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Introduction

• DM may be the most stablished reason for physics BSM



• It turns out that a WIMP: a stable massive object with 
weak interactions and a mass around the EW scale 
reproduces the observed relic abundance.


• It has interesting experimental consequences.
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•  But:



• Most models (well-tempered, higgs portals,….) are 
excluded by DD bounds.


• Among the usual candidates for DM in the MSSM 
(neutralinos) the ones with less constrains (specially from 
direct detections):


• Pure Higgsino with mass ~1.1-1.2 TeV.


• Blind spot in a Higgsino-Bino


• Gravitino



Pure Higgsino

• The model is 5D extension of the MSSM.


• The extra dimension of size πR is compactified on an 
orbifold S1/Z2


• The discrete symmetry Z2 breaks half of the super 
symmetries making all fields either even/odd


• The model has three free parameters (qR,qH,R)

arXiv:1812.08019
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• Range of values for masses of the LSP between 1.1-1.2 
TeV

Note that our procedure is conservative. Had we fixed the matching scale at the top
quark mass, we would have considered the renormalization group running of the quartic
coupling between the scales 1/R and mt in the one-loop approximation. As shown in
MSSM Higgs studies [24–26], one-loop running from the cut-o↵ to mt overshoots the
Higgs mass, yielding a larger value than the result if all large logarithms are resummed
by renormalization group techniques.

Finally the matching condition is then given by 4

��(µ0) = �
SM =

m
2
H

2v2
(4.5)

and fixing the Higgs mass to its experimental value, using the matching condition (4.5)
sets qR and 1/R. The allowed values in the (qR, qR/R) plane are shown in Fig. 2. The
almost verticality of solid lines reflects the 1/R independence of ��/h

4
t
. As we can see for

fixed value of qH/R (either 1.1 or 1.2 TeV) there are two points that satisfy the electroweak
breaking condition and the Higgs mass value. However if we further impose the relation
that the Higgsino be the LSP there is a single for every value of qH/R.

5 The spectrum and phenomenology

As we can see from Fig. 2 the (qR, qR/R) points that satisfy both the EWSB and mH =
125GeV conditions correspond to where the solid (red and blue) lines intersect for a fixed
value of qH/R. There are two intersections in each case but only one of them remains if
we impose that the Higgsino be the LSP. The parameter values for the remaining points,
which we name A and B, as well as some details of the spectra, are listed in Tab. 1.

Point qR qH 1/R (TeV) qR/R (TeV) qH/R (TeV) Mg̃ (TeV) mH0 (TeV)
A 0.31 0.2 5.5 1.7 1.1 2.0 2.7
B 0.31 0.2 5.9 1.9 1.2 2.1 2.9

Table 1: Points from Fig. 2 that satisfy the conditions of correct electroweak breaking for a single

Higgs field, the correct value of the Higgs mass at 125 GeV, and the Higgsino with a mass at

1.1 and 1.2 TeV being the LSP. The supersymmetric parameters for points A and B should be

considered as the limits for the allowed ranges.

Some comments about the spectrum:

4
As we have already integrated out the top quark in the contribution of the corresponding tower to

Eq. (4.2), and in the approximation we are considering where we are neglecting the contribution from

the gauge g and gY , and quartic �, couplings, �SM
is given by its value at the scale mt.

12



•  The LSP is 99% Higgsino and has a cross section of 
10-10 pb
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Figure 3: The neutralino-proton spin-independent cross section, �SI
p
, for a typical case of

predominantly higgsino-like neutralino DM with m� = 1.0TeV as a function of higgsino
purity fhiggsino (⌘ fh).

papers, for example [92–95]. By simple inspection of Eq. (1), however, one can infer a rough
approximation for the higgsino fraction in the limit of nearly pure higgsinos, |µ| ⌧ M2 ⇡ M1:

1� fh ⇡
m

2
W

(M1,2 � |µ|)2
. (5)

Equation (5) becomes quite accurate for fh ⇠
> 0.999.

