Solving the Goldstone boson catastrophe and two-loop Higgs masses in non-supersymmetric models

Johannes BRAATHEN in collaboration with Mark GOODSELL and Florian STAUB based on *arXiv:1609.06977* and *arXiv:1705.xxxxx*

Laboratoire de Physique Théorique et Hautes Énergies

20th Planck Conference May 25, 2017

The context

Higgs mass m_h as a probe for New Physics

- No direct sign of BSM Physics since Higgs discovery in 2012
- m_h sensitive to New Physics via
 - $\rightarrow\,$ tree-level value (predicted in some models eg. SUSY)
 - $\rightarrow\,$ effect of heavy new particles in loops, with large couplings as well (eg. stops)
- Computations performed with effective potential and/or diagrammatic techniques

State of the art

- SM: V_{eff} (relates $m_h^2 \leftrightarrow \lambda$) is known to full 2-loop (*Ford, Jack and Jones '92*) + leading QCD 3-loop and 4-loop (*Martin '13, Martin '15*)
- Some results for m_h^2 in specific SUSY theories: **MSSM** (leading SQCD 3-loop order); **NMSSM** (2-loop); **Dirac Gaugino models** (leading SQCD 2-loop: *J.B., Goodsell, Slavich* '16)
- Generic theories: $V_{\rm eff}$ computed to 2-loop (*Martin '01*), 2-loop tadpoles and scalar masses (in gaugeless limit) implemented in SARAH (*Goodsell, Nickel, Staub '15*)

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののの

The Goldstone Boson Catastrophe

- Beyond one loop, $V_{\rm eff}$ only computed in Landau gauge \Rightarrow Goldstones are treated as actual massless bosons *i.e.* $(m_G^2)^{\rm OS} = 0$
- *Remark* Having Goldstones appearing in calculation not related to global/gauged symmetry, but to the gauge choice
 - By choice (for simplicity) V_{eff} is computed with running masses:

$$(m_G^2)^{\rm run.} = (m_G^2)^{\rm OS} - \Pi_G((m_G^2)^{\rm OS}) = -\Pi_G(0),$$

where Π_G is the Goldstone self-energy

•
$$V_{\text{eff}}$$
 contains logs of $(m_G^2)^{\text{run}}$, eg
 $V_{\text{SM}}^{(2)} \supset -3\lambda^2 v^2 I(m_h^2, m_G^2, m_G^2) \underset{m_G^2 \to 0}{=} -6\lambda^2 v^2 A(m_G^2) \frac{A(m_h^2)}{m_h^2}$

$$\Rightarrow \frac{\partial V_{\text{SM}}^{(2)}}{\partial v} \supset -12\lambda^3 v^3 \log \frac{m_G^2}{Q^2} \frac{A(m_h^2)}{m_h^2}$$
 $I(m_L^2, m_G^2, m_G^2)$

with $A(x) = x(\log(x/Q^2) - 1)$.

- Under RG flow, $(m_G^2)^{\rm run.}$ may
 - ightarrow become 0 \Rightarrow infrared divergence in $V_{
 m eff}$ and/or its derivatives
 - $\rightarrow\,$ change sign $\Rightarrow\,$ imaginary part in $V_{\rm eff}$ and its derivatives

\equiv Goldstone boson catastrophe

First approaches to the GBC

(cf. talk by Florian Staub this morning)

By hand

- ▷ if $m_G^2 < 0$, drop the imaginary part of V_{eff}
- $\triangleright\,$ tune the renormalisation scale Q to ensure $m_G^2>0$ (and even m_G^2 not too small)

 \Rightarrow may be impossible to achieve and is completely ad hoc

In automated codes (SARAH)

 $\triangleright\,$ For SUSY theories only: rely on the gauge-coupling dependent part of $V^{(0)}$

$$\rightarrow$$
 minimize full $V_{\text{eff}} = V^{(0)} + \frac{1}{16\pi^2}V^{(1)} + \frac{1}{(16\pi^2)^2}V^{(2)}|_{\text{gaugeless}}$

