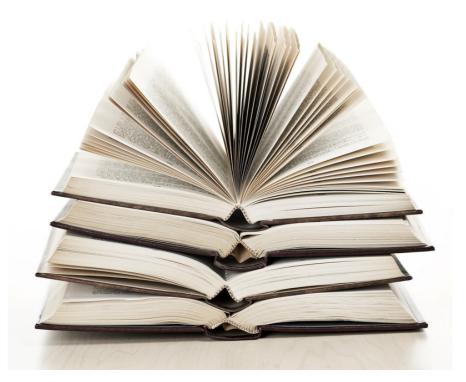
Correlation between the decays of h⁰ to photon and gluon pairs in the MSSM with quark flavour violation


HEPHY Vienna

work in progress with K. Hidaka, E. Ginina and A. Bartl

> Scalars 2017 Warsaw, Poland

Contents

- Introduction
- General quark-flavour mixing in the MSSM
- Experimental errors
- Numerics
- EFT κ framework
- Conclusions

Introduction

- Higgs boson discovered behaves like the Higgs boson in the SM
- Detailed study of Higgs properties BSM physics?
- Although there is no sign of new particles yet, the MSSM is still favored as a discoverable theory beyond the SM and will be searched with high priority at LHC
- Discovered Higgs boson could be h⁰ of the MSSM
- Despite the stringent constraints from B and K physics, quark-flavour violation (QFV) in the squark sector can change phenomenological observables significantly
- Loop induced decays of h^0 to $\gamma\,\gamma$ and h^0 to g g are sensitive to BSM physics
- Decay rates of these processes are studied in terms of QFV parameters
- MSSM scans done respecting all theoretical and experimental constraints
- EFT framework (in progress)
- Measurability of deviation from the SM discussed

General quark-flavour mixing in the MSSM

- In the SM all QFV terms are within the CKM matrix
- In the general MSSM there are two concepts:

* Minimal quark flavour violation - no new sources of QFV, in the super-CKM basis the squarks undergo the same rotations like the quarks, all flavour violating entries are related to the CKM matrix

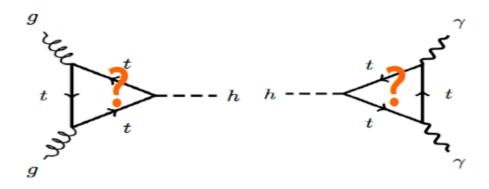
* Non-minimal quark flavour violation - new sources of QFV, independent on the CKM, considered as free parameters in the theory

 In the following we assume non-minimal quark flavour violation

 The flavour-violating terms are contained in the mass matrices of the squarks at the electroweak scale

$$\mathcal{M}_{\tilde{q}}^2 = \begin{pmatrix} \mathcal{M}_{\tilde{q},LL}^2 & \mathcal{M}_{\tilde{q},LR}^2 \\ \mathcal{M}_{\tilde{q},RL}^2 & \mathcal{M}_{\tilde{q},RR}^2 \end{pmatrix}, q = u, d$$

 The 3x3 soft SUSY-breaking matrices can introduce QFV (offdiagonal) terms, e.g. in the up-squark sector


$$(M_{\tilde{u}LL}^2)_{\alpha\beta} = M_{Q_u\alpha\beta}^2 + \left[\left(\frac{1}{2} - \frac{2}{3} \sin^2 \theta_W \right) \cos 2\beta \ m_Z^2 + m_{u_\alpha}^2 \right] \delta_{\alpha\beta}$$
$$(M_{\tilde{u}RR}^2)_{\alpha\beta} = M_{U\alpha\beta}^2 + \left[\frac{2}{3} \sin^2 \theta_W \cos 2\beta \ m_Z^2 + m_{u_\alpha}^2 \right] \delta_{\alpha\beta}$$
$$(M_{\tilde{u}RL}^2)_{\alpha\beta} = (v_2/\sqrt{2}) T_{U\alpha\beta} - m_{u_\alpha}\mu^* \cot \beta \ \delta_{\alpha\beta}$$