The spin-independent cross section of the neutralino with protons (nucleons), �
SI
p

=

(4µ2
red/⇡) |Ap|

2, can be parameterized for moderate-to-large tan� simply as [3]

Ap(fh) ⇡ ae↵
fTG

9

mp

v

g

p
fh (1� fh)

m
2
h

, (6)

in terms of the gluon fractional content of the proton, fTG (we use the default value for
micrOMEGAs v4.3.1 [96], fTG = 0.92), and a phenomenological fudge factor, ae↵ ⇡ 0.9� 1,
which takes into account the dependence of Ap on twist-two operators [97] and higher-order
loop corrections [98].

We show in Fig. 3 a plot of �SI
p

as a function of purity fh for a m� = 1TeV neutralino (to
a first approximation the DM mass a↵ects the cross section only through the reduced mass
leading to µred ⇡ mp). One can see that, for admixtures dominated by the higgsino fraction,
the most recent XENON-1T 90% C.L. upper bound [99] on �

SI
p

enforces fh > 98%, so that
viable DM candidates ought to be very close to a pure higgsino state.

Since the purity of well-tempered higgsino-dominated neutralinos stays well below 90%
in those models attempting to provide a satisfactory solution to the hierarchy problem while
saturating the relic abundance [35], we conclude that, barring increasingly narrow corners of
the parameter space [91], these scenarios have become very hard to rescue or justify in light
of the most recent direct detection bounds.

To conclude this subsection, we finally recall that in cases where |M1| < |µ| . 1 �

2TeV, one obtains scenarios where the mixed neutralino is predominantly bino-like, but also

11
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•  A 2 TeV gluino may need HL (~1 ab-1) LHC


• The best chance to discover the Higgsino is in direct 
detection experiments like XENON-nT or LZ


•  Fine tuning in this model is smaller than normal due to:


• Low supersymmetry breaking scale


• The electroweak scale depends linearly and not 
quadratically on the parameters 



Blind Spots
• Blind spots corresponds to points in parameter space 

where the coupling of the DM to nuclei is suppressed.


• We are going to analyze those in a generic model where 
DM is an admixture of a singlet and doublet fermion 
(bino-higgsino) in a 2HDM


• Higgs measurements force us to be in the alignment limit

fermionic SU(2) doublets D1, D2 (⇠ “Higgsinos”), with hypercharges +1/2, �1/2 respectively, and

a fermionic singlet S (⇠ “Singlino”) with zero hypercharge. The D1, D2 states can be combined in a

Dirac fermion, if desired. The notation here follows that of ref. [11], in order to facilitate comparisons.

Note that this Dirac fermion represents the minimal UV completion of a fermion-singlet Higgs-portal

scenario for DM.

The relevant terms of the most general Lagrangian for the dark sector are:

� L �
1

2
MSSS +MDD1D2 + y

1
1SD1�̄1 + y

1
2SD2�1 + y

2
1SD1�̄2 + y

2
2SD2�2 + h.c. , (1)

where �̄1,2 = i�2�⇤
1,2 and MD,MS (yj

i
) are mass (Yukawa-coupling) parameters. The Higgs doublets

acquire vacuum expectation values (VEVs) according to the structure of the 2HDM Higgs potential,

which we do not write here explicitly (for further details see ref. [14]). Then, the CP-even neutral

part of the Higgses reads

�1,2 =
1
p
2

 
0

v1,2 + h
0
1,2

!
, �̄1,2 =

1
p
2

 
v1,2 + h

0
1,2

0

!
, (2)

where v
2
1 + v

2
2 = v

2 = (246 GeV)2. As usual, we define the tan� parameter so that

v1 = v cos�, v2 = v sin�. (3)

With these definitions, the relevant Lagrangian for the neutral states reads

�L �
1

2
MSSS �MDD

0
1D

0
2 �

1
p
2
y
1
1SD

0
1(v1 + h

0
1) +

1
p
2
y
1
2SD

0
2(v1 + h

0
1)

�
1
p
2
y
2
1SD

0
1(v2 + h

0
2) +

1
p
2
y
2
2SD

0
2(v2 + h

0
2) + h.c. (4)

Although in principle all the masses and couplings in the Lagrangian are complex, there are only

three independent phases, namely those of M⇤
S
M

⇤
D
y
1
1y

1
2, y

1
1(y

2
1)

⇤, y12(y
2
2)

⇤, which we will assume to

be real to avoid CP violations. This allows to take the six parameters of the Lagrangian as real

quantities and to fix the sign of three of them. We will make use of this freedom later.