- \rightarrow compute tree-level masses with $V^{(0)}|_{\text{gaugeless}}$ (= turn off the *D*-term potential)
- ightarrow yields a fake Goldstone mass of order $\mathcal{O}(m_{EW})$ \Rightarrow no GBC

 \rightarrow wrong mass for Goldstones hence wrong contribution to m_h

- \triangleright Add a regulator mass $m^2_{\rm reg.}=RQ^2$ for massless particles \rightarrow unwanted new dependence on R, changes the relative size of Goldstone contributions
- + both methods spoil gauge invariance, etc.
- \Rightarrow especially wrong when the scalars in particular the pseudo-scalars give large contributions to the Higgs mass $\longrightarrow \underline{\text{non-SUSY models}}$

Resummation of the Goldstone contribution

SM: Martin 1406.2355; Ellias-Miro, Espinosa, Konstandin 1406.2652. MSSM: Kumar, Martin 1605.02059. Generic th: JB, Goodsell 1609.06977.

- Power counting \rightarrow most divergent contribution to $V_{\rm eff}$ at ℓ -loop = ring of $\ell 1$ Goldstone propagators and $\ell 1$ insertions of 1PI subdiagrams Π_g involving **only** heavy particles
- Π_g obtained from $\Pi_G,$ Goldstone self-energy, by removing "soft" Goldstone terms
- Resumming Goldstone rings \Leftrightarrow shifting the Goldstone tree-level mass by Π_g in the 1-loop Goldstone term

[Adapted from arXiv:1406.2652]

$$\hat{V}_{\rm eff} = V_{\rm eff} + \frac{1}{16\pi^2} \bigg[f(m_G^2 + \Pi_g) - \sum_{n=0}^{\ell-1} \frac{(\Pi_g)^n}{n!} \left(\frac{d}{dm_G^2} \right)^n f(m_G^2) \bigg]$$

 \rightarrow $\ell\text{-loop}$ resummed $V_{\rm eff}\text{,}$ free of leading Goldstone boson catastrophe

A word on the extension of the resummation procedure for generic theories

Additional difficulties !

- several Goldstones
- ❀ scalar mixing

 \Rightarrow Single out the Goldstones (index G, G', ...) and express their masses

$$m_G^2 = -\sum_i \frac{1}{v_i} (\tilde{R}_{iG})^2 \left. \frac{\partial (V_{\text{eff}} - V^{(0)})}{\partial \phi_i^0} \right|_{\phi_i^0 = 0} = \mathcal{O}(1\text{-loop})$$

 $(\tilde{R}_{ij}$: rotation matrices in tree-level minimum of V_{eff})

Issues with the resummation

taking derivatives of \hat{V}_{eff} can be very difficult (involves derivatives of the rotation matrices, etc.) \rightarrow in practice resummation was **only** used to find

the tadpole equations.

the choice of "soft" Goldstone terms to remove from Π_G to find Π_g may (conceptual)

be ambiguous and it is difficult to justify which terms to keep

Our solution: setting the Goldstone boson on-shell arXiv:1609.06977

Adopt an on-shell scheme for the Goldstone(s)

- Replace $(m_G^2)^{
m run.}$ by $(m_G^2)^{
m OS}(=0)$ and $\Pi_G(0)$

• This can be done **directly** in the tadpole equations or mass diagrams!

Canceling the IR divergences in the tadpole equations $_{arXiv:1609.06977}$

2-loop tadpole diagrams involving scalars only:

The GBC also appears in diagrams with scalars and fermions or gauge bosons, and is cured with the same procedure \rightarrow we present the purely scalar case.

Canceling the IR divergences in the tadpole equations arXiv:1609.06977

2-loop tadpole diagrams involving scalars only:

Some diagrams of T_{SS} and T_{SSSS} topologies diverge for $m_G^2
ightarrow 0$

Canceling the IR divergences in the tadpole equations $_{\rm arXiv:1609.06977}$

2-loop divergences in tadpole diagrams (involving scalars only) ...

... rewritten as a one-loop diagram with insertion of $\Pi_G(m_G^2)$

Canceling the IR divergences in the tadpole equations arXiv:1609.06977

What happens when setting the Goldstone on-shell?