The mass eigenstates are obtained after diagonalization with a 6x6 rotation matrix

$$\begin{pmatrix} \tilde{u}_1 \\ \tilde{u}_2 \\ \tilde{u}_3 \\ \tilde{u}_4 \\ \tilde{u}_5 \\ \tilde{u}_6 \end{pmatrix} = U^{\tilde{u}} \cdot \begin{pmatrix} \tilde{u}_L \\ \tilde{c}_L \\ \tilde{t}_L \\ \tilde{u}_R \\ \tilde{c}_R \\ \tilde{t}_R \end{pmatrix} \quad \begin{pmatrix} \tilde{d}_1 \\ \tilde{d}_2 \\ \tilde{d}_3 \\ \tilde{d}_4 \\ \tilde{d}_5 \\ \tilde{d}_6 \end{pmatrix} = U^{\tilde{d}} \cdot \begin{pmatrix} \tilde{d}_L \\ \tilde{s}_L \\ \tilde{b}_L \\ \tilde{d}_R \\ \tilde{s}_R \\ \tilde{b}_R \end{pmatrix} \quad U^{\tilde{u}} \mathcal{M}_{\tilde{u}}^2 (U^{\tilde{u}})^{\dagger} = \operatorname{diag}(m_{\tilde{u}_1}^2, \dots, m_{\tilde{u}_6}^2)$$

