\mathcal{O}}_7^{ u\phi}$	$\frac{1}{2} a^{ij} \left(\phi_i \overleftrightarrow{\partial_\mu} \phi_j \right) (H^\dagger \bar{L}_L \gamma^\mu \chi)$
$\bar{\mathcal{O}}_7^{Z\chi V}$	$\frac{1}{2} a^{ij} (\bar{\chi}_i^c \gamma^\mu \chi_j) \phi \left(H^\dagger \overleftrightarrow{D_\mu} H \right)$
$\bar{\mathcal{O}}_7^{Z\chi A}$	$\frac{1}{2} s^{ij} (\bar{\chi}_i^c \gamma^\mu \gamma^5 \chi_j) \phi \left(H^\dagger \overleftrightarrow{D_\mu} H \right)$
$\bar{\mathcal{O}}_7^{H\chi V}$	$\frac{1}{2} a^{ij} (\bar{\chi}_i^c \gamma^\mu \chi_j) \left(\phi \overleftrightarrow{\partial_\mu} (H^\dagger H) \right)$
$\bar{\mathcal{O}}_7^{H\chi A}$	$\frac{1}{2} \bar{s}^{ij} (\bar{\chi}_i^c \gamma^\mu \gamma^5 \chi_j) (\phi \overleftrightarrow{\partial_\mu} (H^\dagger H))$

Name	Operator	Hypercharge & Isospin
$ar{\mathcal{O}}_5^{fR}$	$rac{1}{2} \phi^2 \left(ar{f}_R \psi ight)$	$Y_{\psi} = Q_f , I_{\psi} = 0$
$ar{\mathcal{O}}_5^{QL}$	$rac{1}{2}\phi^2(ar{Q}_L\psi)$	$Y_{\psi} = \frac{1}{6}, \ I_{\psi} = \frac{1}{2}$
$\bar{\mathcal{O}}_5^{LL}$	$rac{1}{2} \phi^2 \left(ar{L}_L \psi ight)$	$Y_{\psi} = -\frac{1}{2}, \ I_{\psi} = \frac{1}{2}$
$ar{\mathcal{O}}^{fR}_{6H^\dagger}$	$rac{1}{2} \phi^2 \left(ar{f}_R(H^\dagger \psi) ight)$	$Y_{\psi} = Q_f + \frac{1}{2}, \ I_{\psi} = \frac{1}{2}$
$\bar{\mathcal{O}}_{6H}^{fR}$	${1\over 2}\phi^2 (ar f_R(ilde H^\dagger\psi))$	$Y_{\psi} = Q_f - \frac{1}{2}, \ I_{\psi} = \frac{1}{2}$
$\bar{\mathcal{O}}_{6S}^{uL}$	${1\over 2} \phi^2 \left((ar Q_L ilde H) \psi ight)$	$Y_{\psi} = \frac{2}{3}, I_{\psi} = 0$
$ar{\mathcal{O}}_{6T}^{uL}$	$\frac{1}{2} \bar{\phi}^2 \left((\bar{Q}_L \sigma^a \tilde{H}) \psi^a \right)$	$Y_{\psi} = \frac{2}{3}, I_{\psi} = 1$
$ar{\mathcal{O}}_{6S}^{dL}$	$\frac{1}{2}\phi^2\left((\bar{Q}_LH)\psi\right)$	$Y_{\psi} = -\frac{1}{3}, I_{\psi} = 0$
$ar{\mathcal{O}}_{6T}^{dL}$	$\frac{1}{2} \bar{\phi}^2 \left((\bar{Q}_L \sigma^a H) \psi^a \right)$	$Y_{\psi} = -rac{1}{3} , I_{\psi} = 1$
$ar{\mathcal{O}}^{eL}_{6S}$	$\frac{1}{2}\phi^2\left((\bar{L}_LH)\psi\right)$	$Y_{\psi} = -1, I_{\psi} = 0$
$ar{\mathcal{O}}^{eL}_{6T}$	$\frac{1}{2} \phi^2 \left((\bar{L}_L \sigma^a H) \psi^a \right)$	$Y_{\psi} = -1 , I_{\psi} = 1$
$\bar{\mathcal{O}}_{6S}^{ u}$	$rac{1}{2} \phi^2 \left((ar{L}_L ilde{H}) \psi ight)$	$Y_{\psi}=0,I_{\psi}=0$
$\bar{\mathcal{O}}^{\nu}_{6T}$	$\frac{1}{2} \bar{\phi}^2 \left((\bar{L}_L \sigma^a \tilde{H}) \psi^a \right)$	$Y_\psi=0,I_\psi=1$