• Contribution of the Goldstone(s) to the 1-loop tadpole:

$$T_S \supset -- \int_{G} A(m_G^2) = m_G^2 \left(\log \frac{m_G^2}{Q^2} - 1 \right)$$

• At 1-loop order the scalar-only diagrams in $\Pi_G(0)$ are

$$(m_G^2)^{\text{run.}} = \underbrace{(m_G^2)^{\text{OS}}}_{=0} - \overset{p^2 = 0}{\overset{r}{c}} - \overset{p^2 = 0}{\overset{r}{c}} - \overset{p^2 = 0}{\overset{r}{c}} + \cdots$$

• Shifting m_G^2 by a 1-loop quantity, $\Pi_G(0)$, in the 1-loop tadpole

 \Rightarrow 2-loop shift !

$$A((m_G^2)^{\text{run.}}) = \underbrace{A(0)}_{=0} - \underbrace{\log \frac{m_G^2}{Q^2}}_{1\text{-loop}} \underbrace{\Pi_G(0)}_{1\text{-loop}}$$

Canceling the IR divergences in the tadpole equations $_{\rm arXiv:1609.06977}$

 \blacktriangleright shifting the Goldstone term in the 1-loop tadpole T_S

 \Rightarrow the divergent parts from the diagrams and the shift will cancel out!

Johannes BRAATHEN (1	LPTHE)
----------------------	--------

May 25, 2017 12 / 24

- > Earlier literature: inclusion of momentum cures all the IR divergences
- ▷ We found
 - \Rightarrow true at 1-loop order

- > Earlier literature: inclusion of momentum cures all the IR divergences
- ▷ We found
 - \Rightarrow true at 1-loop order

- > Earlier literature: inclusion of momentum cures all the IR divergences
- ▷ We found
 - \Rightarrow true at 1-loop order

- > Earlier literature: inclusion of momentum cures all the IR divergences
- \triangleright We found
 - \Rightarrow true at 1-loop order

Rewrite the divergent two-loop mass diagrams

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Setting the Goldstone(s) on-shell in mass diagrams

• Goldstone contributions to the 1-loop scalar self-energy

• Again, shifting the Goldstone mass to on-shell scheme gives

$$(m_G^2)^{\text{run.}} = - \begin{array}{c} p^2 = 0 \\ \overrightarrow{\mathbf{G}} \end{array} \begin{array}{c} p^2 = 0 \\ \overrightarrow{\mathbf{G}} \end{array} \begin{array}{c} p^2 = 0 \\ \overrightarrow{\mathbf{G}} \end{array} \begin{array}{c} \overrightarrow{\mathbf{G}} + \cdots \end{array}$$

ightarrow 2-loop shift to the mass diagrams

$$\delta\Pi_{ij}^{(1)}(s) = - \xrightarrow[i]{}_{i} \xrightarrow[i]{}_{i} \xrightarrow{\mathbf{G}} \xrightarrow$$

 \longrightarrow cancels the divergence in the V, X, Y, W mass diagrams !

Automated two-loop mass computations free of the Goldstone boson catastrophe

- On-shell Goldstones \Rightarrow regularised loop functions, free of GBC
- Implemented in new routines in SARAH/SPheno spectrum generator (SARAH = Mathematica package, creates SPheno code for model to study, cf. Florian Staub's talk this morning and arXiv:0806.0538, arXiv:1309.7223, arXiv:1503.04200)
- In particular useful for study of Higgs masses in non-SUSY theories where pseudo-scalar contributions are **large**.

In the following: a few checks and examples of results for $m_h^{2\ell}$ in non-SUSY models \to here $\underline{\rm 2HDM}$

based on 1705.xxxx (to appear soon)

Two-loop Higgs masses in the 2HDM No more GBC!