Experimental errors - LHC

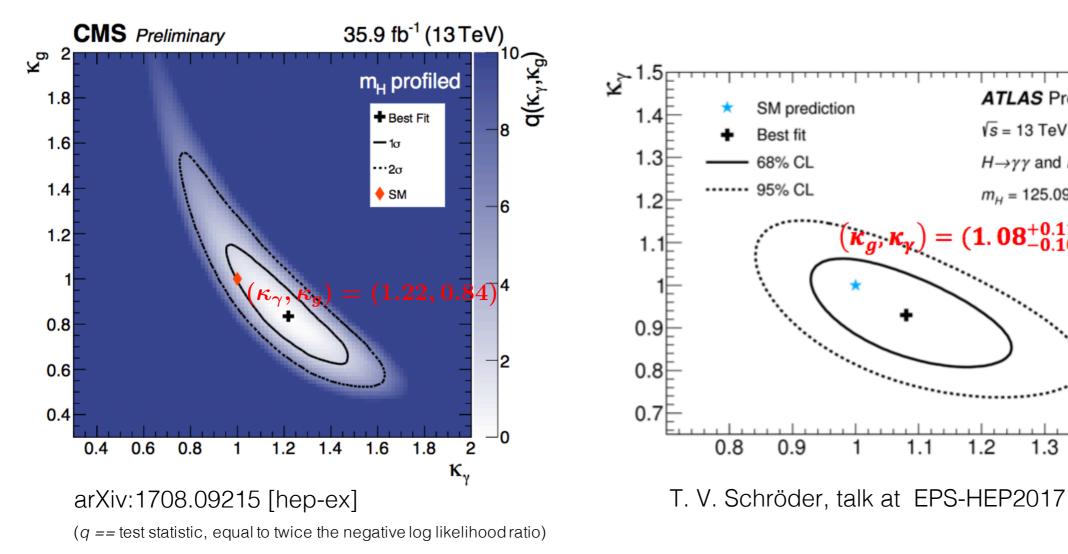
 κ - framework

ATLAS Preliminary

√s = 13 TeV, 36.1 fb⁻¹

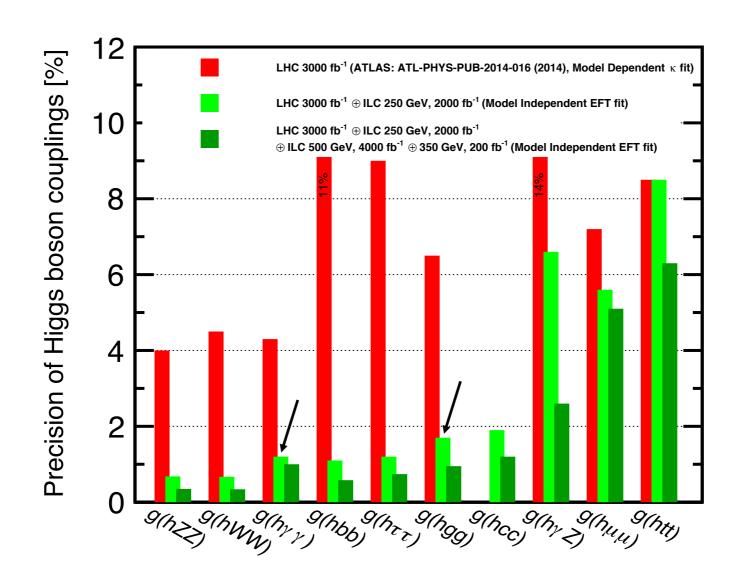
 $m_{H} = 125.09 \text{ GeV}$

1.3


1.2

 $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4I^-$

 $1.08^{+0.11}_{-0.10}, 0.93^{+0.09}_{-0.08})$


 $\kappa_{g}^{1.5}$

1.4

Expected experimental errors - ILC

see LCC Physics Working Group, arXiv:1710.07621 (most general set of SU(3) × SU(2) × U(1)-invariant dimension-6 operators) Based on EFT fits we use at ILC 250 GeV stage, 2000 fb⁻¹: g(h_photon_photon): 1.2% g(h_gluon_gluon): 1.7% g(h_photon_photon)/g(h_gluon_gluon): 1.8%

Numerical results

preliminary

DEV(X) and **DEV(X/Y)**

We compute the loop-induced decay widths $\Gamma(h^0 \to \gamma \gamma)$ and $\Gamma(h^0 \to gg)$ by using the public code *SPheno-v3.3.8*.

The computation includes

(LO 1-loop contributions) + (gluonic 2-loop corrections)_{QCD-loops}, where

(LO 1-loop contributions) = (SM particle loops) + (SUSY particle loops)= (top-loop + ...) + (stop-loop + ...).

The **deviation of the width** from the SM prediction is defined as:

$$DEV(X) = \frac{\Gamma(h^0 \to XX)_{MSSM}}{\Gamma(h^0 \to XX)_{SM}} - 1 \qquad \qquad X = \gamma, g$$

The **deviation of the width ratio** from the SM prediction is defined as:

$$DEV(X/Y) = \frac{[\Gamma(X)/\Gamma(Y)]_{MSSM}}{[\Gamma(X)/\Gamma(Y)]_{SM}} - 1$$

The SM predictions are as follows [Almeida et al. 2014]: $\Gamma(h^0 \to \gamma \gamma)_{SM} = 1.08 \cdot 10^{-5} \text{ GeV}, \ \Gamma(h^0 \to gg)_{SM} = 3.61 \cdot 10^{-4} \text{ GeV}.$

Constraints

B-physics: Exp. data + 95% CL theor. uncertainty

 ΔM_{B_s} (17.757 ± 3.3) ps⁻¹

 $B(b \to s\gamma)$ (3.41 ± 0.54)10⁻⁴

 $B(b \to s \ l^+ l^-) \ (1.60 \ ^{+0.97}_{-0.91}) 10^{-6} \ (l = e \text{ or } \mu)$

 $B(B_s \to \mu^+ \mu^-)(2.80 \ ^{+1.44}_{-1.26})10^{-9}$

 $B(B^+ \to \tau^+ \nu) \ (1.14 \pm 0.78) 10^{-4}$

Higgs mass:

 $m_{h^0} \; [\text{GeV}] \;\; (125.09 \pm 3.48) \; \text{GeV}$

others:

The LHC limits on the squark and gluino masses

The electroweak ρ parameter: $\Delta \rho$ (SUSY) < 0.0012.

