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- Nonlocal states in QM does not violate causality

[Cirel’son(1980), Popescu, Rohrlich(1994)]Condition for no causality violation: No-Signalling 

∀a, b, x, x′￼, y, y′￼

p(b |x, y) = p(b |x′￼, y)

p(a |x, y) ≡ ∑
b

p(a, b |x, y)

p(a |x, y) = p(a |x, y′￼)
<latexit sha1_base64="cLQivWeqZO4f7Lgkr8FxahHpZLU=">AAAB6XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8co5gHJEmYnvcmQ2dllZlYIS/7AiwdFvPpH3vwbJ8keNLGgoajqprsrSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0O/VbT6g0j+WjGSfoR3QgecgZNVZ66Ga9csWtujOQZeLlpAI56r3yV7cfszRCaZigWnc8NzF+RpXhTOCk1E01JpSN6AA7lkoaofaz2aUTcmKVPgljZUsaMlN/T2Q00nocBbYzomaoF72p+J/XSU147WdcJqlByeaLwlQQE5Pp26TPFTIjxpZQpri9lbAhVZQZG07JhuAtvrxMmmdV77J6cX9eqd3kcRThCI7hFDy4ghrcQR0awCCEZ3iFN2fkvDjvzse8teDkM4fwB87nD57EjW8=</latexit>

{ Alice’s dist. is indep. of Bob’s choice for meas. axis

Bob’s dist. is indep. of Alice’s choice for meas. axis

No-signalling  Quantum  Local  Separable⊃ ⊃ ⊃



Bell Inequalities
- Bell-type inequalities (in general) are the inequalities that separate different types 
of distributions (No-signalling, Quantum, Local). 

Cxy = ⟨AxBy⟩ ≡ ∑
a,b

abp(a, b |x, y)- Define the correlator 

- CHSH inequality [Clauser-Horne-Shimony-Holt(1969)]

For a, b ∈ {±1}, x ∈ {n1, n2}, y ∈ {e1, e2}

SCHSH ≡ Cn1,e1
+ Cn1,e2

+ Cn2,e1
− Cn2,e2

SCHSH ≤

<latexit sha1_base64="cLQivWeqZO4f7Lgkr8FxahHpZLU=">AAAB6XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8co5gHJEmYnvcmQ2dllZlYIS/7AiwdFvPpH3vwbJ8keNLGgoajqprsrSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0O/VbT6g0j+WjGSfoR3QgecgZNVZ66Ga9csWtujOQZeLlpAI56r3yV7cfszRCaZigWnc8NzF+RpXhTOCk1E01JpSN6AA7lkoaofaz2aUTcmKVPgljZUsaMlN/T2Q00nocBbYzomaoF72p+J/XSU147WdcJqlByeaLwlQQE5Pp26TPFTIjxpZQpri9lbAhVZQZG07JhuAtvrxMmmdV77J6cX9eqd3kcRThCI7hFDy4ghrcQR0awCCEZ3iFN2fkvDjvzse8teDkM4fwB87nD57EjW8=</latexit>

{ 2

2 2

4 No-signalling [Popescu, Rohrlich(1994)]

Quantum Mechanics

Local theories

[Tsirelson(1987)]

[CHSH(1969)]



Entanglement witness
- Entanglement witness is a function that distinguishes separable/entangled states 

‣ Concurrence (for bi-qubits) C[ρ] ≡ max(0, λ1 − λ2 − λ3 − λ4)

 are eigenvalues, in descendent order, of 


 with   

λi

R = ρρ̃ ρ ρ̃ = (σy ⊗ σy) ρ* (σy ⊗ σy)

0 ≤ C[ρ] ≤ 1

C[ρ] > 0 iff  is entangled ρ

‣ Sufficient condition:

C[ρ] > 0
Δ̃ ≡ |Ckk + Crr | − Cnn > 1⇒

3D ≡ Tr[C] < − 1

<latexit sha1_base64="cLQivWeqZO4f7Lgkr8FxahHpZLU=">AAAB6XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8co5gHJEmYnvcmQ2dllZlYIS/7AiwdFvPpH3vwbJ8keNLGgoajqprsrSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0O/VbT6g0j+WjGSfoR3QgecgZNVZ66Ga9csWtujOQZeLlpAI56r3yV7cfszRCaZigWnc8NzF+RpXhTOCk1E01JpSN6AA7lkoaofaz2aUTcmKVPgljZUsaMlN/T2Q00nocBbYzomaoF72p+J/XSU147WdcJqlByeaLwlQQE5Pp26TPFTIjxpZQpri9lbAhVZQZG07JhuAtvrxMmmdV77J6cX9eqd3kcRThCI7hFDy4ghrcQR0awCCEZ3iFN2fkvDjvzse8teDkM4fwB87nD57EjW8=</latexit>

{
[Afik Nova (2021)]

r
n

k

[Wootters (1998)]

[  with ]Cxy x, y ∈ {r, n, k}



Entanglement witness
- Entanglement witness is a function that distinguishes separable/entangled states 

‣ Concurrence (for bi-qubits) C[ρ] ≡ max(0, λ1 − λ2 − λ3 − λ4)

 are eigenvalues, in descendent order, of 


 with   

λi

R = ρρ̃ ρ ρ̃ = (σy ⊗ σy) ρ* (σy ⊗ σy)

0 ≤ C[ρ] ≤ 1

C[ρ] > 0 iff  is entangled ρ

‣ Sufficient condition:

C[ρ] > 0
Δ̃ ≡ |Ckk + Crr | − Cnn > 1⇒

3D ≡ Tr[C] < − 1

<latexit sha1_base64="cLQivWeqZO4f7Lgkr8FxahHpZLU=">AAAB6XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8co5gHJEmYnvcmQ2dllZlYIS/7AiwdFvPpH3vwbJ8keNLGgoajqprsrSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0O/VbT6g0j+WjGSfoR3QgecgZNVZ66Ga9csWtujOQZeLlpAI56r3yV7cfszRCaZigWnc8NzF+RpXhTOCk1E01JpSN6AA7lkoaofaz2aUTcmKVPgljZUsaMlN/T2Q00nocBbYzomaoF72p+J/XSU147WdcJqlByeaLwlQQE5Pp26TPFTIjxpZQpri9lbAhVZQZG07JhuAtvrxMmmdV77J6cX9eqd3kcRThCI7hFDy4ghrcQR0awCCEZ3iFN2fkvDjvzse8teDkM4fwB87nD57EjW8=</latexit>

{
[Afik Nova (2021)]

No-signalling    Quantum    Local    Separable⊃ ⊃ ⊃

SCHSH = 2 2 SCHSH = 2 C[ρ] = 0+

C[ρ] = 0
for all separable states

r
n

k

[Wootters (1998)]

[  with ]Cxy x, y ∈ {r, n, k}



- Entangled photon pairs (from decays of Calcium atoms)
Clauser, Horne, Shimony, Holt (1969), Freedman and Clauser (1972), A. Aspect 
et. al. (1981, 1982), Y. H. Shih, C. O. Alley (1988), L. K. Shalm et al. (2015) [5σ]

- Entangled proton pairs (from decays of 2He)
M. M. Lamehi-Rachti, W. Mitting (1972), H. Sakai (2006)

-  flavour oscillationK0K0, B0B0 CPLEAR (1999), Belle (2004, 2007) 

✤ Violation of Bell inequality,  , has been observed 
at energies

SCHSH > 2
≪ TeV

-  spin correlation, , [36σ]B0 → J/ψ + K*(892)0 SCGLMP > 2

Fabbrichesi, Floreanini, Gabrielli, Marzola (2023)

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)

CERN-PH-EP-2013-104
LHCb-PAPER-2013-023

September 5, 2013

Measurement of the polarisation

amplitudes in B0 ! J/ K⇤
(892)

0

decays

The LHCb collaboration1

Abstract

An analysis of the decay B0 ! J/ K⇤(892)0 is presented using data, corresponding
to an integrated luminosity of 1.0 fb�1, collected in pp collisions at a centre-of-mass
energy of 7TeV with the LHCb detector. The polarisation amplitudes and the
corresponding phases are measured to be

|Ak|2 = 0.227 ± 0.004 (stat.) ± 0.011 (syst.),
|A?|2 = 0.201 ± 0.004 (stat.) ± 0.008 (syst.),
�k [rad] = �2.94 ± 0.02 (stat.) ± 0.03 (syst.),
�? [rad] = 2.94 ± 0.02 (stat.) ± 0.02 (syst.).

Comparing B0 ! J/ K⇤(892)0 and B
0 ! J/ K

⇤
(892)0 decays, no evidence for

direct CP violation is found.

Submitted to Phys. Rev. D

c�CERN on behalf of the LHCb collaboration, license CC-BY-3.0

1Authors are listed on the following pages.
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Testing QM at high energy colliders

large small
distance

Quantum 
Mechanics 
(Nonlocal) ?Quantum 

Mechanics 
(Local)

✤ Bell inequalities/Entanglement have not been tested at the TeV energy scale:

➡ LHC (and FCCee/hh) provides the unique opportunity for this test

✤ Detection of Entanglement/Bell violation requires a detailed analysis of spin 
correlation:

➡ provides a very good test for the Standard Model (sensitive to BSM) 

Motivation
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ℒint = −
mτ

vSM
κH ψ̄τ(cos δ+iγ5 sin δ) ψτ

3

with

pQ(b|B,�) ⌘ Tr[⇢B(�)F
B
b
], (13)

where ⇢B(�) is Bob’s local state and FB
b

is Bob’s positive
operator valued measure (POVM). By definition, all Bell-
nonlocal states are steerable. Also, if states are separable,
the probability of measurement outcomes can be written
in a form of Eqs. (12) and (13). Namely, the following
hierarchy is established:

Entangled � Steerable � Bell-nonlocal . (14)

III. QUANTUM AND CP PROPERTIES OF
H ! ⌧

+
⌧
�

In H ! ⌧+⌧�, the spins of two taus form a two-qubit
system and can be used to test various quantum infor-
mation properties. We calculate the quantities intro-
duced in the previous section for the two-qubit system
in H ! ⌧+⌧�.

A general interaction between a Higgs boson and tau
leptons can be written as

L 3 � m⌧

vSM
H ̄⌧ (cos � + i�5 sin �) ⌧ , (15)

where m⌧ and vSM are the tau lepton mass and the Stan-
dard Model (SM) Higgs vacuum expectation value, re-
spectively. The real parameters  2 R+ and � 2 [0, 2⇡]
describes the magnitude of the Yukawa interaction and
the CP phase. In this scheme the Standard Model is
characterised by (, �) = (1, 0).