Smaller value of $R \rightarrow$ effect of several GeV on $m_h...$

Johannes BRAATHEN (LPTHE)

May 25, 2017 20 / 24

Two-loop Higgs masses in the 2HDM

Improved renormalisation scale dependence

Two-loop Higgs masses in the 2HDM

The danger of using masses as inputs

Studies of 2HDM usually take tree-level Higgs masses as inputs instead of couplings from scalar potential, eg here inputs are

Huge loop corrections \rightarrow non physical parameter point (too large couplings)

 $m_A(\text{GeV})$

 $m_A(\text{GeV})$

★ Ξ →

Our results and outlooks

- ► Analytic results for generic theories (scalars, fermions, gauge bosons), avoiding the Goldstone boson catastrophe
 - \rightarrow full two-loop tadpole equations
 - \rightarrow two-loop mass diagrams for neutral scalars in gaugeless limit, in a generalised effective potential approach (*i.e.* neglect terms of order $\mathcal{O}(s)$ and higher)

Numerical implementation in SARAH

(illustrated in 1705.xxxx, soon made public)

- $\rightarrow\,$ no more numerical instability associated with the GBC
- $\rightarrow\,$ automated Higgs mass calculations in both SUSY and non-SUSY models
- ► Further work on the GBC
 - extend the solution of GBC to higher loop order
 - $\rightarrow~$ on-shell method still working?
 - \rightarrow how to formalise/prove the resummation prescription? (*i.e.* how to find Π_a)
 - extend mass-diagram calculations to quartic order in the gauge couplings (go beyond the gaugeless limit)
 - investigate further the link between resummation and on-shell method
 - use similar techniques to address other IR divergences ?

Solving the Goldstone boson catastrophe and two-loop Higgs masses in non-supersymmetric models

Thank you for your attention !

May 25, 2017 24 / 24

→ ∃ →

Backup

Backup slides

The effective potential

 $V_{\rm eff} = V^{(0)} + {\rm quantum\ corrections}$

• Potential for scalars, including quantum corrections = 1PI vacuum graphs computed loop by loop

1-loop
$$()$$
; 2-loop $()$ + $()$; etc.

- Expressed as a function of running tree-level masses of particles, in some minimal substraction scheme ($\overline{\rm MS}, \, \overline{\rm DR}'$, etc.)
- First derivative of V_{eff} : tadpole equation (\leftrightarrow minimum condition), relates vev and mass-squared parameters
- Second derivative: same as self-energy diagrams, but with zero external momentum → approximate scalar masses

Illustration: the abelian Goldstone model

• 1 complex scalar $\phi = \frac{1}{\sqrt{2}}(v + h + iG)$, no gauge group and only a potential

$$V^{(0)} = \mu^2 |\phi|^2 + \lambda |\phi|^4$$

v: true vev, to all orders in perturbation theory (PT)

- SM: G^+ , G^0 Goldstones do not mix, and can be treated separetely \rightarrow this model captures the behaviour of the GBC in the SM
- V_{eff} at 2-loop order:

$$V_{\rm eff} = V^{(0)} + \underbrace{\frac{1}{16\pi^2} \left[f(m_h^2) + f(m_G^2) \right]}_{1-\rm loop} \label{eq:Veff}$$

$$+\underbrace{\frac{1}{(16^{2})^{2}} \left[\lambda \left(\frac{3}{4} A(m_{G}^{2})^{2} + \frac{1}{2} A(m_{G}^{2}) A(m_{h}^{2}) \right) - \lambda^{2} v^{2} I(m_{h}^{2}, m_{G}^{2}, m_{G}^{2}) + \underbrace{\cdots}_{2 \cdot \text{loop}} \right]}_{2 \cdot \text{loop}} + \mathcal{O}(3 \cdot \text{loop})$$

where
$$f(x) = \frac{x^2}{4} (\log x/Q^2 - 3/2), A(x) = x(\log x/Q^2 - 1)$$
 and $I \propto \bigcirc$
• Tree-level masses: $m_h^2 = \mu^2 + 3\lambda v^2, m_G^2 = \mu^2 + \lambda v^2$

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののの

Illustration: the abelian Goldstone model

Tree-level tadpole

$$\left. \frac{\partial V^{(0)}}{\partial h} \right|_{h=0,G=0} = 0 = \mu^2 v + \lambda v^3 = m_G^2 v$$