Theoretical constraints from the vacuum stability conditions for the trilinear coupling matrices

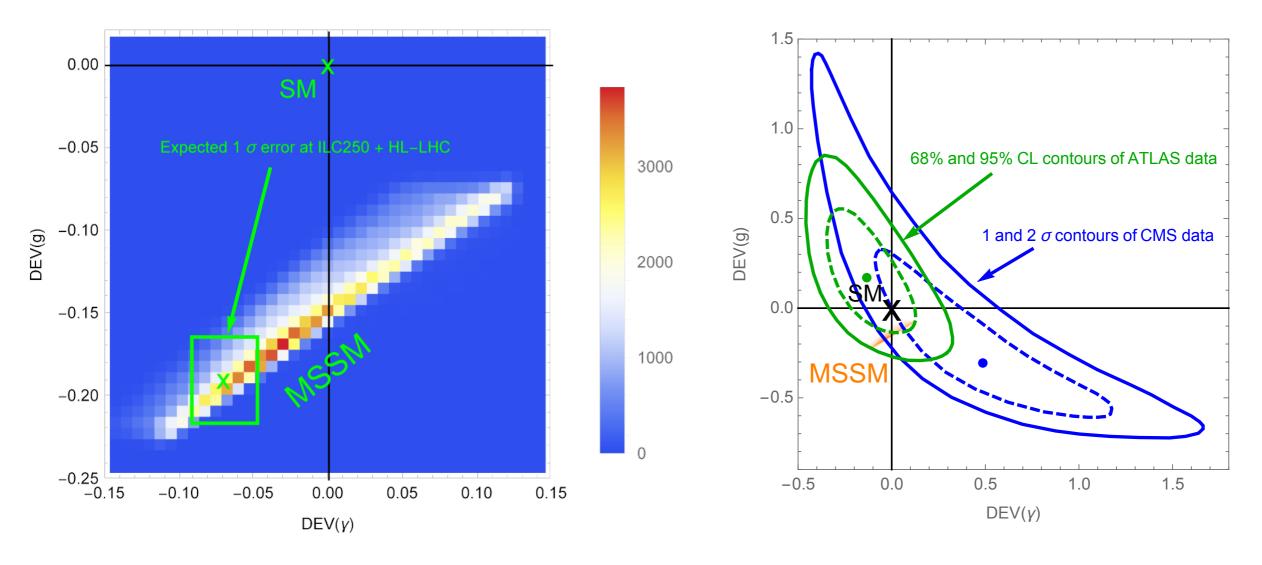
Parameters of numerical Scan A

Paramete	er $\tan \beta$	M_1	M_2	M_3	μ	$m_A(pole)$
Range	$10 \div 30$	$300 \div 2500$	$300 \div 2500$	$2500 \div 5000$	$100 \div 2500$	800 ÷ 3000

Parameter	M^2_{Q22}	M_{Q33}^2	$ M^2_{Q23} $	M_{U22}^2	M_{U33}^{2}	$ M_{U23}^2 $
Range	$2500^2 \div 4000^2$	$2500^2 \div 4000^2$	$< 1000^{2}$	$2500^2 \div 4000^2$	$1000^2 \div 3000^2$	$< 1000^{2}$

Parameter	M_{D22}^2	M_{D33}^2	$\left M^2_{D23}\right $	$ T_{U23} $	$ T_{U32} $	$ T_{U33} $
Range	$2500^2 \div 4000^2$	$1000^2 \div 3000^2$	$< 1000^{2}$	< 3000	< 3000	< 4000