The spin density matrix for the two taus in H ! ⌧+⌧�

is given by

⇢mn,m̄n̄ =
M⇤nn̄Mmm̄

P
mm̄

|Mmm̄|2
, (16)

where

Mmm̄ = c ūm(p)(cos � + i�5 sin �)v
m̄(p̄) (17)

is the matrix element of H ! ⌧+⌧� and c = �im⌧/vSM.
Here, pµ = (mH

2
, 0, 0, pz) and p̄µ = (mH

2
, 0, 0,�pz) are

the momenta of ⌧� and ⌧+, respectively. The indices
m,n (m̄, n̄) label the ⌧�(+) spin in the direction of the z-
axis (the direction of ⌧� momentum). A straightforward
calculation leads to [13, 14]

⇢mn,m̄n̄ =
1

2

0

BB@

0 0 0 0
0 1 e�i2� 0
0 ei2� 1 0
0 0 0 0

1

CCA (18)

up to the term of order of m2

⌧
/m2

H
. On the

RHS, the column (mn) and row (m̄n̄) are ordered as
(+,+), (+,�), (�,+), (�,�). From this the expansion

coefficients in Eq. (1) can readily be obtained as Bi =
B̄i = 0 and

Cij =

0

@
cos 2� sin 2� 0
� sin 2� cos 2� 0

0 0 �1

1

A . (19)

The signature of entanglement (4) is calculated to be

E(�) = 2| cos 2�|+ 1 . (20)

This is greater than 1 unless � = ⇡

4
, 3⇡

4
, 5⇡

4
and reaches

the maximum (E(�) = 3) at � = 0 (SM), ⇡/2 (CP-odd)
and ⇡ (negative Yukawa coupling).

The concurrence is also calculable. Eq. (18) leads to
⇢̃ = ⇢ and R = ⇢. It also implies ⌘i = (1, 0, 0, 0) and we
therefore have C[⇢] = 1. The ⌧+⌧� pair is maximally
entangled regardless of the CP phase � [15].

For states with vanishing Bloch vectors, Bi = B̄i = 0,
a convenient sufficient and necessary condition for steer-
ability is known [16–18]. The state is steerable iff S[⇢] > 1
with

S[⇢] ⌘ 1

2⇡

Z
d⌦n

p
nTCTCn , (21)

where n is a unit vector to be integrated out. In H !
⌧+⌧� we obtain S[⇢] = 2 (steerable) from Eq. (19). We
use S[⇢] as a measure of steering in the following sections.

The variable Rmax

CHSH
can be calculated immediately

from Eq. (10) as

Rmax

CHSH
=

p
2, (22)

which violates the classical bound and saturates the
quantum mechanical one. Since Rmax

CHSH
is independent

of �, a test of Bell-nonlocality can be done regardless of
the CP property of the H⌧⌧ interaction.

The state in Eq. (18) is pure, i.e. Tr ⇢2 = 1. The
corresponding pure state can be found as [19]

| H!⌧⌧ (�)i =
1p
2

�
|+,�i+ ei2�|�,+i

�
. (23)

In the Standard Model (� = 0), this state is the triplet
state (s,m) = (1, 0), where s and m are the magnitude
and the z-component of the total spin, respectively. This
can be understood as follows. Since the SM Higgs is CP-
even scalar, the final state must have even parity and zero
total angular momentum, JP = 0+, provided the parity
is conserved in the H⌧⌧ interaction. In the final state,
the total parity is given by P = (⌘⌧� ⌘⌧+) · (�1)`, where
⌘⌧�(+) is the intrinsic parity of ⌧�(+) and ` is the orbital
angular momentum. The intrinsic parities of a fermion
and its anti-fermion are opposite, (⌘⌧� ⌘⌧+) = �1, and
the spin state of the final state must be s = 0 or 1. The
only consistent choice to obtain JP = 0+ is ` = 1 and s =
1. The same line of argument leads to a conclusion that
if ⌧+⌧� are produced from the decay of a particle with
JP = 0� (� = ⇡

2
), the final state must have ` = s = 0,

namely, it must be the singlet state 1p
2
(|+,�i� |�,+i).

This observation is consistent with Eq. (23).
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with

pQ(b|B,�) ⌘ Tr[⇢B(�)F
B
b
], (13)

where ⇢B(�) is Bob’s local state and FB
b

is Bob’s positive
operator valued measure (POVM). By definition, all Bell-
nonlocal states are steerable. Also, if states are separable,
the probability of measurement outcomes can be written
in a form of Eqs. (12) and (13). Namely, the following
hierarchy is established:

Entangled � Steerable � Bell-nonlocal . (14)

III. QUANTUM AND CP PROPERTIES OF
H ! ⌧

+
⌧
�

In H ! ⌧+⌧�, the spins of two taus form a two-qubit
system and can be used to test various quantum infor-
mation properties. We calculate the quantities intro-
duced in the previous section for the two-qubit system
in H ! ⌧+⌧�.

A general interaction between a Higgs boson and tau
leptons can be written as

L 3 � m⌧

vSM
H ̄⌧ (cos � + i�5 sin �) ⌧ , (15)

where m⌧ and vSM are the tau lepton mass and the Stan-
dard Model (SM) Higgs vacuum expectation value, re-
spectively. The real parameters  2 R+ and � 2 [0, 2⇡]
describes the magnitude of the Yukawa interaction and
the CP phase. In this scheme the Standard Model is
characterised by (, �) = (1, 0).

The spin density matrix for the two taus in H ! ⌧+⌧�

is given by

⇢mn,m̄n̄ =
M⇤nn̄Mmm̄

P
mm̄

|Mmm̄|2
, (16)

where

Mmm̄ = c ūm(p)(cos � + i�5 sin �)v
m̄(p̄) (17)

is the matrix element of H ! ⌧+⌧� and c = �im⌧/vSM.
Here, pµ = (mH

2
, 0, 0, pz) and p̄µ = (mH

2
, 0, 0,�pz) are

the momenta of ⌧� and ⌧+, respectively. The indices
m,n (m̄, n̄) label the ⌧�(+) spin in the direction of the z-
axis (the direction of ⌧� momentum). A straightforward
calculation leads to [13, 14]
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RHS, the column (mn) and row (m̄n̄) are ordered as
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coefficients in Eq. (1) can readily be obtained as Bi =
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The signature of entanglement (4) is calculated to be
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and reaches

the maximum (E(�) = 3) at � = 0 (SM), ⇡/2 (CP-odd)
and ⇡ (negative Yukawa coupling).

The concurrence is also calculable. Eq. (18) leads to
⇢̃ = ⇢ and R = ⇢. It also implies ⌘i = (1, 0, 0, 0) and we
therefore have C[⇢] = 1. The ⌧+⌧� pair is maximally
entangled regardless of the CP phase � [15].

For states with vanishing Bloch vectors, Bi = B̄i = 0,
a convenient sufficient and necessary condition for steer-
ability is known [16–18]. The state is steerable iff S[⇢] > 1
with

S[⇢] ⌘ 1
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where n is a unit vector to be integrated out. In H !
⌧+⌧� we obtain S[⇢] = 2 (steerable) from Eq. (19). We
use S[⇢] as a measure of steering in the following sections.

The variable Rmax
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which violates the classical bound and saturates the
quantum mechanical one. Since Rmax

CHSH
is independent

of �, a test of Bell-nonlocality can be done regardless of
the CP property of the H⌧⌧ interaction.

The state in Eq. (18) is pure, i.e. Tr ⇢2 = 1. The
corresponding pure state can be found as [19]
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In the Standard Model (� = 0), this state is the triplet
state (s,m) = (1, 0), where s and m are the magnitude
and the z-component of the total spin, respectively. This
can be understood as follows. Since the SM Higgs is CP-
even scalar, the final state must have even parity and zero
total angular momentum, JP = 0+, provided the parity
is conserved in the H⌧⌧ interaction. In the final state,
the total parity is given by P = (⌘⌧� ⌘⌧+) · (�1)`, where
⌘⌧�(+) is the intrinsic parity of ⌧�(+) and ` is the orbital
angular momentum. The intrinsic parities of a fermion
and its anti-fermion are opposite, (⌘⌧� ⌘⌧+) = �1, and
the spin state of the final state must be s = 0 or 1. The
only consistent choice to obtain JP = 0+ is ` = 1 and s =
1. The same line of argument leads to a conclusion that
if ⌧+⌧� are produced from the decay of a particle with
JP = 0� (� = ⇡

2
), the final state must have ` = s = 0,

namely, it must be the singlet state 1p
2
(|+,�i� |�,+i).

This observation is consistent with Eq. (23).

H → τ+τ− SM:   (κ, δ) = (1,0)

H
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τ−

|ΨH→ττ(δ)⟩ ∝ | + − ⟩ + ei2δ | − + ⟩ [Fabbrichesi, Floreanini, Gabrielli (2023)]

|Ψ(s=1,m)⟩ ∝
| + + ⟩

| + − ⟩ + | − + ⟩
| − − ⟩

|Ψ(0,0)⟩ ∝ | + − ⟩ − | − + ⟩

δ = π /2 (CP odd)

δ = 0
(CP even)

Parity:    with :  P = (ηf ηf̄ ) ⋅ (−1)l ηf ηf̄ = − 1

 JP = {0+ ⟹ l = s = 1
0− ⟹ l = s = 0
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vSM
κH ψ̄τ(cos δ+iγ5 sin δ) ψτ
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B
b
], (13)

where ⇢B(�) is Bob’s local state and FB
b

is Bob’s positive
operator valued measure (POVM). By definition, all Bell-
nonlocal states are steerable. Also, if states are separable,
the probability of measurement outcomes can be written
in a form of Eqs. (12) and (13). Namely, the following
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where m⌧ and vSM are the tau lepton mass and the Stan-
dard Model (SM) Higgs vacuum expectation value, re-
spectively. The real parameters  2 R+ and � 2 [0, 2⇡]
describes the magnitude of the Yukawa interaction and
the CP phase. In this scheme the Standard Model is
characterised by (, �) = (1, 0).