More Operators

Scalar and Fermion DM

Gauge charged Dark Partners

Operator	Definition
$\bar{\mathcal{O}}_6^{\nu\phi}$	$\frac{1}{2} s^{ij} \phi_i \phi_j \left(H^\dagger \bar{L}_L \chi \right)$
$\bar{\mathcal{O}}_6^{H\chi S}$	$rac{1}{2}s^{ij}(ar\chi^c_i\chi_j)\phiH^\dagger H$
$\bar{\mathcal{O}}_{6}^{H\chi P}$	$rac{1}{2} s^{ij} (ar{\chi}^c_i \gamma^5 \chi_j) \phi H^\dagger H$
$\bar{\mathcal{O}}_6^{B\chi}$	$\frac{1}{2} a^{ij} (\bar{\chi}_i^c \sigma^{\mu\nu} \chi_j) \phi B_{\mu\nu}$
$\bar{\mathcal{O}}_7^{ u\phi}$	$\frac{1}{2} a^{ij} \left(\phi_i \overleftarrow{\partial_\mu} \phi_j \right) (H^\dagger \bar{L}_L \gamma^\mu \chi)$
$\bar{\mathcal{O}}_7^{Z\chi V}$	$\frac{1}{2} a^{ij} (\bar{\chi}_i^c \gamma^\mu \chi_j) \phi \left(H^\dagger \overleftrightarrow{D_\mu} H \right)$
$\bar{\mathcal{O}}_7^{Z\chi A}$	$\frac{1}{2} s^{ij} (\bar{\chi}_i^c \gamma^\mu \gamma^5 \chi_j) \phi \left(H^\dagger \overleftrightarrow{D_\mu} H \right)$
$\bar{\mathcal{O}}_7^{H\chi V}$	$\frac{1}{2} a^{ij} (\bar{\chi}_i^c \gamma^\mu \chi_j) (\phi \overleftrightarrow{\partial_\mu} (H^\dagger H))$
$\bar{\mathcal{O}}_7^{H\chi A}$	$\frac{1}{2} s^{ij} (\bar{\chi}_i^c \gamma^\mu \gamma^5 \chi_j) (\phi \overleftrightarrow{\partial_\mu} (H^\dagger H))$