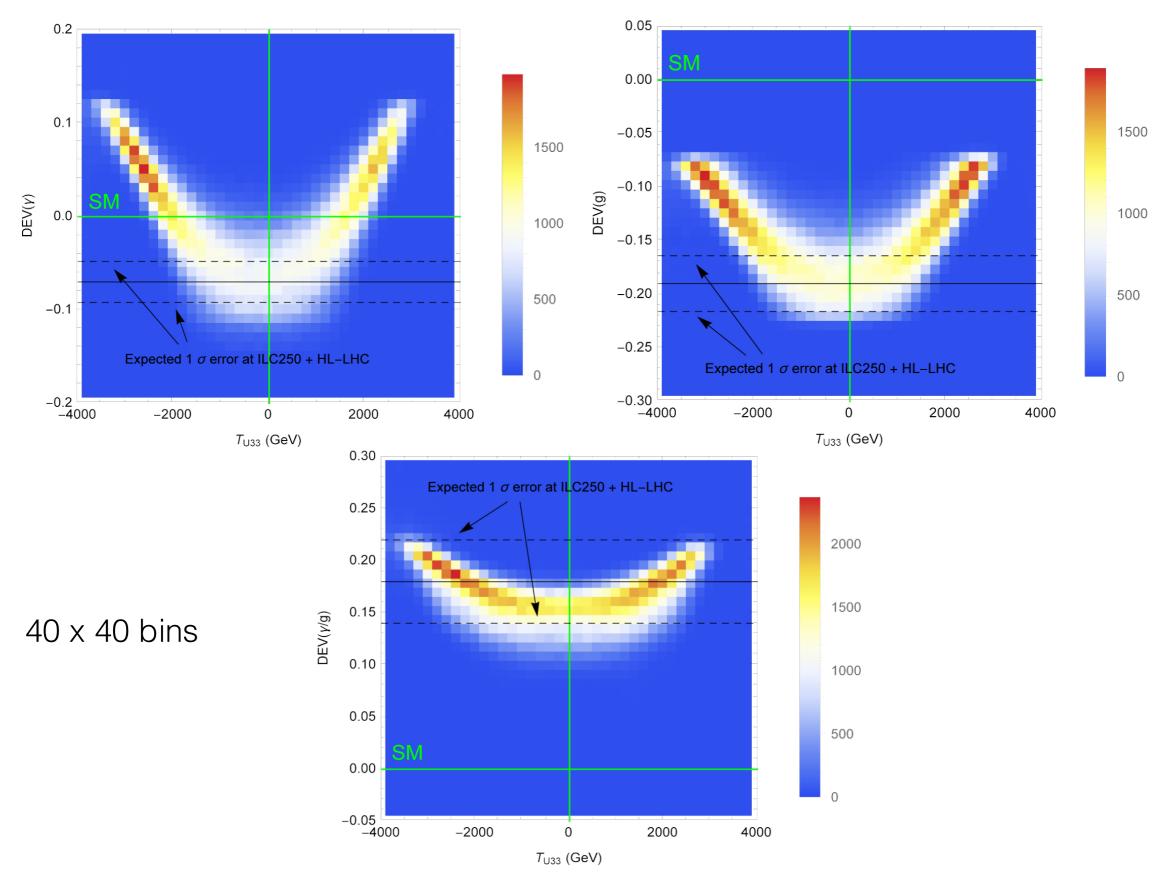
Parameter	T _{D23}	T _{D32}	$T_{D33} $	$ T_{E33} $
Range	< 1000	< 1000	< 1000	< 500


Parameter	M_{Q11}^2	M_{U11}^{2}	M_{D11}^{2}	M_{L11}^{2}	M^2_{L22}	M^2_{L33}	M_{E11}^2	M_{E22}^2	M_{E33}^2
Value	4000 ²	4000 ²	4000 ²	1500^{2}	1500^{2}	1500^{2}	1500^{2}	1500^{2}	1500^{2}