Loop-corrected tadpole

$$\begin{split} \frac{\partial V_{\text{eff}}}{\partial h}\Big|_{h=0,G=0} &= 0 = m_G^2 v + \underbrace{\frac{\lambda v}{16\pi^2} \left[3A(m_h^2) + A(m_G^2) \right]}_{\text{1-loop}} \\ &+ \underbrace{\frac{\log \frac{m_G^2}{Q^2}}{(16^2)^2} \left[3\lambda^2 v A(m_G^2) + \frac{4\lambda^3 v^3}{m_h^2} A(m_h^2) \right] + \underbrace{\frac{\log \frac{m_G^2}{Q^2}}{(16^2)^2} + \mathcal{O}(3\text{-loop})}_{2\text{-loop}} \end{split}$$

ELE NOR

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Illustration: the abelian Goldstone model

Tree-level tadpole equation

$$\left.\frac{\partial V^{(0)}}{\partial h}\right|_{h=0,G=0} = 0 = \mu^2 v + \lambda v^3 = m_G^2 v$$

Loop-corrected tadpole equation

$$\begin{split} \frac{\partial V_{\text{eff}}}{\partial h}\Big|_{h=0,G=0} &= 0 = m_G^2 v + \underbrace{\frac{\lambda v}{16\pi^2} \left[3A(m_h^2) + A(m_G^2) \right]}_{\text{1-loop}} \\ &+ \underbrace{\underbrace{\frac{\log \frac{m_G^2}{Q^2}}{(16^2)^2} \left[3\lambda^2 v A(m_G^2) + \frac{4\lambda^3 v^3}{m_h^2} A(m_h^2) \right]}_{2\text{-loop}} + \mathcal{O}(3\text{-loop}) \end{split}$$

A = A A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

More details on the resummation of Goldstone contributions

$$R_{\ell} \equiv \int \frac{d^{d}k}{i(2\pi)^{d}} \left(\frac{\Pi_{g}}{k^{2} - m_{G}^{2}}\right)^{\ell-1} \\ \propto \frac{(\Pi_{g})^{\ell-1}}{(\ell-1)!} \left(\frac{d}{dm_{G}^{2}}\right)^{\ell-1} \int \frac{d^{d}k}{i(2\pi)^{d}} \log(k^{2} - m_{G}^{2}) \\ = \frac{1}{16\pi^{2}} \frac{(\Pi_{g})^{\ell-1}}{(\ell-1)!} \left(\frac{d}{dm_{G}^{2}}\right)^{\ell-1} f(m_{G}^{2}) \\ \text{so } \sum_{\ell} R_{\ell} = \frac{1}{16\pi^{2}} f(m_{G}^{2} + \Pi_{g}) \\ \text{here } f(r) = \frac{x^{2}}{\ell} (\log r - \frac{3}{2})$$

where $f(x) = \frac{x}{4}(\log x)$ $-\overline{2}$

Extending the resummation to generic theories arXiv:1609.06977

Generic theories: J.B., Goodsell arXiv:1609.06977

Real scalar fields $\varphi_i^0 = v_i + \phi_i^0$, where v_i are the vevs to all order in PT $V^{(0)}(\{\varphi_i^0\}) = V^{(0)}(v_i) + \frac{1}{2}m_{0,ij}^2\phi_i^0\phi_j^0 + \frac{1}{6}\lambda_0^{ijk}\phi_i^0\phi_j^0\phi_k^0 + \frac{1}{24}\lambda_0^{ijkl}\phi_i^0\phi_j^0\phi_k^0\phi_l^0$

$$\begin{pmatrix} \phi_i^0, m_{0,ij}^2 \end{pmatrix}^{\phi_i^0 = \tilde{R}_{ij} \, \tilde{\phi}_j} (\tilde{\phi}_i, \tilde{m}_i) \text{ (no loop corrections)}$$

 $\begin{pmatrix} \phi_i^0, m_{ij}^2 \end{pmatrix}^{\phi_i^0 = R_{ij} \, \phi_j} (\phi_i, m_i) \text{ (with loop corrections)}$

Single out the Goldstone boson(s), index G, G', \dots and its/their mass(es)

$$m_G^2 = -\sum_i \frac{1}{v_i} (\tilde{R}_{iG})^2 \left. \frac{\partial (V_{\text{eff}} - V^{(0)})}{\partial \phi_i^0} \right|_{\phi_i^0 = 0} = \mathcal{O}(1\text{-loop})$$

Johannes BRAATHEN (LPTHE)

Consistent solution of the tadpole equations arXiv:1609.06977

• Schematically, tadpole equations are of the form

$$m^2 = m_0^2 - \frac{1}{v} \frac{\partial \Delta V(m^2)}{\partial v},$$
 with
 $\begin{cases} Tree-level masses \\ m^2 \text{ in loop-corrected minimum} \\ m_0^2 \text{ in tree-level minimum} \end{cases}$

and need to be solved iteratively \Rightarrow time-consuming!