Of course, the fields appearing in the previous expression do not correspond to the mass eigen-

states. For the Higgs sector the latter are h
0
, H

0, i.e. the light (standard) and the heavy Higgses,

respectively, which are related to the original h01, h
0
2 fields by a basis rotation

 
h
0

H
0

!
=

 
cos↵ � sin↵

sin↵ cos↵

! 
h
0
2

h
0
1

!
. (5)

The masses of the two physical Higgses (mh0 = 125 GeV, mH0) are determined by the structure

of the Higgs potential. This is also true for the ↵ angle, which, in principle, is independent of �;

although in the decoupling limit (mH0 ! 1) they are related by ↵ = � � ⇡/2.

Concerning the (neutral) fermionic sector, the “neutralino” mass eigenstates, �0
1,2,3 arise upon

diagonalization of the mass matrix MN , defined as

� Lmass =
1

2
(S,D0

1, D
0
2) MN

0

B@
S

D
0
1

D
0
2

1

CA + h.c. , (6)

2
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with

y
2 = (y1)

2 + (y2)
2
, c✓ =

y1

y
, s✓ =

y2

y
,

ỹ
2 = (ỹ1)

2 + (ỹ2)
2
, c

✓̃
=

ỹ1

ỹ
, s

✓̃
=

ỹ2

ỹ
. (23)

The expression for D, Eq. (15), is also simplified

D = ±2|m
�
0
i

|MS � 3m2
�
0
i

+
1

2
y
2
v
2 +M

2
D . (24)

Note that yh�i�i
/ y

2, while yH�i�i
/ yỹ. This occurs because in the alignment limit the Higgs

VEV comes entirely from the doublet associated with the light Higgs, h0, which thus appears always

in the v+h
0 combination. Then, due to SU(2) invariance both e↵ective couplings involve a v�factor

and thereby a y�Yukawa, see Eq. (19). For the same reason, it is easy to show that in this limit the

expression (21) for yh�i�i
can be obtained from

yh�i�i
= ±

1

2

@m
�
0
i

@v
. (25)

In the following, we make use of the freedom to fix the sign of three parameters to take MS , y1 and

y2 as positive, while the signs of MD, ỹ1, ỹ2 can be positive or negative. Consequently, ✓ 2 [0,⇡/2],

✓̃ 2 [0, 2⇡]. This convention allows to scan the whole parameter space in a complete and non-

redundant way; and it converges to the sign convention used in ref. [11] for the case of a single

Higgs.

4.1 Alignment from decoupling

A somewhat trivial way to obtain alignment is through decoupling, i.e. when mH0 � mh0 (for

details see ref. [14]). Then, the contribution of the heavy Higgs to the DD cross section becomes

negligible and the e↵ective coupling y
e↵
DD of Eq. (20) reads

y
e↵
DD / yh�1�1 / ±MD sin 2✓ + |m

�
0
1
|, (26)

which coincides with the expression obtained in ref. [11] for just one Higgs, as expected. Note that

in this limit a blind spot is only possible when MD < 0. The reason is the following. From Eq. (25),

the blind spot condition, yh�1�1 = 0, implies that m
�
0
1
does not depend on v, and thus must be

equal to one of the mass eigenvalues of the mass matrix, Eq. (7), when v = 0, i.e. MS , MD or �MD.

However, since ±MD sin 2✓ + |m
�
0
1
| = 0, this can only be achieved (barring the sin 2✓ = 1 case) if

m
�
0
1
= MS (and thus positive) and MD < 0. Note also that in the decoupling limit the existence of

a blind spot requires MS  |MD|, barring the aforementioned case.

All this is illustrated in the scan of Fig. 1 which shows the physically viable region in them
�
0
1
�mD

plane where ⌦
�
0
1
 ⌦obs

DM, fulfilling DD bounds from XENON1T [21,22] and PICO-60 [23]. The two

narrow and dense strips at m
�
0
1
= ±MD correspond to models where �1 is either almost a pure

doublet, i.e. a combination of the D
0
1, D

0
2 fields; or a well-tempered mixture of S and D

0
1, D

0
2 [24].