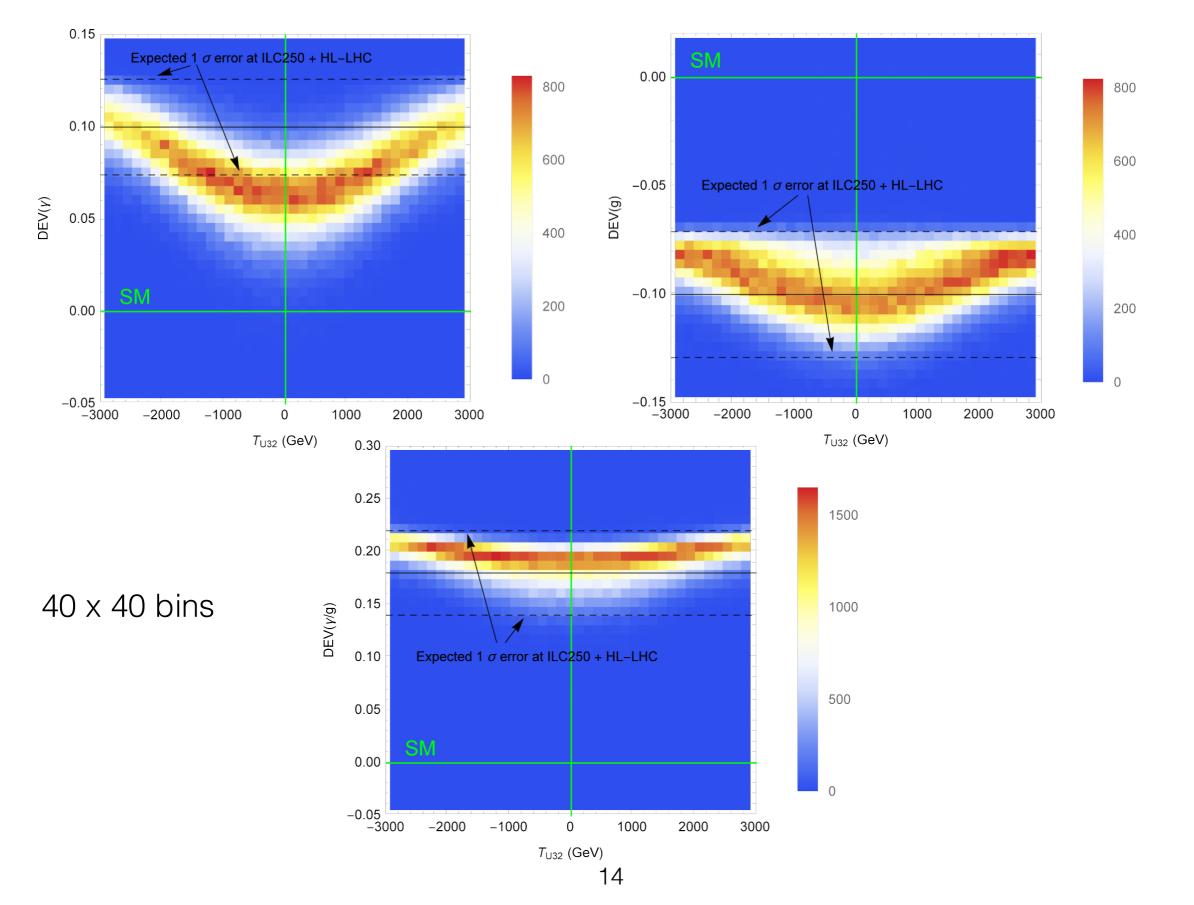
in units of GeV or GeV², except for $\tan\beta$

All MSSM parameters not shown here are set to be zero.