- Expressing loop corrections as functions of m_0^2 , and similarly tree-level couplings, makes solving the tadpole equation much easier.
- Generalise the procedure used for Goldstone bosons, and define mass shifts $\Delta_{ii} = -\tilde{R}_{bi}\tilde{R}_{bi}\frac{1}{2}\frac{\partial\Delta V}{\partial x}$

$$u_{j} = -n_{ki}n_{kj} \left[\frac{1}{v_k} \frac{\partial \phi_k^0}{\partial \phi_k^0} \right]_{\phi^0 = 0}$$

$$(m_{ij}^2, m_{0,ij}^2) \xrightarrow{diagonalise} m_i^2 = \bar{m}_i^2 + \Delta_{ii}$$

• One-loop terms with $\bar{m}_i^2 \Rightarrow$ two-loop shift! \searrow

$$\boldsymbol{m}^{2} = \boldsymbol{m}_{0}^{2} - \frac{1}{v} \frac{\partial \Delta V(\bar{\boldsymbol{m}}^{2})}{\partial v} - \delta \left(\frac{\partial \Delta V(\bar{\boldsymbol{m}}^{2})}{\partial v} \right)$$

More details about the calculations for the scalar-only tadpole

Divergent terms

• From T_{SS} :

$$\left. \frac{\partial V_S^{(2)}}{\partial \phi_r^0} \right|_{\varphi=v} \supset \frac{1}{4} R_{rp} \sum_{l \neq G} \lambda^{GGll} \lambda^{GGp} \, \overline{\log} \, m_G^2 A(m_l^2)$$

From T_{SSSS}:

$$\left. \frac{\partial V_S^{(2)}}{\partial \phi_r^0} \right|_{\varphi=v} \supset \frac{1}{4} R_{rp} \lambda^{pGG} \lambda^{Gkl} \lambda^{Gkl} \log m_G^2 P_{SS}(m_k^2, m_l^2)$$

Setting the Goldstone mass on-shell

$$\Pi_{GG}^{(1),S}\left(p^{2}\right) = \frac{1}{2}\lambda^{GGjj}A(m_{j}^{2}) - \frac{1}{2}(\lambda^{Gjk})^{2}B(p^{2},m_{j}^{2},m_{k}^{2})$$

Hence a 2-loop shift:

$$\frac{\partial V_S^{(2)}}{\partial \phi_r^0}((m_G^2)^{\mathsf{OS}}) = \left. \frac{\partial V_S^{(2)}}{\partial \phi_r^0} \right|_{m_G^2 \to (m_G^2)^{\mathsf{OS}}} - \frac{1}{4} R_{rp} \lambda^{GGp} \overline{\log}(m_G^2)^{\mathsf{OS}} \left(\lambda^{GGjj} A(m_j^2) - (\lambda^{Gjk})^2 B(0, m_G^2)^{\mathsf{OS}} \right)^{\mathsf{OS}} \left(\lambda^{GGj} A(m_j^2) - (\lambda^{Gjk})^2 B(0, m_G^2)^{\mathsf{OS}} \right)^{\mathsf{OS}} \left(\lambda^{GGjj} A(m_j^2) - (\lambda^{Gjk})^2 B(0, m_G^2)^{\mathsf{OS}} \right)^{\mathsf{OS}} \left(\lambda^{GGj} A(m_j^2) - (\lambda^{Gjk})^2 B(0, m_G^2)^{\mathsf{OS}} \right)^{\mathsf{OS}} \left(\lambda^{GGj} A(m_g^2) - (\lambda^{Gjk})^2 B(0, m_G^2)^{\mathsf{OS}} \right)^{\mathsf{OS}} \left(\lambda^{GGj} A(m_g^2) - (\lambda^{Gjk})^2 B(0, m_G^2)^{\mathsf{OS}} \right)^{\mathsf{OS}} \right)^{\mathsf{OS}} \left(\lambda^{GGj} A(m_g^2) - (\lambda^{Gjk})^2 B(0, m_G^2)^{\mathsf{OS}} \right)^{\mathsf{OS}} \left(\lambda^{GGj} A(m_g^2) - (\lambda^{Gjk})^2 B(0, m_G^2)^{\mathsf{OS}} \right)^{\mathsf{OS}} \right)^{\mathsf{OS}} \left(\lambda^{GGj} A(m_g^2) - (\lambda^{Gjk})^2 B(0, m_G^2)^{\mathsf{OS}} \right)^{\mathsf{OS}} \right)^{\mathsf{OS}} \left(\lambda^{GGj} A(m_g^2) - (\lambda^{$$