The spin density matrix for the two taus in H ! ⌧+⌧�

is given by

⇢mn,m̄n̄ =
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, (16)

where

Mmm̄ = c ūm(p)(cos � + i�5 sin �)v
m̄(p̄) (17)

is the matrix element of H ! ⌧+⌧� and c = �im⌧/vSM.
Here, pµ = (mH
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, 0, 0, pz) and p̄µ = (mH

2
, 0, 0,�pz) are

the momenta of ⌧� and ⌧+, respectively. The indices
m,n (m̄, n̄) label the ⌧�(+) spin in the direction of the z-
axis (the direction of ⌧� momentum). A straightforward
calculation leads to [13, 14]
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RHS, the column (mn) and row (m̄n̄) are ordered as
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The signature of entanglement (4) is calculated to be
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This is greater than 1 unless � = ⇡
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and reaches

the maximum (E(�) = 3) at � = 0 (SM), ⇡/2 (CP-odd)
and ⇡ (negative Yukawa coupling).

The concurrence is also calculable. Eq. (18) leads to
⇢̃ = ⇢ and R = ⇢. It also implies ⌘i = (1, 0, 0, 0) and we
therefore have C[⇢] = 1. The ⌧+⌧� pair is maximally
entangled regardless of the CP phase � [15].

For states with vanishing Bloch vectors, Bi = B̄i = 0,
a convenient sufficient and necessary condition for steer-
ability is known [16–18]. The state is steerable iff S[⇢] > 1
with

S[⇢] ⌘ 1
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Z
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where n is a unit vector to be integrated out. In H !
⌧+⌧� we obtain S[⇢] = 2 (steerable) from Eq. (19). We
use S[⇢] as a measure of steering in the following sections.

The variable Rmax

CHSH
can be calculated immediately

from Eq. (10) as

Rmax

CHSH
=

p
2, (22)

which violates the classical bound and saturates the
quantum mechanical one. Since Rmax

CHSH
is independent

of �, a test of Bell-nonlocality can be done regardless of
the CP property of the H⌧⌧ interaction.

The state in Eq. (18) is pure, i.e. Tr ⇢2 = 1. The
corresponding pure state can be found as [19]

| H!⌧⌧ (�)i =
1p
2

�
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�
. (23)

In the Standard Model (� = 0), this state is the triplet
state (s,m) = (1, 0), where s and m are the magnitude
and the z-component of the total spin, respectively. This
can be understood as follows. Since the SM Higgs is CP-
even scalar, the final state must have even parity and zero
total angular momentum, JP = 0+, provided the parity
is conserved in the H⌧⌧ interaction. In the final state,
the total parity is given by P = (⌘⌧� ⌘⌧+) · (�1)`, where
⌘⌧�(+) is the intrinsic parity of ⌧�(+) and ` is the orbital
angular momentum. The intrinsic parities of a fermion
and its anti-fermion are opposite, (⌘⌧� ⌘⌧+) = �1, and
the spin state of the final state must be s = 0 or 1. The
only consistent choice to obtain JP = 0+ is ` = 1 and s =
1. The same line of argument leads to a conclusion that
if ⌧+⌧� are produced from the decay of a particle with
JP = 0� (� = ⇡

2
), the final state must have ` = s = 0,

namely, it must be the singlet state 1p
2
(|+,�i� |�,+i).

This observation is consistent with Eq. (23).
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operator valued measure (POVM). By definition, all Bell-
nonlocal states are steerable. Also, if states are separable,
the probability of measurement outcomes can be written
in a form of Eqs. (12) and (13). Namely, the following
hierarchy is established:
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system and can be used to test various quantum infor-
mation properties. We calculate the quantities intro-
duced in the previous section for the two-qubit system
in H ! ⌧+⌧�.

A general interaction between a Higgs boson and tau
leptons can be written as

L 3 � m⌧

vSM
H ̄⌧ (cos � + i�5 sin �) ⌧ , (15)

where m⌧ and vSM are the tau lepton mass and the Stan-
dard Model (SM) Higgs vacuum expectation value, re-
spectively. The real parameters  2 R+ and � 2 [0, 2⇡]
describes the magnitude of the Yukawa interaction and
the CP phase. In this scheme the Standard Model is
characterised by (, �) = (1, 0).
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is given by
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Here, pµ = (mH
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the momenta of ⌧� and ⌧+, respectively. The indices
m,n (m̄, n̄) label the ⌧�(+) spin in the direction of the z-
axis (the direction of ⌧� momentum). A straightforward
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and reaches

the maximum (E(�) = 3) at � = 0 (SM), ⇡/2 (CP-odd)
and ⇡ (negative Yukawa coupling).

The concurrence is also calculable. Eq. (18) leads to
⇢̃ = ⇢ and R = ⇢. It also implies ⌘i = (1, 0, 0, 0) and we
therefore have C[⇢] = 1. The ⌧+⌧� pair is maximally
entangled regardless of the CP phase � [15].

For states with vanishing Bloch vectors, Bi = B̄i = 0,
a convenient sufficient and necessary condition for steer-
ability is known [16–18]. The state is steerable iff S[⇢] > 1
with
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where n is a unit vector to be integrated out. In H !
⌧+⌧� we obtain S[⇢] = 2 (steerable) from Eq. (19). We
use S[⇢] as a measure of steering in the following sections.
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which violates the classical bound and saturates the
quantum mechanical one. Since Rmax

CHSH
is independent

of �, a test of Bell-nonlocality can be done regardless of
the CP property of the H⌧⌧ interaction.

The state in Eq. (18) is pure, i.e. Tr ⇢2 = 1. The
corresponding pure state can be found as [19]
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In the Standard Model (� = 0), this state is the triplet
state (s,m) = (1, 0), where s and m are the magnitude
and the z-component of the total spin, respectively. This
can be understood as follows. Since the SM Higgs is CP-
even scalar, the final state must have even parity and zero
total angular momentum, JP = 0+, provided the parity
is conserved in the H⌧⌧ interaction. In the final state,
the total parity is given by P = (⌘⌧� ⌘⌧+) · (�1)`, where
⌘⌧�(+) is the intrinsic parity of ⌧�(+) and ` is the orbital
angular momentum. The intrinsic parities of a fermion
and its anti-fermion are opposite, (⌘⌧� ⌘⌧+) = �1, and
the spin state of the final state must be s = 0 or 1. The
only consistent choice to obtain JP = 0+ is ` = 1 and s =
1. The same line of argument leads to a conclusion that
if ⌧+⌧� are produced from the decay of a particle with
JP = 0� (� = ⇡

2
), the final state must have ` = s = 0,

namely, it must be the singlet state 1p
2
(|+,�i� |�,+i).

This observation is consistent with Eq. (23).
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Figure 1: Helicity basis.

is conserved in the H⌧⌧ interaction. In the final state,
the total parity is given by P = (⌘⌧� ⌘⌧+) · (�1)`, where
⌘⌧�(+) is the intrinsic parity of ⌧�(+) and ` is the orbital
angular momentum. The intrinsic parities of a fermion
and its anti-fermion are opposite, (⌘⌧� ⌘⌧+) = �1, and
the spin state of the final state must be s = 0 or 1. The
only consistent choice to obtain JP = 0+ is ` = 1 and s =
1. The same line of argument leads to a conclusion that
if ⌧+⌧� are produced from the decay of a particle with
JP = 0� (� = ⇡

2
), the final state must have ` = s = 0,

namely, it must be the singlet state 1p
2
(|+,�i� |�,+i).

This observation is consistent with Eq. (23).

IV. MEASUREMENT STRATEGY

The spin of taus is not directly measureable at col-
liders. What can be measured instead is the direction
of a decay product with respect to the motion of the
tau. In order to sensibly compare the directions of decay
products among different events, we adopt a coordinate
system so-called the helicity basis [21]. The three nor-
malised basis vectors (r, n, k) are defined at the centre
of mass frame of ⌧+⌧� in the following way: k is the
direction of ⌧�, r is on the plane spanned by k and h,
which is the motion of the Higgs in the ⌧+⌧� rest frame,
and defined as r ⌘ (h� k cos ✓)/ sin ✓ with cos ✓ ⌘ k · h,
and n ⌘ k⇥ r (see Fig. 1).

Suppose that at the rest frame of ⌧� the tau spin is
polarised into s direction (|s| = 1). The ⌧� decays into
a decay mode, f , producing a detectable particle d. The
conditional probability that the particle d takes the di-
rection u (|u| = 1) when the ⌧� spin is polarised in s
direction is given by [22]

P (u|s) = 1 + ↵f,d s · u , (24)

with the normalisation
R

d⌦

4⇡
P (u|s) = 1, where ↵f,d 2

[�1, 1] is called the spin analyzing power. For the CP
counterpart, (f, d)

CP ! (f̄ , d̄), ↵
f̄ ,d̄

= �↵f,d.
We denote the ⌧+ polarization by s̄ (|̄s| = 1). The

direction of its decay product, d0, measured at the rest
frame of the ⌧+, is represented by a unit vector ū. We
want to relate the spin correlation hs⌦s̄i with the angular

correlation hu⌦ ūi since the latter is measureable. Using
the probability distribution (24), it is not hard to show
(see Appendix A)

huaūbi =
↵f,d↵f 0,d0

9
hsas̄bi , (25)

where ua ⌘ u ·a, s̄b ⌘ s̄ ·b, etc. are the components with
respect to arbitrary unit vectors a and b. Using this
relation, we can obtain RCHSH in terms of the angular
correlations:

RCHSH =
9

2|↵f,d↵f 0,d0 | ⇥

|huaūbi � huaūb0i+ hua0 ūbi+ hua0 ūb0i| . (26)

In H ! ⌧⌧ , a set of four unit vectors that maximises
RCHSH can be chosen as (see Eqs. (11) and (19))

a⇤ = k, a0
⇤ = r,

b⇤ =
1p
2
(r + k) , b0

⇤ =
1p
2
(r� k) . (27)

We use the above unit vectors and consider a direct mea-
surement of R⇤

CHSH
⌘ RCHSH(a⇤,a0

⇤,b⇤,b0
⇤) to test the

Bell-nonlocality in section VI.
From Eq. (24), one can also show [23]

1

�

d�

d(uaūb)
=

1 + ↵f,d↵f 0,d0Cab uaūb

2
ln

✓
1

uaūb

◆
. (28)

This allows us to measure the Cab component by fitting
the d�

d(uaūb)
distribution with the function on the RHS

[24]. More conveniently, the components of the C matrix
can be measured from the forward-backward asymmetry
[4]

Cab =
4

�↵f,d↵f 0,d0

N(uaūb > 0)�N(uaūb < 0)

N(uaūb > 0) + N(uaūb < 0)
. (29)

For the steering measurement, we calculate S[⇢] by di-
rectly performing the integral in Eq. (21) with the mea-
sured C matrix.