- More possibilities
- Lower dim. operators

Name	Operator	Hypercharge & Isospin
$ar{\mathcal{O}}_5^{fR}$	$rac{1}{2} \phi^2 \left(ar{f}_R \psi ight)$	$Y_{\psi} = Q_f , I_{\psi} = 0$
$ar{\mathcal{O}}_5^{QL}$	$rac{1}{2} \phi^2 (ar Q_L \psi)$	$Y_{\psi} = \frac{1}{6}, I_{\psi} = \frac{1}{2}$
$ar{\mathcal{O}}_5^{LL}$	$rac{1}{2} \phi^2 \left(ar{L}_L \psi ight)$	$Y_{\psi} = -\frac{1}{2} , I_{\psi} = \frac{1}{2}$
$ar{\mathcal{O}}_{6H^\dagger}^{fR}$	$rac{1}{2} \phi^2 \left(ar{f}_R(H^\dagger \psi) ight)$	$Y_{\psi} = Q_f + \frac{1}{2}, \ I_{\psi} = \frac{1}{2}$
$ar{\mathcal{O}}_{6H}^{fR}$	$rac{1}{2} \phi^2 \left(ar{f}_R(ilde{H}^\dagger \psi) ight)$	$Y_{\psi} = Q_f - \frac{1}{2}, \ I_{\psi} = \frac{1}{2}$
$\bar{\mathcal{O}}^{uL}_{6S}$	${1\over 2}\phi^2\left((ar Q_L ilde H)\psi ight)$	$Y_{\psi} = \frac{2}{3}, I_{\psi} = 0$
$ar{\mathcal{O}}^{uL}_{6T}$	$\frac{1}{2} \phi^2 \left((\bar{Q}_L \sigma^a \tilde{H}) \psi^a \right)$	$Y_{\psi} = \frac{2}{3}, I_{\psi} = 1$
$ar{\mathcal{O}}_{6S}^{dL}$	$\frac{1}{2}\phi^2\left((\bar{Q}_LH)\psi\right)$	$Y_{\psi} = -\frac{1}{3}, I_{\psi} = 0$
$ar{\mathcal{O}}_{6T}^{dL}$	$\frac{1}{2} \bar{\phi}^2 \left((\bar{Q}_L \sigma^a H) \psi^a \right)$	$Y_{\psi} = -\frac{1}{3}, I_{\psi} = 1$
$ar{\mathcal{O}}^{eL}_{6S}$	$-\frac{1}{2}\phi^2\left((\bar{L}_LH)\psi\right)$	$Y_{\psi} = -1, I_{\psi} = 0$
$ar{\mathcal{O}}^{eL}_{6T}$	$\frac{1}{2} \bar{\phi}^2 \left((\bar{L}_L \sigma^a H) \psi^a \right)$	$Y_{\psi} = -1 , I_{\psi} = 1$
$\bar{\mathcal{O}}_{6S}^{ u}$	$rac{1}{2} \phi^2 \left((ar{L}_L ilde{H}) \psi ight)$	$Y_{\psi}=0,I_{\psi}=0$
$\bar{\mathcal{O}}_{6T}^{ u}$	$\frac{1}{2} \phi^2 \left((\bar{L}_L \sigma^a \tilde{H}) \psi^a \right)$	$Y_{\psi}=0,I_{\psi}=1$

 Most (not all) operators give single 2 to 2 process

Dark Partners and Challenges

- Dark Partners: relatively light unstable states
 - Allows SA to charged/coloured objects
 - Allows lower-dimensional operators
- Dark Partners must decay without breaking DM symmetry
 - Needs additional operator
 - May lead to new signals & constraints
- Important for collider phenomenology

Conclusions

Conclusions

- Semi-annihilation is a generic feature of dark matter
- Renormalisable fermion models multi-component
- Fermion triplet model features Sommerfeld effect; interplay with semi-annihilation new
- Have explored triplet parameter space;
 can be excluded with future searches
- * First steps to a systematic effective operator analysis

Conclusions

- Semi-annihilation is a generic feature of dark matter
- Renormalisable fermion models multi-component
- Fermion triplet model features Sommerfeld effect; interplay with semi-annihilation new
- Have explored triplet parameter space;
 can be excluded with future searches
- * First steps to a systematic effective operator analysis

THANK YOU!

Back Up Slides

Minimal Model Phenomenology

Collider/Direct Detection signals as for scalar singlet

 Ψ

* Fermion & Semi-Annihilation only affect relic density & indirect detection Ψ Ψ Ψ h $\bar{\Psi}^{DM Exchange}_{\varphi}$

Semi-

Annihilation

 Ψ

h

Fitting the GCE

- * Expect $\Psi \phi \rightarrow \Psi h$ to help fit: Higgs decays to bb
- * 2D Parameter scan:
 - Fix mass difference 2/4 GeV
 - * Fix y to give correct Ω_{DM}
 - * Same DM profile as before
- * Find Ω_{ϕ} , Ω_{Ψ} comparable: Weakens LUX constraints

Constraints & Signals

- * φ Higgs portal: similar limits from direct detection
- New collider bounds: disappearing tracks
 - * Produce charged fermions through s-channel $\mathrm{W/Z}$
 - * Decay to DM + pion, $c\tau \sim 10$ cm
 - * Similar to Wino searches, but stronger bound: $m_{\Psi} > 480 \text{ GeV}$

Indirect Detection

- LHC bounds exclude explanation of GCE
- Fermion annihilation to SM gives important bounds
 - Semi-annihilation zero at late times
 - HESS γ-line search dominates
 Cirelli et al, 1507.0551; Ibarra et al, 1507.0553