Johannes BRAATHEN (LPTHE)

May 25, 2017 33 / 2

= 200

• • = • • = •

Backup

The full 2-loop tadpole equation free of GBC

$$\begin{split} \frac{\partial \hat{V}^{(2)}}{\partial \phi_r^0} \bigg|_{\varphi=v} = & R_{rp} \bigg[\overline{T}_{SS}^p + \overline{T}_{SSS}^p + \overline{T}_{SSSS}^p + \overline{T}_{SSFF}^p + \overline{T}_{FFFS}^p \\ & + \overline{T}_{SSV}^p + \overline{T}_{VS}^p + \overline{T}_{VVS}^p + \overline{T}_{FFV}^p + \overline{T}_{\overline{FFV}}^p + \overline{T}_{\text{gauge}}^p \bigg]. \end{split}$$

Notations: see 1609.06977, 1503.03098

三日 のへの

イロト イヨト イヨト イヨト

The all-scalar diagrams are

$$\begin{split} \overline{T}_{SS}^{p} &= \frac{1}{4} \sum_{j,k,l \neq G} \lambda^{jkll} \lambda^{jkp} P_{SS}(m_{j}^{2}, m_{k}^{2}) A(m_{l}^{2}) \\ &+ \frac{1}{2} \sum_{k,l \neq G} \lambda^{Gkll} \lambda^{Gkp} P_{SS}(0, m_{k}^{2}) A(m_{l}^{2}), \\ \overline{T}_{SSS}^{p} &= \frac{1}{6} \lambda^{pjkl} \lambda^{jkl} f_{SSS}(m_{j}^{2}, m_{k}^{2}, m_{l}^{2}) \big|_{m_{G}^{2} \to 0}, \\ \overline{T}_{SSSS}^{p} &= \frac{1}{4} \sum_{(j,j') \neq (G,G')} \lambda^{pjj'} \lambda^{jkl} \lambda^{j'kl} U_{0}(m_{j}^{2}, m_{j'}^{2}, m_{k}^{2}, m_{l}^{2}) \\ &+ \frac{1}{4} \sum_{(k,l) \neq (G,G')} \lambda^{pGG'} \lambda^{Gkl} \lambda^{G'kl} R_{SS}(m_{k}^{2}, m_{l}^{2}), \end{split}$$

where by $(j,j') \neq (G,G')$ we mean that j,j' are not both Goldstone indices.

→ Ξ →

The fermion-scalar diagrams are

$$\begin{split} \overline{T}^{p}_{SSFF} &= \sum_{(k,l) \neq (G,G')} \left\{ \frac{1}{2} y^{IJk} y_{IJl} \lambda^{klp} f^{(0,0,1)}_{FFS}(m_{I}^{2},m_{J}^{2};m_{k}^{2},m_{l}^{2}) \\ &- \mathsf{Re} \bigg[y^{IJk} y^{I'J'k} M^{*}_{II'} M^{*}_{JJ'} \bigg] \lambda^{klp} U_{0}(m_{k}^{2},m_{I}^{2},m_{I}^{2},m_{J}^{2}) \bigg\} \\ &+ \frac{1}{2} \lambda^{GG'p} y^{IJG} y_{IJG'} \left(-I(m_{I}^{2},m_{J}^{2},0) - (m_{I}^{2}+m_{J}^{2}) R_{SS}(m_{I}^{2},m_{J}^{2}) \right) \\ &- \lambda^{GG'p} \mathsf{Re} \bigg[y^{IJG} y^{I'J'G'} M^{*}_{II'} M^{*}_{JJ'} \bigg] R_{SS}(m_{I}^{2},m_{J}^{2}), \\ \overline{T}^{p}_{FFFS} = T^{p}_{FFFS} \bigg|_{m^{2}_{G} \to 0}, \end{split}$$

