Higgs pair production in SM/BSM Methodology and results

Di-Higgs as a Probe of New Physics

Stefano Moretti

Soton & Uppsala

Scalars 2023

イロン イヨン イヨン イヨン

Outline

What?

- BSM physics in SM HH production: couplings & loops (eg, squarks)
- Toolbox to construct cross section distributions, analyse their origin without full MC simulation and also extract model parameters

Why?

- Higgs pair production at the LHC can extract shape of the Higgs potential ⇒ nature of EWSB, EWPTs, etc. (main target process for Run 3 & HL-LHC)
- One-loop process: BSM at same perturbative order as SM (& cancellations)
- Ambition to surpass current paradigms: HEFT/SMEFT (non-resonant) and explicit UV finite theories (resonant) => *simplified model approach*

To be quantitative, we shall assume (N)MSSM near alignment limit (without decoupling), ie, SM-like Higgs couplings to fermions/bosons are very near the SM values - but framework absolutely general

Based on 2302.03401 (now in PRD) with Panizzi, Sjoelin & Waltari.

Higgs pair production in the SM

Higgs pair production dominated by gluon fusion $gg \rightarrow hh$: SM process arises through two topologies (triangle and box of top quarks), which interfere destructively

- Top box amplitude is largest in SM, hence difficult to exclude large upward deviations of λ_{hhh} (Run 2: $-1.5 < \lambda_{hhh}/\lambda_{hhh}(SM) < 6.7$)
- Destructive interference makes it very difficult to detect also at Run 3, HL-LHC should eventually discover it
- BSM effects hence more visible, how to extract these?
 - => Consider here non-resonant di-Higgs production (resonant production to come)

Higgs pair production beyond the SM

There can be BSM effects onto Higgs pair production, if

- Itop Yukawa coupling deviates from its SM value
 - somewhat constrained by *tth* production rate
 - enters quadratically to the amplitude, so small deviations can have a large impact
- Itrilinear Higgs self coupling deviates from SM value
 - very mildly constrained by experiments
 - some models have intrinsic constraints that allow only small deviations, some others are more flexible
- Inew BSM particles in loops coupling strongly to gluons and Higgs boson
 - here stops from supersymmetric models, but other top partners can lead to similar effects (see Egle's talk on VLTs in compositeness, C2HDM)

Higgs self-coupling is related to mass

- Higgs self-couplings are related to its mass as above diagrams are corrections to the mass (at zero incoming momentum) if the additional legs are replaced with the VEV
- Lot of the possibilities to deviate from the SM self-coupling are related to how Higgs mass is generated
- You need misalignment between mass and self-coupling

In the the MSSM self-coupling is SM-like

- At tree-level MSSM Higgs self-coupling is combination of gauge couplings and is always too small to give a 125 GeV Higgs
- Hence *positive* loop corrections are necessary and most economical way is to use largest coupling available, the top Yukawa
- To maximise Higgs mass one needs to make sure that the SM-like Higgs state is mostly H_u^0 so that the cancellation between top and stop loops is incomplete and to find part of parameter space that maximises the effect of loops
- This leads to a large *tan* β, large stop masses and large stop mixing, respectively, the well-known recipe for a 125 GeV Higgs
- In this limit, only relevant term for Higgs mass generation is $\lambda_{eff}|H_u^0|^4$, like in the SM and hence $\lambda_{eff} \simeq \lambda_{SM}$ [Osland, Pandita, hep-ph/9806351, Djouadi et al., hep-ph/9903229, Hollik, Penaranda hep-ph/0108245, ...]

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト - ヨ - -

In the NMSSM the Higgs self-coupling can deviate

- In the NMSSM one adds a singlet chiral superfield to the model and a term λSH_uH_d to the superpotential, λ can be up to O(1)
- Since this can be large coupling, it can be used to lift the Higgs mass via the scalar potential term $|\lambda|^2 |H_u H_d|^2$, but it only can have an effect at low values of *tan* β
- The impact of this term to the Higgs mass and self-coupling is misaligned, so it can cause a deviation from the SM value in the self-coupling
- If $\lambda > g$, g' and $1 \lesssim tan \beta \lesssim 3$, the Higgs self-coupling is larger than in the SM
- If $\lambda < g$, g' and $tan \beta$ is small, you can achieve a 125 GeV Higgs if the stops are heavy and you have a light (~100 GeV) singlet-like Higgs— in such a case one could have a Higgs self-coupling smaller than in the SM