Comparison of the upper branch (where there is no blind spot and the dark matter is in a well-

tempered regime) with the lower one shows the noticeable e↵ect of the blind spot. The Z� and

h�funnel regions are also visible in the plot.
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yH�i�i
= �

1

2D

�
±MD

⇥
ỹ1

�
y
1
2v1 + y

2
2v2

�
+ ỹ2

�
y
1
1v1 + y

2
1v2

�⇤

+|m
�
0
i

|
⇥
ỹ1

�
y
1
1v1 + y

2
1v2

�
+ ỹ2

�
y
1
2v1 + y

2
2v2

�⇤o
, (17)

where we have defined

y1 = �y
1
1s↵ + y

2
1c↵, y2 = �y

1
2s↵ + y

2
2c↵,

ỹ1 = y
1
1c↵ + y

2
1s↵, ỹ2 = y

1
2c↵ + y

2
2s↵. (18)

Note that yH0�i�i
can be obtained from yh0�i�i

by simply replacing y1,2 ! ỹ1,2. The reason is simply

that y1,2, ỹ1,2 are the couplings of h0, H0 to the initial D1,2 doublets. Namely, from Eqs. (4, 5),

�L � �
1
p
2
y1SD

0
1h

0 +
1
p
2
y2SD

0
2h

0
�

1
p
2
ỹ1SD

0
1H

0 +
1
p
2
ỹ2SD

0
2H

0 + h.c. , (19)

with y1,2, ỹ1,2 given by Eq. (18).

From expressions (16-18), it is straightforward to obtain the blind spots, i.e. the region of

parameters where the spin-independent DD cross section is suppressed. Generically, the amplitude

for the DM-nucleon scattering, �
0
1N ! �

0
1N , mediated by a Higgs (h0 or H

0 in t�channel) is

proportional to the e↵ective coupling, ye↵DD/m
2
h
, with

y
e↵
DD ⌘

X

q


yh�1�1 +

m
2
h

m
2
H

Cq yH�1�1

�
f
N

q . (20)

Here q runs over the quarks in the nucleon, N ; fN
q (with N = p, n) are the hadronic matrix elements,

determined either experimentally or by lattice QCD simulations and related to the mass fraction of

q within the nucleon; and Cq is a numerical factor that gives the departure of the coupling of the

quark q to the heavy Higgs, H0, from that of the SM Higgs, h0. The Cq factors depend on the type

of the 2HDM considered (more details in the next section). Whenever y
e↵
DD ' 0, we are in a blind

spot region of the parameter space.

4 Blind spots in the alignment limit

Experimental constraints indicate that the 125 GeV Higgs of a 2HDM cannot be very di↵erent from

the SM Higgs [15–20]. We adopt the conservative approach that the light Higgs is 100% SM-like (a

situation which is usually called “alignment”), which e↵ectively means that the heavy Higgs does

not obtain a VEV, i.e. it is inert. The analysis of this model when the heavy Higgs is allowed to have

a VEV consistent with the present experimental data will be postponed for a forthcoming paper.

Consequently, from now on we will concentrate in the alignment limit to illustrate the structure of

the blind spots.

The exact alignment limit (with the light Higgs, h0, playing the role of the SM Higgs boson)

occurs for c��↵ = 0, i.e. ↵ = � � ⇡/2. Then, we can recast expressions (16, 17) as

yh�i�i
= �

1

2D
y
2
v (±MD sin 2✓ + |m

�
0
i

|) , (21)

yH�i�i
= �

1

2D
yỹv (±MD sin(✓ + ✓̃) + |m

�
0
i

| cos(✓ � ✓̃)) , (22)

4

Alignment without decoupling 
Z6=0

yH�i�i
= �

1

2D

�
±MD

⇥
ỹ1

�
y
1
2v1 + y

2
2v2

�
+ ỹ2

�
y
1
1v1 + y

2
1v2

�⇤

+|m
�
0
i

|
⇥
ỹ1

�
y
1
1v1 + y

2
1v2

�
+ ỹ2

�
y
1
2v1 + y

2
2v2

�⇤o
, (17)

where we have defined

y1 = �y
1
1s↵ + y

2
1c↵, y2 = �y

1
2s↵ + y

2
2c↵,

ỹ1 = y
1
1c↵ + y

2
1s↵, ỹ2 = y

1
2c↵ + y

2
2s↵. (18)

Note that yH0�i�i
can be obtained from yh0�i�i

by simply replacing y1,2 ! ỹ1,2. The reason is simply

that y1,2, ỹ1,2 are the couplings of h0, H0 to the initial D1,2 doublets. Namely, from Eqs. (4, 5),

�L � �
1
p
2
y1SD

0
1h

0 +
1
p
2
y2SD

0
2h

0
�

1
p
2
ỹ1SD

0
1H

0 +
1
p
2
ỹ2SD

0
2H

0 + h.c. , (19)

with y1,2, ỹ1,2 given by Eq. (18).