(日) (四) (日) (日) (日)

The gauge boson-scalar tadpoles are

$$\begin{split} \overline{T}^p_{SSV} = & T^p_{SSV} \left|_{m^2_G \to 0}, \\ \overline{T}^p_{VS} = & \frac{1}{4} g^{abii} g^{abp} f^{(1,0)}_{VS}(m^2_a, m^2_b; m^2_i) \right|_{m^2_G \to 0} \\ & + \sum_{(i,k) \neq (G,G')} \frac{1}{4} g^{aaik} \lambda^{ikp} f^{(0,1)}_{VS}(m^2_a; m^2_i, m^2_k), \\ \overline{T}^p_{VVS} = & \frac{1}{2} g^{abi} g^{cbi} g^{acp} f^{(1,0,0)}_{VVS}(m^2_a, m^2_c; m^2_b, m^2_i) \Big|_{m^2_G \to 0} \\ & + \sum_{(i,j) \neq (G,G')} \frac{1}{4} g^{abi} g^{abj} \lambda^{ijp} f^{(0,0,1)}_{VVS}(m^2_a, m^2_b; m^2_i, m^2_j) \\ & - \frac{1}{4} g^{abG} g^{abG'} \lambda^{GG'p} R_{VV}(m^2_a, m^2_b). \end{split}$$

• • = • •

The gauge boson-fermion and gauge diagrams are not affected by the Goldstone boson catastrophe

$$\begin{split} \overline{T}_{FFV}^{p} =& 2g_{I}^{aJ}\overline{g}_{bJ}^{K}\mathsf{Re}[M_{KI'}y^{I'Ip}]f_{FFV}^{(1,0,0)}(m_{I}^{2},m_{K}^{2};m_{J}^{2},m_{a}^{2}) \\ &\quad + \frac{1}{2}g_{I}^{aJ}\overline{g}_{bJ}^{I}g^{abp}f_{FFV}^{(0,0,1)}(m_{I}^{2},m_{J}^{2};m_{a}^{2},m_{b}^{2}), \\ \overline{T}_{\overline{FFV}}^{p} =& g_{I}^{aJ}g_{I'}^{aJ'}\mathsf{Re}[y^{II'p}M_{JJ'}^{*}]\left[f_{\overline{FFV}}(m_{I}^{2},m_{J}^{2},m_{a}^{2}) + M_{I}^{2}f_{\overline{FFV}}^{(1,0,0)}(m_{I}^{2},m_{I'}^{2};m_{J}^{2},m_{a}^{2})\right] \\ &\quad + g_{I}^{aJ}g_{I'}^{aJ'}\mathsf{Re}[M^{IK'}M^{KI'}M_{JJ'}^{*}y_{KK'p}]f_{\overline{FFV}}^{(1,0,0)}(m_{I}^{2},m_{I'}^{2};m_{J}^{2},m_{a}^{2}) \\ &\quad + \frac{1}{2}g_{I}^{aJ}g_{I'}^{bJ'}g^{abp}M^{II'}M_{JJ'}^{*}f_{\overline{FFV}}^{(0,0,1)}(m_{I}^{2},m_{J}^{2};m_{a}^{2},m_{b}^{2}), \\ \overline{T}_{\mathsf{gauge}}^{p} =& \frac{1}{4}g^{abc}g^{dbc}g^{adp}f_{\mathsf{gauge}}^{(1,0,0)}(m_{a}^{2},m_{d}^{2};m_{b}^{2},m_{c}^{2}). \end{split}$$

イロト イボト イヨト イヨ