In the Standard Model (� = 0), the C matrix in the
helicity basis is given by

Crr = Cnn = 1, Ckk = �1, Cij = 0 (i 6= j) (30)

and the entanglement signature becomes

E = Ek ⌘ Crr + Cnn � Ckk . (31)

There is a way to measure this combination directly [4].
We introduce a metric ⌘k = diag(1, 1,�1) and define
cos ✓k ⌘ uT ⌘kū = urūr + unūn � ukūk. This quantity
distributes as

1

�

d�

d cos ✓k
=

1

2

�
1� ↵f,d↵f 0,d0Ek cos ✓k

�
(32)

and Ek can be measured as a forward-backward asym-
metry

Ek =
6

�↵f,d↵f 0,d0

N(cos ✓k > 0)�N(cos ✓k < 0)

N(cos ✓k > 0) + N(cos ✓k < 0)
. (33)

boost of  

at  rest frame

H
H(n1, n2, e1, e2) = (r, n,

n + r

2
,

n − r

2 )Four measurement axes in :SCHSH

[Fabbrichesi, Floreanini, Gabrielli (2023)]
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 rest frames must be reconstructed very preciselyτ±

b⃗±

τ±

π±

ν

(σbT
= 2μm, σbz

= 5μm)
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ILC FCC-ee

Cij

0

@
�0.600± 0.210 0.003± 0.125 0.020± 0.149
0.003± 0.125 �0.494± 0.190 0.007± 0.128
0.048± 0.174 0.0007± 0.156 0.487± 0.193

1

A

0

@
�0.559± 0.143 �0.010± 0.095 �0.014± 0.122
�0.010± 0.095 �0.494± 0.139 �0.002± 0.111
0.012± 0.124 0.020± 0.105 0.434± 0.134

1

A

Ek �1.057± 0.385 �0.977± 0.264
C[⇢] 0.030± 0.071 0.005± 0.023
S[⇢] 1.148± 0.210 1.046± 0.163

R
⇤
CHSH 0.769± 0.189 0.703± 0.134

Table II: Result of quantum property measurements with a simple kinematical reconstruction method.

test, R⇤
CHSH

⌘ RCHSH(a⇤,a0
⇤,b⇤,b0

⇤) is calculated using
Eqs. (26) and (27). Both solutions, is = 1, 2, are included
in the calculation of Cab and R⇤

CHSH
.

The result of the measurements for Cab, Ek, C[⇢], S[⇢]
and R⇤

CHSH
is summarised in Table II. We see that the

C-matrix is measured as a diagonal form with good ac-
curacy. However, the diagonal elements are far off from
the true values, C = diag(1, 1,�1). Not only the magni-
tudes are significantly less than one but also the signs are
flipped for all diagonal components. We also see no clear
indication of the quantum correlations, i.e. entanglement
(Ek > 1, C[⇢] > 0), steerability (S[⇢] > 1) and CHSH
violation (R⇤

CHSH
> 1).

We identify two main reasons for this disappointing re-
sult. The first is the effect of false solutions of the kine-
matic reconstruction. The false solutions contribute to
the measurements as much as the true solutions.3 The
other effect is the smearing of the beam energies and
the energy mismeasurements for the final state particles.
These impact the reconstruction of the tau momenta, in
particular the direction of the tau leptons. In addition,
since the tau leptons are highly boosted, a small error on
their directions results in a large error on the ⇡± distri-
bution measured at the reconstructed ⌧± rest frame.

B. Log-likelihood with the impact parameters

We now discuss how to overcome the limitations iden-
tified in the previous section. We note that the informa-
tion obtained from the impact parameter measurements
of tau decays has not been employed. Since tau leptons
are marginally long-lived, c⌧ = 87.11 µm [50], and highly
boosted, one can observe a mismatch between the inter-
action point and the origin of the ⇡± in ⌧± ! ⌫⇡±.
The impact parameter ~b± is the minimal displacement
of the extrapolated ⇡± trajectory from the interaction

3 We however checked that when smearing is turned off, even if
only false solutions are used for the measurements, the true val-
ues for Cab (and therefore also for R⇤

CHSH
and Ek) are recovered

as in the case where only true solutions are used. When smearing
is switched on, both solutions are different from the MC truth
and we therefore loose the notion of true and false solutions.

point. The magnitude of the impact parameter |~b±| fol-
lows an exponentially falling distribution with the mean
|~b±| ⇠ 100µm for E⌧± ⇠ mH/2, which is significantly
larger than the experimental resolutions, �bT

' 2µm
(transverse) and �bz

' 5µm (longitudinal) [32].
If all quantities are accurately measured, the impact

parameter, ~b±, from the ⌧± ! ⌫⇡± decay, is related to
the directions of ⌧+ and ⇡+ and their angle ⇥± by [53]

~b± = |~b±| ·
⇥
e⌧± · sin�1 ⇥± � e⇡± · tan�1 ⇥±

⇤

⌘ ~breco

± (e⌧±) , (39)

where e⌧± and e⇡± are the unit vectors pointing to the
directions of ⌧± and ⇡±, respectively, and cos⇥± ⌘ (e⌧± ·
e⇡±). In the second line, we defined a 3-vector function
~breco

± (e⌧±) and emphasised its dependence on e⌧± .
We use this information to curb the effects of energy

mismeasurement. First, we shift the energy of a visible
particle ↵ (↵ = ⇡±, x, x̄) from the observed value as

Eobs

↵
! E↵(�↵) = (1 + �E · �↵) · Eobs

↵
, (40)

where �↵ is a nuisance parameter characterising the
amount of the shift with respect to the energy resolution
�E . Using these shifted energies, we solve the kinemat-
ical constraints, as outlined in Appendix C, and obtain
the tau directions as functions of the nuisance parame-
ters, eis

⌧±(���), up to two-fold solutions, is = 1, 2, where
��� = {�+

⇡
, ��

⇡
, �x, �x̄}. Based on the mismatch between the

observed and reconstructed impact parameters,

~�is

b±
(���) ⌘ ~b± �~breco

±
�
eis
⌧+(���)

�
, (41)

we define a contribution to the log-likelihood for a solu-
tion is as

Lis(���) = Lis
+
(���) + Lis

�(���) (42)

with

Lis
±(���) =

[�is

b±
(���)]2

x
+ [�is

b±
(���)]2

y

�2

bT

+
[�is

b±
(���)]2

z

�2

bz

. (43)

The total log-likelihood function is then defined as

L(���) = min
⇥
L1(���), L2(���)

⇤
+ �2

⇡+ + �2

⇡� + �2

x
+ �2

x̄
. (44)

cτ ∼ 100 μm

Impact parameter:
We overcome this by incorporating the impact parameter 
info in the event reconstruction with the log-likelihood   

Talk by Priyanka Lamba (tomorrow)

SCHSH/2 = 1.276 ± 0.094

C[ρ] = 0.871 ± 0.084

MC-sim for FCCee: L = 5 ab−1, ECM = 240 GeV

 Entanglement⇒ ≫ 5σ

 Bell nonlocality⇒ ∼ 3σ
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FIG. 1. Representative Feynman diagrams for a tt production
via the SM.

a light quark and antiquark (qq̄), or between a pair of
gluons (gg),

q + q̄ → t+ t̄, (5)

g + g → t+ t̄.

Representative Feynman diagrams for these processes are
presented in Fig. 1.
Kinematically, the production of a tt̄ pair is described

by the invariant mass Mtt̄ and the top direction k̂ in
the center-of-mass (CM) frame. Specifically, in this
frame the top and antitop relativistic momenta are kµt =
(k0t ,k), k

µ
t̄ = (k0t̄ ,−k), satisfying the invariant dispersion

relation k2t ≡ kµt kµt = m2
t , and similar for the antitop

k2t̄ = k2t = m2
t . The invariant mass is defined from these

momenta as

M2
tt̄ ≡ stt̄ = (kt + kt̄)

2, (6)

with stt̄ the usual Mandelstam variable. In the CM

frame, this gives M2
tt̄ = 4

(

k0t
)2

= 4(m2
t + k2). By

relating the top momentum to its velocity β by |k| =
mtβ/

√

1− β2, we get

β =
√

1− 4m2
t/M

2
tt̄
, (7)

from where we immediately see that threshold production
(β = 0) corresponds to Mtt̄ = 2mt ≈ 346 GeV, the
minimum energy possible for a tt̄ pair.
While the kinematics of the tt̄ pair are determined by

the variables (Mtt̄, k̂), their spins for a fixed production
process are characterized by the so-called production spin
density matrix R(Mtt̄, k̂) [28], whose most general form
is similar to that of Eq. (2),

R = ÃI4+
∑

i

(

B̃+
i σ

i ⊗ I2 + B̃−
i I2 ⊗ σi

)

+
∑

i,j

C̃ijσ
i⊗σj

(8)
where the first/second spin subspace corresponds to the
top/antitop, respectively. We note that the production
spin density matrix is characterized by 16 parameters,
Ã, B̃±

i , C̃ij , one more than in Eq. (2). This is because the
matrix R is not properly normalized since tr(R) = 4Ã,
with Ã determining the differential cross section for tt̄
production at fixed energy and top direction,

dσ

dΩdMtt̄

=
α2
sβ

M2
tt̄

Ã(Mtt̄, k̂) (9)

Ω being the solid angle associated with k̂ and αs ≈ 0.118
the strong coupling constant.
The proper spin density matrix ρ(Mtt̄, k̂) of Eq. (2)

and the actual spin polarizations B±
i and spin correla-

tions Cij of the tt̄ pair are simply computed by normal-
izing R,

ρ =
R

tr(R)
=

R

4Ã
, B±

i =
B̃±

i

Ã
, Cij =

C̃ij

Ã
. (10)

With the help of the production spin density matrix,
the expectation value of any observable in a selected re-
gion Π of the phase space (Mtt̄, k̂) is obtained by inte-
gration as [29, 34]

〈O〉 =

´

Π dΩdMtt̄
α2

s
β

M2

tt̄

tr(OR)
´

Π dΩdMtt̄
α2

s
β

M2

tt̄

tr(R)
. (11)