Stop masses in the (N)MSSM

Stop mass matrix is

$$m_{\tilde{t}}^{2} = \begin{pmatrix} m_{t}^{2} + m_{Z}^{2} \cos 2\beta (\frac{1}{2} - \frac{2}{3} \sin^{2} \theta_{W}) & m_{t} (\mu \cot \beta - A_{t}) \\ m_{t} (\mu \cot \beta - A_{t}) & m_{t}^{2} + m_{\tilde{t}_{R}}^{2} + \frac{2}{3} m_{Z}^{2} \cos 2\beta \sin^{2} \theta_{W} \end{pmatrix}$$

- A_t is SUSY breaking trilinear coupling between H_u , \tilde{t}_L and \tilde{t}_R , $m_{\tilde{t}_LR}$ are soft SUSY breaking masses
- In general one needs large values of A_t , between 2–3 TeV, to reach a 125 GeV SM-like Higgs mass
- This leads to large mixing between stops and large mass splitting between them (> 200 GeV) numerically $m(\tilde{t}_1) \ge 600$ GeV (requires compressed spectrum, so presently escapes LHC limits) & $m(\tilde{t}_2) \ge 1250$ GeV. In NMSSM can have two light stops in theory (different cascades allows them).
- Large stop mixing and large trilinear couplings mean large Higgs-stop-stop interactions, so stop diagrams including these couplings will have strong impact

Classification of topologies by coupling structure

=			
_	Topology type	Feynman diagrams	Amplitude
1	Modified Higgs trilinear coupling		$\mathcal{A}_i \propto \kappa_{hhh}$
2	One modified Yukawa coupling	$g \xrightarrow{g} \underbrace{t}_{g} t$	$\mathcal{A}_i \propto \kappa_{htt}$
3	Modified Higgs trilinear coupling and modified Yukawa coupling	$g \xrightarrow{g} \underbrace{t}{} \underbrace{t}{} \underbrace{t}{} \underbrace{h}{} $	$\mathcal{A}_i \propto \kappa_{hhh} \kappa_{htt}$
4	Two modified Yukawa couplings	$g \underbrace{t}_{g} \underbrace{t}_{t} \underbrace{t}_{t}_{t}h$	$\mathcal{A}_i \propto \kappa_{htt}^2$
5	Bubble and triangle with $h\tilde{t}\tilde{t}$ couplings	$g \overset{\tilde{l}_i}{\underset{\tilde{l}_i}{\overset{h}{\overset{h}{\overset{h}{\overset{h}{\overset{h}{\overset{h}{\overset{h}{$	$\mathcal{A}_i \propto \kappa_{h \bar{t} \bar{t}}^{i i}$
	This class of topologies involves only diagonal couplings between the Higgs and the squarks, due to the absence of FCNCs in strong interactions and the presence of one $h\tilde{t}$ coupling.		
6	Modified Higgs trilinear coupling + Bubble and triangle with htt coupling Only diagonal couplings between the	$g^{g} \xrightarrow{\tilde{l}_{i}} h \xrightarrow{h} g^{g} \xrightarrow{\tilde{l}_{i}} h \xrightarrow{h} g^{g} \xrightarrow{\tilde{l}_{i}} h \xrightarrow{\tilde{l}_{i}} h \xrightarrow{h} h \xrightarrow{h} h$ Higgs and the squarks due to the strong in	$A_i \propto \kappa_{hhh} \kappa_{h\bar{l}\bar{l}}^{ii}$ teraction.
7	Triangle and box with two $h\overline{t}$ couplings	$\begin{array}{c} g & \underset{\tilde{t}_i}{\text{grave}} & -h g & \underset{\tilde{t}_i}{\text{grave}} & \underset{\tilde{t}_i}{\overset{\tilde{t}_i}{\text{fi}}} &h g & \underset{\tilde{t}_i}{\text{grave}} & \underset{\tilde{t}_i}{\overset{\tilde{t}_i}{\text{fi}}} &h \\ g & \underset{\tilde{t}_i}{\text{grave}} & \underset{\tilde{t}_i}{\overset{\tilde{t}_i}{\text{fi}}} &h \\ g & \underset{\tilde{t}_i}{\text{grave}} & \underset{\tilde{t}_i}{\overset{\tilde{t}_i}{\text{fi}}} &h \end{array}$	$\mathcal{A}_i \propto \kappa_{h \tilde{t} \tilde{t}}^{ij} ^2$
8	Bubble and triangle with $hh\bar{t}\bar{t}$ coupling		$\mathcal{A}_i \propto \kappa_{hh\bar{t}\bar{t}}^{ii}$
	Only diagonal couplings between the Higgs and the squarks due to the strong interaction.		