DEV(γ) – **DEV(g)**

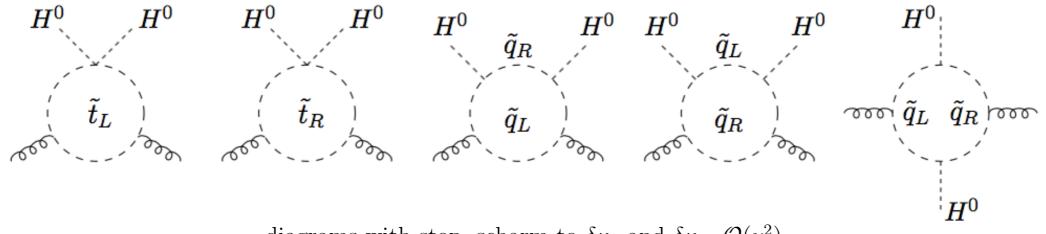

Scan A, 286k points allowed from 1080k input points

40 x 40 bins


Dependences on T_{U33}

Scan A

Dependences on T_{U32}


Scan B = Scan A with fixed TU33 (= 2500 GeV), 218k points allowed from 708k input points

EFT K – framework A. Brignole (2015)

$$\frac{\sigma(gg \to h)}{\sigma^{\rm SM}(gg \to h)} \simeq \frac{\Gamma(h \to gg)}{\Gamma^{\rm SM}(h \to gg)} = \kappa_g^2 \qquad \qquad \frac{\Gamma(h \to \gamma\gamma)}{\Gamma^{\rm SM}(h \to \gamma\gamma)} = \kappa_\gamma^2 \qquad \qquad \kappa_g = 1 + \delta\kappa_g \text{ and } \kappa_\gamma = 1 + \delta\kappa_\gamma$$

$$\kappa's \text{ encode corrections from new physics, } \mathcal{A} \equiv \text{amplitude, } \delta\kappa_x = \frac{\delta\mathcal{A}_{hxx}}{\mathcal{A}_{hxx}^{\rm SM}}, \ x = g, \gamma$$

dimension 6 operators $|H^0|^2 G_{\rm enc} G^{\mu\nu}$ and $|H^0|^2 F_{\rm enc} F^{\mu\nu}$

diagrams with stop, scharm to $\delta \kappa_g$ and $\delta \kappa_\gamma$, $\mathcal{O}(y_t^2)$

with gluons, SM \simeq top loop: $\delta \kappa_g \simeq \frac{m_t^2}{4} \left[\frac{1}{\tilde{m}_{t_L}^2} \left(1 - \frac{|A_{ct}|^2}{\tilde{m}_{c_R}^2} \right) + \frac{1}{\tilde{m}_{t_R}^2} \left(1 - \frac{|A_{tc}|^2}{\tilde{m}_{c_L}^2} \right) - \frac{|X_t|^2}{\tilde{m}_{t_L}^2 \tilde{m}_{t_R}^2} \right]$ our notation: $X_t \simeq \frac{T_{U33}}{y_t}, A_{ct} = \frac{T_{U23}}{y_t}, A_{tc} = \frac{T_{U32}}{y_t}$

since $\mathcal{A}_{h\gamma\gamma}^{top} \simeq -0.3 \mathcal{A}_{h\gamma\gamma}^{SM}, \, \delta\kappa_{\gamma} \simeq -0.3 \,\delta\kappa_{g}$

Conclusions

We have studied the correlation between the loop-induced decays h^0 (125GeV) \rightarrow photon photon and gluon gluon in the MSSM with QFV.

Performing a full parameter scan, we have found out:

• There is a strong correlation between $DEV(h^0 \rightarrow \text{photon photon})$ and $DEV(h^0 \rightarrow \text{gluon gluon})!$

• The deviation of the width ratio $\Gamma(h^0 \to \text{photon photon}) / \Gamma(h^0 \to \text{gluon gluon})$ from the SM value is large (roughly +10% to +23%) in the scanned parameter ranges!

In case the deviation patterns shown here are really observed at ILC, then it would strongly suggest the discovery of SUSY (MSSM)!

Thank you!