In terms of the proper spin density matrices ρ(Mtt̄, k̂),
the above equation simply reads

〈O〉 =
ˆ

Π
dMtt̄dΩ p(Mtt̄, k̂) 〈O〉ρ , (12)

with 〈O〉ρ ≡ tr[Oρ(Mtt̄, k̂)] and

p(Mtt̄, k̂) =
1

σΠ

dσ

dΩdMtt̄

σΠ ≡
ˆ

Π
dΩdMtt̄

dσ

dΩdMtt̄

. (13)

The expectation value in Eq. (12) can be then intu-
itively understood as the sum of the expectation values of
the observable O evaluated in all possible quantum states
of the tt̄ pair in the region Π, with p(Mtt̄, k̂) the proba-
bility of a given production process, proportional to the
corresponding differential cross section. The description
of the quantum state of the tt̄ pair in terms of a density
matrix instead of a wave function arises quite naturally
in colliders: since internal degrees of freedom of the ini-
tial state (such as spin or color) cannot be controlled,
the quantum state of the produced tt̄ pair is described
by an incoherent mixture resulting from the average over
all possible initial states.
In the same fashion of Eq. (12), we can define the total

quantum state of the tt̄ pair in Π as

ρΠ ≡
ˆ

Π
dMtt̄dΩ p(Mtt̄, k̂)ρ(Mtt̄, k̂). (14)

As a two-qubit quantum state, ρΠ is determined by its
coefficients B±

i , Cij . The motivation for considering ρΠ
is that, as explained in Sec. V, its spin polarizations and
spin correlations can be extracted from measurements of
accessible observables and hence, its quantum tomogra-
phy can be implemented.
For the theoretical computation of ρΠ, we use QCD

perturbation theory at leading-order (LO). Higher-order

•  and  initial states contribute stochastically  
  the  spin state is necessarily mixed  

gg qq̄
⇒ tt̄
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 : the angle between  and the beam line (  )Θ t 0 ≤ Θ ≤ π/2

 : the inv. mass of Mtt̄ tt̄

ρ(Mtt̄, Θ) = ∑
I=gg,qq̄

wI(Mtt̄, Θ) ⋅ ρI(Mtt̄, Θ) wI(Mtt̄, Θ) =
LI(Mtt̄)ÃI(Mtt̄, Θ)

∑J LJ(Mtt̄)ÃJ(Mtt̄, Θ)

 : luminosity function LI(Mtt̄)

 : partonic differential x-section ÃI(Mtt̄, Θ)

  @ LHC　pp → tt̄[Afik, Nova (2021, 2022)]
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FIG. 3. Entanglement as a function of the invariant mass Mtt̄ and the production angle Θ in the tt̄ CM frame. All plots
are symmetric under the transformation Θ → π − Θ. Upper row: Concurrence of the spin density matrix ρI(Mtt̄, k̂) of the
tt̄ pair resulting from the initial state I = qq̄, gg. a) gg → tt̄. Black lines represent the boundaries between separability and
entanglement. b) qq̄ → tt̄. Lower row: tt̄ production at the LHC for pp collisions at

√
s = 13 TeV. Black lines represent the

boundaries between separability and entanglement. c) Concurrence of the spin density matrix ρ(Mtt̄, k̂). d) Differential cross
section dσ

dM
tt̄

dΘ
= 2π sinΘ dσ

dM
tt̄

dΩ
in units of pb/GeV rad.

critical boundaries βc1(Θ),βc2(Θ) between entanglement
and separability

βc1(Θ) =

√

1 + sin2 Θ−
√
2 sinΘ

1 + sin4 Θ
, (22)

βc2(Θ) =
1

(1 + sin4 Θ)
1

4

.

The plot of the concurrence for ρgg(Mtt̄, k̂) is shown
in Fig. 3a. We can understand the presence of entangle-
ment in the lower and upper regions of the plot from the
nature of the tt̄ production through gluon fusion. The
spin polarizations of the gluon pair are allowed to align
in different directions; at threshold (lower region of Fig.

3a), this feature produces a tt̄ pair in a spin-singlet state,

ρgg(2mt, k̂) = |Ψ0〉 〈Ψ0| , |Ψ0〉 =
|↑n̂↓n̂〉 − |↓n̂↑n̂〉√

2
(23)

with |↑n̂〉 , |↓n̂〉 the spin eigenstates along the direction n̂.
A spin-singlet state is maximally entangled, which ex-
plains the strong entanglement signature observed close
to threshold. In the opposite limit of very high energies
and production angles (upper right corner of Fig. 3a),
the produced tt̄ pair is in a spin-triplet pure state,

ρgg(∞, n̂× p̂) = |Ψ∞〉 〈Ψ∞| , |Ψ∞〉 =
|↑n̂↓n̂〉+ |↓n̂↑n̂〉√

2
(24)

also maximally entangled.
On the other hand, for a qq̄ initial state, the state is
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and production angles (upper right corner of Fig. 3a),
the produced tt̄ pair is in a spin-triplet pure state,

ρgg(∞, n̂× p̂) = |Ψ∞〉 〈Ψ∞| , |Ψ∞〉 =
|↑n̂↓n̂〉+ |↓n̂↑n̂〉√

2
(24)

also maximally entangled.
On the other hand, for a qq̄ initial state, the state is
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ious number of bins (from 6 to 12) and various choices of
the regulating parameter k (from 3 to 5). Results are con-
sistent with the iterative method and stable under change
of parameters. When run over 35.9 fb�1 of simulated lumi-
nosity with the same kinematical cuts in [20], our analy-
sis produces statistical uncertainties at the unfolded level
that are compatible with those found by the CMS Collab-
oration.

In order to verify the robustness of our observable def-
inition and reconstruction method against higher-order
QCD e↵ects, we have generated 250 fb�1 of pp ! tt̄ events
at

p
s = 13TeV at Next-to-Leading Order (NLO) in QCD

with MadGraph5 aMC@NLO. Since NLO QCD corrections
to the Cij matrix are known to be small [10], top spin
correlations and finite width e↵ects have been taken into
account using MadSpin [25]. The test statistics, Eqs. (11),
(12), and (18), are then re-evaluated using the event recon-
struction algorithm cited above. Deviations in our region
of interest are seen at the percent level, meaning the al-
gorithm is well–behaved under the introduction of NLO
QCD corrections, and missing higher-order terms in our
LO analysis are sub-leading with respect to statistical un-
certainty in realistic LHC scenarios.

7 Results

As a first step, we consider the observation of entangle-
ment. The two signal regions of interest are i) at threshold
and ii) at large pT . We consider three di↵erent selections,
characterised by di↵erent trade-o↵s between keeping the
largest possible statistics and maximising the correlations.
The three selections are shown explicitly in Figure 5, with
the “strong” selection being completely contained in the
“intermediate” selection, that in turn is contained in the
“weak” selection. Results are collected in Table 1, together
with an estimate of the cross section included in each se-
lection. When considering the LHC Run 2 luminosity of
139 fb�1, the expected statistical significance for the de-
tection of entanglement is of order 5� or more in both
signal regions.

The strategy to observe a violation of BIs is the same
as the one employed for entanglement. In this case, how-
ever, we only consider one signal region, corresponding to
events with mtt̄ of order TeV and ✓ close to ⇡

2 , and move

directly to simulating experiments using 350 fb�1 of lumi-
nosity. We consider three selections, shown explicitly in
Figure 6, with the same “strong”/“intermediate”/“weak”
hierarchy as before. Assuming an average detector e�-
ciency of 12% in successfully reconstructing parton–level
tt̄ events, consistent with the results of our simulations,
our three di↵erent selections should yield approximately
104, 5 · 103, and 3 · 103 events respectively at the end of
Run 3 of the LHC, and a factor of ⇠ 10 more after the
High–Luminosity Run.

Table 2 collects results for the fixed choice of axes of
Eq. (17). We find that the improvement given by the op-
timization is not enough to overcome the increase in sys-
tematic uncertainty noted in Sec. 5, and the overall per-
formance of this method is worse than just using fixed

Fig. 5: Selections in mtt̄ � ✓ space for the detection of
entanglement.

Fig. 6: Selections in mtt̄ � ✓ plane for the observation of a
violation of the CHSH inequality.

axes. Finally, table 3 shows results for the hypothesis test
using �+�0. Figure 8 shows the distribution of �+�0 and
(�+ �0)classical used for the hypothesis test with the weak
selection cuts. We find that LHC Run 2 + Run 3 statis-
tics are not su�cient for a conclusive measure. In order
to provide an estimate for the upcoming High–Luminosity
Run (HL-LHC), we estimate statistical uncertainties run-
ning all our analyses on 3 ab�1 of simulated luminosity.
Results are shown in Figure 7. The statistical significance
for a violation of the CHSH inequality in Eq. (18) be-
comes of order ⇠ 2�, regardless of the specific strategy or
observable used.

8 Loopholes

When performing a Bell experiment the possible existence
of loopholes has to be assessed. First, Bell experiments re-

2SCHSH/2 = 2.20 ± 0.1

|Ckk + Crr | − Cnn = 1.36 ± 0.07  Entanglement⇒ ≫ 5σ> 1

> 2  Bell nonlocality⇒ ∼ 1.8σ

MC-sim: di-leptonic decay,  pp → tt̄ → (bℓ+ν)(b̄ℓ−ν̄)

HL-LHC (L = 3 ab−1) [Severi, Boschi, Maltoni, Sioli (2022)]

selecting events here

MC-sim: semi-leptonic decay,  pp → tt̄ → (bℓν)(bjj)
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FIG. 5. Entanglement indicator as a function of the luminos-
ity. The yellow and blue areas represent the regions for E±2�
and E ± 5�, respectively.

To train the network, we developed a custom loss func-
tion defined as L = Mean squared loss+�1(mb`⌫�mt)2+
�2(m`⌫�mW )2, wheremb`⌫ andm`⌫ represent the invari-
ant masses of the reconstructed top quark and W boson,
and mt, mW are their true masses. The hyperparameters
�1 and �2 were tuned to 0.8 and 0.4, respectively. We
find that the LBN method outperforms the �2 approach
in terms of correct angular distributions.