▶ ◀ Ē ▶ Ē ∽ ९ ៚ 9/19

We speed up simulations by recycling amplitudes

- The amplitude from a diagram depends on couplings and masses
- We factorise out the coupling dependence and simulate the individual amplitudes on a grid of mass values
- We can then quickly calculate the full cross section by weighting the amplitudes with the corresponding coupling values
- Contributions from individual diagrams and their interferences can be easily extracted (ie, unfolding known MSSM results here, eg, Huang, Joglekar, Li, Wagner, arXiv:1711.05743)

10 / 19

The overall cross section dependence is well known

Previous studies have shown that light stops can produce sizable effects with large A_t and $tan \beta$ (MSSM)

Use here (N)MSSM spectrum from SPheno, HB/HS for experimental constraints, direct stop searches, MG5_aMC engine, NNPDF3.0 LO PDFs

Our approach allows to see individual contributions clearly

Take a MSSM benchmark point that gives a largish cross section (23 fb)

Enhancements of 40% at 2m(top) and factor of 10 at 2m(stop)

The excess is larger than PDF and scale uncertainties

Cinderella shoe plots: high mass enhancement separates from SM background (LO here, ME@NLO analysis in progress) while low mass effect needs better systematics

NMSSM gives *different* features at low and high masses

Take a NMSSM benchmark point that gives a largish cross section (12 fb)

Depletion of -50% at 2m(top) and enhancement (factor of 5) at 2m(stop)

Experimental prospects

But searches are not optimised (no correlations in line-shape used)

ク Q (や 15 / 19

Future developments: Framework

Presently

=> We developed new numerical approach through simplified model library

Plans to

- generalise the framework to other representations of SU(3) and to spin 1/2 so that $gg \rightarrow hh$ could be simulated easily within a large class of models
- make a public database of unweighted amplitudes for the community to use
- include two-loop corrections (can do di-Higgs + jets, other BSM probe)
- investigate if one could deform the distributions so that one is not limited to the grid values for masses
 - => Final mapping onto EFT frameworks (SMEFT, HEFT, etc.) and UV finite theories (supersymmetry, compositeness, etc.)

Future developments: Physics

Presently

=> Library applied to supersymmetry ((N)MSSM) & compositeness (C2HDM)

Plans to

- use the framework to study a larger class of realistic models
- use the framework to revert the collider problem: if some excess were seen, can we extract the couplings and model parameters (and even understand which model to choose)? It (kind of) works with blind MSSM points.
- study cosmology (EWPTs) of non-SM Higgs potentials pegged to LHC data
 - => If excess is seen, simplified model library allows extraction of masses and couplings, then mapping onto EFT (including hybrid EFT) and UV finite theories and as well as inform cosmology dynamics

Summary

- New simplified model-independent framework for di-Higgs studies, MC efficient by reweighting individual contributions (Panizzi & Waltari)
- Approach allows one to analyse processes at given benchmark points and to understand which topologies contribute to a given feature including reverse engineering possible deviations (Sjoelin, ATLAS)
- Example: light stops produce very significant deviations at high invariant masses and sizeable ones at low invariant masses
- Coupling modifier/EFT framework incorrect if light BSM particles are present (consider hybrid EFT), full theories cumbersome to test
- UFO model at https://hepmdb.soton.ac.uk/hepmdb:0223.0337 with instructions for supersymmetry (compositeness case available soon)

=> Gone beyond current phenomenology paradigms for di-Higgs production

PS: Many thanks to Panizzi & Waltari for template slides!

NMSSM with two light stops has no clear excess

- clear deficit at low M_{hh} due to modified couplings
- no excess at $2m_{\tilde{t}}$ due to small trilinear couplings

∃ ⊳

Given an experimental dataset, is it possible to fit the parameters?

A testing with our MC sets:

- 1) We generated a benchmark
- 2) "Blinded" the parameters and asked our ATLAS colleague to do the parametric fit

But how wrong is this fit?

Caveats:

- Only couplings were fitted, stop masses were assumed
- MSSM relations between couplings were assumed, but the point was random