Once we find the momenta of the hadronic and leptonic
top quarks, we compute the double angular distributions
d2�/d cos ✓i`d cos ✓̄

j
qopt

in the helicity basis as in Eq. (15).
Fig. 4 shows the di↵erential angular distributions with
respect to cos ✓i` cos ✓̄

i
qopt for i = k (left), i = n (mid-

dle), and i = r (right). Parton-level distributions with
the charged lepton and down-type quark (dashed) and
optimal hadronic direction (solid) are shown in black,
while detector-level distributions with the optimal di-
rection (dashed) and unfolded distributions (solid) are
shown in red, respectively. We observe that the profiles
of parton-level distributions are very well retained at each
stage of the analysis (see two solid histograms).

As shown in Fig. 4, the overall angular distributions
do not change significantly in these di↵erent stages of
the simulation. However, the correlation coe�cients are
very sensitive to small e↵ects in the angular distribu-
tions (due to cuts, detector e↵ects, imprecise estimation
of the optimal hadronic direction, etc.), a↵ecting the en-
tanglement and Bell inequalities estimations. To reach a
more robust quantitative conclusion, we perform unfold-
ing with the TSVDUnfold package [67]. It uses Singular
Value Decomposition (SVD) of the response matrix. De-
tails of the unfolding algorithm and adopted parameters
are described in Appendix B.

Indicator Unfolded value Significance (L = 3 ab�1)

B1 0.239± 0.049 4.79

B2 0.238± 0.052 3.77

TABLE I. Unfolded values of B1 and B2 and the corresponding
statistical uncertainties for L = 3 ab�1 at the HL-LHC.

V. RESULTS

To maximize the entanglement probe and CHSH viola-
tion indicator, we focus on the highly relativistic regime
of (mtt̄, cos ✓CM) instead of the entire phase space. In
the case of entanglement, we choose the region defined
by mtt̄ � 800 GeV and | cos ✓CM|  0.6, which leads
to the cross section of 382.8 fb. We use approximately
7.8 M events for training (corresponding to 20 ab�1 lumi-
nosity). The unfolded result for the entanglement probe
E is shown in Fig. 5 as a function of the luminosity. We
have randomly selected the events from the test data set
corresponding to the adopted luminosity. The yellow and
blue regions represent the regions for E ± 2� and E ± 5�,
respectively, where � is the error estimated using TSV-
DUnfold [67]. For a small luminosity in the left plot, one
can see minor statistical fluctuations, which become more
stable as the luminosity increases. Remarkably, Fig. 5
indicates that ATLAS and CMS collaborations have al-
ready accumulated su�cient data to observe entangle-
ment between two top quarks, using the semi-leptonic
top pair final state in the boosted regime.
For the Bell inequalities, we impose a more stringent

phase space restriction, mtt̄ � 1.3 TeV and | cos ✓CM| 
0.2, reducing the cross section down to 8.25 fb. We ran-
domly select the test data corresponding to 3 ab�1 and
use the remaining data (288k events, corresponding to
35 ab�1 luminosity) for training. The unfolded CHSH vi-
olation indicators B1 (left) and B2 (right) are presented
as functions of luminosity in Fig. 6. Due to stronger
cuts, we observe more severe statistical fluctuation for
luminosity below 1 ab�1, becoming stable beyond 1 -
1.5 ab�1. Fig. 6 indicates that the violation of Bell in-
equalities could be probed at 3� level with the luminos-
ity & 1.5 ab�1. 5� observation of the CHSH violation is
very promising with the full luminosity, especially when
results from CMS and ATLAS can be combined.

VI. SUMMARY

We performed a comprehensive analysis to investigate
the feasibility of detecting quantum entanglement and
the violation of Bell inequalities in top quark pair pro-
duction at the LHC, with a focus on the semi-leptonic
top pair final state. This study has significant implica-
tions, as it o↵ers an excellent opportunity to test these
quantum correlations at high-energy scales.

To ensure a high probability of spacelike separation
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FIG. 6. Bell indicators B1 (left panel) and B2 (right panel) as a function of the luminosity. The yellow and blue areas represent
the regions for Bi ± 2� and Bi ± 5� (i = 1, 2), respectively.

between the two top quarks, a large invariant mass of
the tt̄ system is required. Boosted top tagging is very
well motivated for such circumstances. By utilizing the
semi-leptonic top pair final state, we take advantage of
its six times higher event rate compared to the dileptonic
top pair final state, explored in previous studies [18–21].

We showed that the final state with lepton and op-
timal hadronic direction, in the semi-leptonic channel,
can e↵ectively probe the top quark pair spin density ma-
trix, prompting access to the entanglement probe and the
CHSH violation indicator. For more realistic simulation,
we have included parton-shower, hadronization and de-
tector e↵ects. We have shown that HEPTopTagger and
Lorentz Boost Network provide excellent reconstruction
of the hadronic and leptonic top quarks.

Our unfolded angular distributions lead to robust re-
sults in observing entanglement and violation of Bell in-
equalities. They indicate that the detection of entangle-
ment is straightforward, in agreement with existing stud-
ies in the literature that use dileptonic top pairs. ATLAS
and CMS collaborations should be able to observe entan-
glement with their current data sets. On the other hand,
it is more challenging to probe the violation of Bell in-
equalities. This is expected, as this quantum correlation
is more restrictive than entanglement. However, we ob-
tain that such an observation is possible at approximately
4� levels at the HL-LHC (see Table I). These results can
be statistically boosted even further by a combination of
ATLAS and CMS datasets and accounting as well for the
dileptonic top quark pair final state.
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Appendix A: Spacelike Separation

To make sure that the top quarks are spacelike sepa-
rated when the spin information is passed on to the decay
products, they have to be relatively apart from one an-
other so that no information can be passed in between
when they decay [20]. In the center of mass frame of
tt̄, the distance between their decay location is given by
(t1 + t2)v, where t1 and t2 are the decay times of the top
and anti-top, v is the magnitude of their velocity. The
maximum distance that information can travel between
their decay time is given by |t1 � t2|c, where c is the
speed of the light. Thus, spacelike separation requires
the following inequality:

|t1 � t2|
t1 + t2

<
v

c
=

s

1� 4m2
t

m2
tt̄

. (A1)

Counting the fraction of events where this inequality
holds tells us how often the tops are spacelike separated.

Appendix B: Unfolding Algorithm

We start the unfolding procedure with the MC truth
distribution xinit and the corresponding MC measured
distribution binit. The response matrix Aij is the prob-
ability that an event generated in the true bin j will be
found in the measured bin i. The response matrix is then
used to solve the system Ax = b, where b is the measured
distribution (the distribution we want to unfold). Before

[Dong, Goncalves, Kong, Navarro (2023)]
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Recent Related Measurement

Recently, D was measured with
no selection on Mtt̄ by the CMS
collaboration.

Results:
D = �0.237 ± 0.011 > �1/3;
�D/D = 4.6%.

No evidence of quantum
entanglement.
) We need a dedicated

analysis!
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Entanglement in CMS

D ≡
Tr[C]

3
< −

1
3

Recently,  has been measure by CMS

in di-leptonic  

D
pp → tt̄

entanglement

1
σ

dσ
d cos φ

=
1−D cos φ

2

D = − 0.237 ± 0.011 > −
1
3

CMS result:

entanglement is not detected

[Phys. Rev. D 100, 072002]

To see the entanglement, selecting certain kinematical regions is crucial. 

A dedicated analysis is needed.



  　H → WW*, ZZ*
• Conceptually less clear since one particle is off-shell.   

[Barr (2022)]

[Aguilar-Saavedra ,Bernal, 
Casas, Moreno (2022)]

[Aguilar-Saavedra (2023)]

[Fabbrichesi, Floreanini, 
Gabrielli, Marzola (2023)]

|ΨVV*⟩ ≃ | + − ⟩ − β |00⟩ + | − + ⟩

β = 1 +
m2

H − (1 + f )2m2
V

2fm2
V

∼ 1

• two qutrits (rather than qubits)  

• the final state is pure:

 virtual particle with mass shifted:      ⇒ mV* = f ⋅ mV (0 < f < 1)

 (almost) maximally entangled ⇒
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{



[Collins Gisin Linden Massar Popescu (2002)]

I3 ≤

*)   is the probability that  and  are differ by  mod P(Ai = Bj + k) Ai Bj k 3

CGLMP function

CGLMP Qutrit inequality

P(A1 = B1) + P(B1 = A2 + 1) + P(A2 = B2) + P(B2 = A1)

−P(A1 = B1 − 1) − P(B1 = A2) − P(A2 = B2 − 1) − P(B2 = A1 − 1)

I3 ≡
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1 + 11/3 ≃ 2.9149

Local theories

Quantum Mechanics



• It is convenient to reconstruct the density matrix from the kinematics, then 
analysis entanglement and nonlocality

Quantum state tomography

1
9

(1 ⊗ 1) +
1
3

8

∑
i=1

ai (λi ⊗ 1) +
1
3

8

∑
j=1

bj (1 ⊗ λj) +
8

∑
i, j=1

cij (λi ⊗ λj)ρ =

• density matrix is 9 x 9 Hermitian matrix with unit trace.  It can be expanded by 
two sets of Gell-Mann matrices and  real parameters  8 + 8 + 64 = 80 (92 − 1)

• real parameters  can be reconstructed from the directions of two charged 
leptons,  and , using the eight Wigner P functions,  

ai, bj, cij
n1 n2 ΦP

i

[Ashby-Pickering, Barr, Wierzchucka (2022)]

ai =
1
2 ⟨ΦP

i n1⟩av
bi =

1
2 ⟨ΦP

i n2⟩av
cij =

1
4 ⟨(ΦP

i n1)(ΦP
j n2)⟩av



Figure 2: Plots showing the form of the eight Wigner P symbols �P+

i
corresponding to

each of the Gell-Mann operators �
(3)

i
. These functions are used in recovering the density

matrix parameters from the lepton angular probability distribution according to (4.16).

where the elements of the real symmetric matrix M (which is the same for the ± cases)

are given by the inner products

Mij =
d

2

D
�Q±
i

�Q±
j

E
(4.13)

=
d

2

1

4⇡

Z
d⌦n̂�

Q±
i

(n̂)�Q±
j

(n̂) (4.14)

of the Q symbols. The corresponding �P± for d = 3 are

�P±
1

=
p

2(5 cos ✓ ± 1) sin ✓ cos� �P±
5

= 5 sin2 ✓ sin 2�

�P±
2

=
p

2(5 cos ✓ ± 1) sin ✓ sin� �P±
6

=
p

2(±1� 5 cos ✓) sin ✓ cos�

�P±
3

= 1

4
(±4 cos ✓ + 15 cos 2✓ + 5) �P±

7
=

p

2(±1� 5 cos ✓) sin ✓ sin�

�P±
4

= 5 sin2 ✓ cos 2� �P±
8

= 1

4
p
3
(±12 cos ✓ � 15 cos 2✓ � 5) . (4.15)

We observe that the Wigner P and Q symbols for a particular �i are not generally propor-

tional to one another. For illustrative purposes the �P+

j
are shown graphically in Figure 2.

Using these Wigner P symbols, together with the orthogonality relationships (4.10)

and (4.11), and the probability density function (4.6), each of the eight Gell-Mann density

matrix parameters aj for any W
+ or W

� boson may separately be extracted from the

lepton angular emission data. The result is the remarkably simple expression

aj =
1

2

Z
d⌦n̂ p(`

±
n̂ ; ⇢)�

P±
j

. (4.16)

With this result one may determine the eight real parameters ai of ⇢ from data. The

experimental measurement âi of the density matrix parameter ai is obtained by a simple

– 11 –

[Ashby-Pickering, Barr, Wierzchucka (2022)]• Wigner functions for W± → ℓ±ν

To get back to the density matrix

Wigner P functions for the eight Gell-Mann matrices
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In addition, one has to remove the reducible background events from tt̄ and Wt production. The
irreducible background for the H ! Z`+`� signal is rather small and dominated by the electroweak
process pp ! ZZ/Z� ! 4`, which is about 4 times smaller at the Higgs peak [44]. We can therefore
neglect all backgrounds in our assessment of the significance.

We run 1000 pseudo experiments as we vary the invariant mass of the o↵-shell gauge boson and
compute the observable I3. Fig. 6 and Fig. 7 show the distributions which are obtained for, respectively,
LHC run 2 and Hi-Lumi. The distributions are skewed because the observable is computed near its
maximum value and the random variation can only reduce this value.

Fig. 6 shows that, at the LHC run 2, the significance for rejecting the null hypothesis I3  2 is 1 for
the WW ⇤ case and 1.3 for the ZZ⇤ case. Fig. 7 shows that, at the LHC Hi-Lumi, the significance for
rejecting the null hypothesis I3  2 remains 1 for the WW ⇤ case, since the uncertainty is dominated
by the statistical error, while it reaches 5.6 for the ZZ⇤ case. These significances are likely to diminish
in a more complete analysis based on a full simulation.

Figure 6: Distribution of the events at the LHC run 2 for the H ! W+`�⌫̄` and H ! Z`+`� processes.The
set of events for WW ⇤ has mean value I3 = 2.4, that for ZZ⇤ has mean value I3 = 2.5. The threshold value of
2 for Bell inequality violation is shown as a dashed red line.

Figure 7: Distribution of the events at the LHC Hi-Lumi for the H ! W+`�⌫̄` and H ! Z`+`� processes.
The set of events for WW ⇤ has mean value I3 = 2.5, that for ZZ⇤ has mean value I3 = 2.9. The threshold
value of 2 for Bell inequality violation is shown as a dashed red line.

Our results confirm the numerical simulations presented in [5] for theH ! WW ⇤ process and in [12]
for the H ! ZZ⇤ case. These works estimate the uncertainties from a parton-level reconstruction of

20

range of the kinematic variables. The bin in which I3 > 2 is indicated by the hatched area in first
plot of Fig. 10. The matrices maximizing the Bell observable are given by
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with a precision of 1% with respect to the numerical solutions we found. Accordingly, unitarity is
satisfied barring O(10�2) terms. These expressions might be useful in a future simulation of the
process.

Figure 10: The observables I3 (left plot) and C2 (right plot) for the process p p ! W+W� as functions of
the invariant mass and scattering angle. The hatched area in the plot on the left represents the bin used as
reference for our estimate of the significance.

The observable C2 follows roughly the pattern of I3 and reaches the largest values in the upper-left
quadrant, thus witnessing the presence of states more entangled than in the rest of the kinematic space.
This feature can be made manifest by considering the density matrix of the process. For instance,
at mWW = 900 GeV and cos⇥ = 0, the polarization density matrix for the W+W� states can be
approximated up to terms O(10�3) by the following combination of pure state density matrices

⇢ = ↵ | +�ih +�|+ � | +� 0ih +� 0|+ � |00ih00|+ � | 0�ih 0�| , (4.17)

with decreasing weights: ↵ ' 0.72, � ' 0.18, � ' 0.07 and � ' 0.02; the normalization condition

25

where

fZZ =
8↵2⇡2Nc

DZZc4Ws4W
, and DZZ = 1 + �4

Z + 2�2
Z(1� 2c2⇥) , (4.26)

with �Z =
q
1� 4M2

Z
/m2

ZZ . The angle ⇥ is here defined as the angle between the anti-quark momen-

tum and k1 in the CM frame. The orientation of the latter coincides with that of the k̂ unit vector of
the basis in Eq. (2.26).

Figure 12: The observables I3 (left plot) and C2 (right plot) for the process p p ! ZZ as functions of the
invariant mass and scattering angle in the CM frame. The hatched area in the plot on the left indicates the bin
in which the observable is to be evaluated.

The Eq. (4.24) makes it possible through Eq. (2.38) to compute the correlation coe�cients f̃a, g̃a,
and h̃ab (given in Appendix C) of the density matrix for the process at hand and consequently, the
value of the operators I3 and C2.

In Fig. 12 we present our results for the entanglement observables. The violation of the Bell
inequalities takes place only in a limited range of the kinematic variables. The bin in which I3 > 2 is
shown as a hatched area in the left panel.

The observable C2 follows the pattern of I3—as it does in the case of the W+W� final states—and
reaches the largest values in the upper-left quadrant. In this region it witnesses the presence of states
more entangled than in the rest of the kinematic space.

4.2.1 Events and sensitivity

The number of expected events at the LHC is given in Table 3. As before, the relevant cross sec-
tions were computed with MADGRAPH5 [40] at the LO and then corrected by the -factor given at
the NNLO [48]. Only fully leptonic decays can be used, as explained in Section 1. We reduce the
number of events thus found by the e�ciency in the identification of the final leptons—which we take
conservatively to be 70% for each of the identified leptons [42].

Though there are irreducible background events from the H ! ZZ decay, they are negligible in
the kinematic bin where the observables are to be estimated.
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pp → W+W−

H → ZZ*H → WW*

pp → ZZ

CGLMP function  in optimal measurement axesI3
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Figure 3: Concurrence averaged over solid angle as a
function of the top quark velocity � for c(8)tq (top) and

ctG (bottom).

matrix. Hence, in the case of pp collisions displayed in
the left panel of Fig. 3, we can observe an effect of the
EFT already at threshold, even at the linear level. This
also holds true for four-fermion operators, such as for
instance O(8)

tq shown in the upper panel.

IV. QUANTUM STATES IN THE SMEFT

In this section we consider the effects of new physics
on the quantum state of the tt̄ pair in different regions
of the phase space. Observables directly related to the
quantum state probe different and complementary direc-
tions in the parameter space compared to the scattering
amplitude. In the following, we discuss in particular two
phase space regions of interest, i.e., the production of top
quarks at threshold, characterised by high statistics, and
the production at high pT in the central region, where
top-quark mass effects become negligible.

A. Threshold region

In the SM, the gg initiated channel at threshold is
characterised by a pure maximally-entangled state as
in Eq. (13), with the top quark spins forming a singlet
state of spin 0. The presence of new physics effects can
potentially change the picture. In particular, we find that
the chromo-magnetic operator OtG and the triple-gluon
operator OG change the quantum state, which is then
not a pure state anymore. As a matter of fact, these op-
erators induce the presence of a triplet state of spin 1,
and the density matrix is therefore described by a mixed

state:

⇢EFT
gg (0, z) = pgg| +iph +|p + (1 � pgg)| �iph �|p .

(18)

Note that here the spins are defined with respect to the
beam direction p. The probability of being in a triplet
state is given by pgg = 72m2

t (3
p

2mt cG + v ctG)2/7⇤4 ,
which shows that no linear effects are present and only
the squares contribute. In particular, we find a flat di-
rection for a specific combination of cG and ctG, while
the operator O'G does not affect the quantum state at
threshold.

For the qq̄ channel, in the SM the spin density matrix
is characterised by a mixed separable state:

⇢SMqq̄ (0, z) =
1

2
|""ip h""|p +

1

2
|##ip h##|p . (19)

Specifically, the probability of having both, top and anti-
top quark, with spin up (down) is 1/2 in the SM. The
EFT effects in this case do not change the structure of
the state, but the eigenvalues of the density matrix are
affected and a preference for one spin direction is in gen-
eral observed:

⇢EFT
qq̄ (0, z) = pqq̄ |""ip h""|p +(1�pqq̄) |##ip h##|p , (20)

where pqq̄ = 1
2 � 4

c(8),uV A
⇤2 + O(1/⇤4), which also includes

corrections at linear order in the Wilson coefficients [41].
Here, c(8),uV A = (�c(8,1)Qq � c(8,3)Qq + c(8)tu � c(8)tq + c(8)Qu)/4.
The spoiling of the symmetry is due to P-violating in-
teractions induced by dimension-six operators but is also
present if electroweak corrections are taken into account.

In Fig. 4 we show contour plots of the probabilities pgg
and pqq̄. In the case of the quark initiated channel, we
choose O(8)

tu and O(8,3)
Qq as a pair of representative four-

fermion operators. In addition to the probabilities, we
also plot contours of the relative EFT effects on the scat-
tering amplitude, in order to highlight the complemen-
tarity of the two observables, which are clearly probing
different directions in the parameter space.

B. Central high-pT region

The other interesting region to consider is the one char-
acterised by high pT . In the following, we set ✓ = ⇡/2
(z = 0) and look at the probability for the top quark pair
to be in a triplet state

p + = h +|n ⇢ | +in , (21)

which, in particular, is the quantum state for the SM in
the limit of � ! 1, both in the gg and the qq̄ initiated
channels. However, as already discussed above, the limit
� ! 1 is ill-defined in the presence of higher dimensional
operators. We therefore study the probability as a func-
tion of the invariant mass ŝ of the top quark pair (or

(a)

(b) (c)

(d) (e)

Figure 1: Change from the SM value for spin observables for the operators OtG (1a),
O

(8,3)
Qq (1b), O(1,3)

Qq (1c), O(8,1)
Qq (1d), O(1,1)

Qq (1e), inclusive in tt̄ phase space. Dashed lines
indicate results at LO, continuous lines indicate NLO. The shaded region around each curve
represents the combination of scale and MC uncertainty. The MC uncertainty is always
sub-leading compared to scale variation. Only curves that deviate appreciably from zero
are shown.
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[2]. We will assume the flavor symmetry as in [29]:

U(2)Q ⇥ U(2)u ⇥ U(3)d, (2.1)

that implies new physics couples predominantly to top quarks. This is rooted on the unusu-
ally large value of the SM top Yukawa coupling yt ⇡ 0.993, signaling a special relationship
between the two heaviest SM particles, and hinting at the presence of new physics close to
the electroweak scale.

We focus on operators containing at least one top quark field, assuming other operators
are well enough constrained from measurements not involving tops. All such operators are
considered, in a systematic approach, with the exception of those that enter top production
only in virtual corrections, and those only entering in highly suppressed contributions (e.g.
bb̄ ! tt̄).

2.1 Two-fermion operators

One can write down three dimension-six operators modifying the top-gluon interaction
and thus tt̄ production. To highlight the chiral properties of the induced tt̄g vertex these
can be written as:

Ogt = t TA�
µ
D

⌫
tG

A
µ⌫ , (2.2)

OgQ = QTA�
µ
D

⌫
QG

A
µ⌫ , (2.3)

OtG = gS QTA'̃�
µ⌫
tG

A
µ⌫ = gS QuG,33. (2.4)

The second equality is in terms of the Warsaw basis [30]. Once the additional symmetry
(2.1) and the EOM are enforced, only OtG and O

†
tG survive, as standard manipulations

yield:

Ogt +O
†
gt = gs

⇣
four-quarks

⌘
(2.5)

OgQ +O
†
gQ = gs

⇣
four-quarks

⌘
(2.6)

Ogt �O
†
gt = O

†
gQ �OgQ =

yt

gS
(OtG �O

†
tG) (2.7)

This shows that Ogt and OgQ reduce to four-fermion operators; more specifically, they
reduce to operators composed of two light quarks and two tops, that will be considered
in the following, and to operators with four top quark fields, that we will neglect due to
their large suppression in the process at hand. The only surviving operator, OtG, has the
effect of deforming the top quark color charge distribution, producing a chromo-magnetic
and chromo-electric dipole moment proportional to <(ctG) and =(ctG) respectively.

On top of the two-fermion operators listed above, there are five operators involving two

– 4 –

fermion fields and electroweak gauge bosons that are in principle relevant for top physics,

Q'u, 33 = i('† $
Dµ ')(t�µt), (2.8)

Q
(1)
'q, 33 = i('† $

Dµ ')(Q�
µ
Q), (2.9)

Q
(3)
'q, 33 = i('† $

Dµ �I')(Q�
µ
�
I
Q), (2.10)

QuB, 33 = (Q�
µ⌫
t)'̃Bµ⌫ , (2.11)

QuW, 33 = (Q�
µ⌫
�It)'̃W

I
µ⌫ . (2.12)

Both at O(c/⇤2) and O(c2/⇤4), these operators only enter electroweak top production,
and since this process is heavily suppressed with respect to QCD production, their effect
will be neglected. An NLO computation including both QCD and EW corrections would
be required to fully take into account these contributions.

We note that Q
(3)
'q, 33 and QuW, 33 also induce a modified tWb vertex. Since spin mea-

surements involve both the production and the decay of the particle at hand, operators that
modify the decay of tops enter our study. In the following we will show that their actual
effect on the spin observables we consider is negligible.

2.2 Four-fermion operators

There are seven independent dimension-6 operators mediating tt production by qq

annihilation that result in a color-octet final state. These operators are constructed with a
combination of four quark fields, two light (u, d, c, s) and two tops. Following the LHC Top
WG notation and convention [2], we express SMEFT operators in a basis that highlights
their chiral structure:

O
8
tu =

P2
f=1(t�µT

A
t)(uf�

µ
TAuf) =

P2
f=1�

1
6Quu,ff33 +

1
2Quu,3ff3, (2.13)

O
8
td =

P3
f=1(t�µTAt)(df�

µ
T
A
df) =

P3
f=1Q

(8)
ud,33ff, (2.14)

O
8
tq =

P2
f=1(qf�µTAqf)(t�µTA

t) =
P2

f=1Q
(8)
qu,ff33, (2.15)

O
8
Qu =

P2
f=1(Q�µTAQ)(uf�

µ
T
A
uf) =

P2
f=1Q

(8)
qu,33ff, (2.16)

O
8
Qd =

P3
f=1(Q�µTAQ)(df�

µ
T
A
df) =

P3
f=1Q

(8)
qd,33ff, (2.17)

O
1,8
Qq =

P2
f=1(Q�µT

A
Q)(qf�

µ
TAqf) =

P2
f=1

1
4Q

(1)
qq,3ff3 �

1
6Q

(1)
qq,33ff + 1

4Q
(3)
qq,3ff3, (2.18)

O
3,8
Qq =

P2
f=1(Q�µT

A
�IQ)(qf�

µ
TA�

I
qf) =

P2
f=1

3
4Q

(1)
qq,3ff3 �

1
6Q

(3)
qq,33ff �

1
4Q

(3)
qq,3ff3. (2.19)
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– the SM cross sections �
(0)
S and �

(0) in (3.13) are replaced by their most accurate
values, EFT terms are not modified, and then the ratio S is taken;

– numerator and denominator of (3.13) are globally rescaled by the SM K-factors KS =

�
(0)
S,accurate/�

(0)
S and K = �

(0)
accurate/�

(0), then and the ratio S is taken;

– the ratio (3.13) is series expanded, the first term �
(0)
S /�

(0) is replaced with the accurate
value, other terms in the series are not modified – even if they contain �

(0)
S or �

(0).

It is not clear which one, if any, of the prescriptions outlined above entails the best
physical meaning, and the spread in results obtained by implementing accurate SM predic-
tions in different ways may be considered to be a theoretical uncertainty. In this work we
will report all six cross sections that enter (3.13), leaving the possibility open for arbitrary
implementations of accurate SM calculations.

Quantum entanglement.
As discussed in the introduction, and in more detail in Refs. [15, 16, 18, 20], top spin

correlations can signal the presence of quantum entanglement between tops. A calculation
shows that, in the case of tt̄, entanglement is signaled by the condition:

� = |Ckk + Crr|� Cnn � 1 > 0. (3.15)

Inequality (3.15) is general, and independent of the possible presence of new physics. We
also note that the concurrence of the tt̄ spin quantum state (3.1) is given by:

C[⇢] =

(
�/2, � > 0

0 �  0
(3.16)

The absolute value in the definition of � is non-trivial, as, already in the SM, at tt̄ threshold
Ckk + Crr < 0, so � = �TrC � 1, while at large top pT , Ckk + Crr > 0, so � becomes
Ckk + Crr � Cnn � 1. The use of TrC to detect entanglement at tt̄ threshold has been
the topic of extended studies [15, 16]; in fact, as shown in Ref. [17], � can be measured
directly using dedicated angular observables, regardless of the sign of the absolute value.
To appreciate directly the effect of SMEFT operators on the amount of spin entanglement,
in the following we will consider:

�± = ±(Ckk + Crr)� Cnn � 1 =
±(�Ckk + �Crr)� �Cnn � �

�
(3.17)

as additional observables, as an extension to those appearing in (3.1). We note that �� is
a well known top spin observable, usually called D ⌘ (�� + 1)/3.

4 Computation Setup

Since the reconstruction of a spin quantum state requires the analysis of decay products,
the analysis of top spin polarization and correlations at NLO would require the generation
of events of the form:

p p ! b b̄ `
+
`
�
⌫ ⌫̄ (4.1)
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[Severi Vryonidou (2023)][Aoude Madge Maltoni Mantani (2022)]

: top velocity in the  rest frameβ t t̄

β

Effect of BSM  pp → tt̄



Effect of BSM  H → τ+τ−
[Altakach, Lamba, Maltoni, Mawatari, Sakurai (2023)]

• Under CP, the spin correlation matrix transforms:  


• This can be used for a model-independent test of CP violation.  We define:

C CP CT

A ≡ (Crn − Cnr)2 + (Cnk − Ckn)2 + (Ckr − Crk)2 ≥ 0

Cij =
cos 2δ sin 2δ 0

−sin 2δ cos 2δ 0
0 0 −1

ℒint ∝ H ψ̄τ(cos δ+iγ5 sin δ) ψτ A(δ) = 4 sin2 2δ

• CP-violating Yukawa interaction gives

• From MC-sim (assuming the SM, i.e. ), we find δ = 0

A = 0.112 ± 0.085 (FCCee)

|δ | < 6.4o (FCCee)



Summary
• Quantum property measurements (entanglement and Bell inequality) at LHC and 

future lepton colliders have recently been studied.


• Such tests are important to look for beyond QM at high energies but it is also 
sensitive to BSM in the QFT framework.  


• Promising processes: 


• Experiments by ATLAS and CMS a bit behind the theoretical studies

pp → tt̄, VV, H → VV*, τ+τ−

Future prospects 

• Feasibility studies for   including backgroundpp → VV, H → VV*

•   at the LHC, tau decay modes other than pp → H(Z) → τ+τ− τ → πν

• Entanglement in 3 parties?  pp → tt̄W

• Testing not only the quantum state but also quantum process (CPTP maps).
See [Eckstein, Horodecki 2103.12000] for details



Grieg

Universe & Collider

Understanding the Early Universe: 
interplay of theory and collider experiments 

Joint research project between the University of Warsaw & University of Bergen

Supersymmetric	Twin	Higgs	

models	and	Dark	Ma9er	

Marcin	Badziak	

	

University	of	Warsaw	

	Based	on:	

MB,	Keisuke	Harigaya:	JHEP	1706	(2017)	065	[1703.02122]	
JHEP	1710	(2017)	109	[1707.09071],	PRL	120	(2018)	211803	[1711.11040]	
MB,	Keisuke	Harigaya,	Giovanni	Grilli	di	Cortona,	1911.03481 		

The research leading to the results presented in this talk has received 
funding from the Norwegian Financial Mechanism for years 2014-2021, 
grant nr 2019/34/H/ST2/00707

44