From expressions (16-18), it is straightforward to obtain the blind spots, i.e. the region of

parameters where the spin-independent DD cross section is suppressed. Generically, the amplitude

for the DM-nucleon scattering, �
0
1N ! �

0
1N , mediated by a Higgs (h0 or H

0 in t�channel) is

proportional to the e↵ective coupling, ye↵DD/m
2
h
, with

y
e↵
DD ⌘

X

q


yh�1�1 +

m
2
h

m
2
H

Cq yH�1�1

�
f
N

q . (20)

Here q runs over the quarks in the nucleon, N ; fN
q (with N = p, n) are the hadronic matrix elements,

determined either experimentally or by lattice QCD simulations and related to the mass fraction of

q within the nucleon; and Cq is a numerical factor that gives the departure of the coupling of the

quark q to the heavy Higgs, H0, from that of the SM Higgs, h0. The Cq factors depend on the type

of the 2HDM considered (more details in the next section). Whenever y
e↵
DD ' 0, we are in a blind

spot region of the parameter space.

4 Blind spots in the alignment limit

Experimental constraints indicate that the 125 GeV Higgs of a 2HDM cannot be very di↵erent from

the SM Higgs [15–20]. We adopt the conservative approach that the light Higgs is 100% SM-like (a

situation which is usually called “alignment”), which e↵ectively means that the heavy Higgs does

not obtain a VEV, i.e. it is inert. The analysis of this model when the heavy Higgs is allowed to have

a VEV consistent with the present experimental data will be postponed for a forthcoming paper.

Consequently, from now on we will concentrate in the alignment limit to illustrate the structure of

the blind spots.

The exact alignment limit (with the light Higgs, h0, playing the role of the SM Higgs boson)

occurs for c��↵ = 0, i.e. ↵ = � � ⇡/2. Then, we can recast expressions (16, 17) as

yh�i�i
= �

1

2D
y
2
v (±MD sin 2✓ + |m

�
0
i

|) , (21)

yH�i�i
= �

1

2D
yỹv (±MD sin(✓ + ✓̃) + |m

�
0
i

| cos(✓ � ✓̃)) , (22)
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with

y
2 = (y1)

2 + (y2)
2
, c✓ =

y1

y
, s✓ =

y2

y
,

ỹ
2 = (ỹ1)

2 + (ỹ2)
2
, c

✓̃
=

ỹ1

ỹ
, s

✓̃
=

ỹ2

ỹ
. (23)

The expression for D, Eq. (15), is also simplified

D = ±2|m
�
0
i

|MS � 3m2
�
0
i

+
1

2
y
2
v
2 +M

2
D . (24)

Note that yh�i�i
/ y

2, while yH�i�i
/ yỹ. This occurs because in the alignment limit the Higgs

VEV comes entirely from the doublet associated with the light Higgs, h0, which thus appears always

in the v+h
0 combination. Then, due to SU(2) invariance both e↵ective couplings involve a v�factor

and thereby a y�Yukawa, see Eq. (19). For the same reason, it is easy to show that in this limit the

expression (21) for yh�i�i
can be obtained from

yh�i�i
= ±

1

2

@m
�
0
i

@v
. (25)

In the following, we make use of the freedom to fix the sign of three parameters to take MS , y1 and

y2 as positive, while the signs of MD, ỹ1, ỹ2 can be positive or negative. Consequently, ✓ 2 [0,⇡/2],

✓̃ 2 [0, 2⇡]. This convention allows to scan the whole parameter space in a complete and non-

redundant way; and it converges to the sign convention used in ref. [11] for the case of a single

Higgs.

4.1 Alignment from decoupling

A somewhat trivial way to obtain alignment is through decoupling, i.e. when mH0 � mh0 (for

details see ref. [14]). Then, the contribution of the heavy Higgs to the DD cross section becomes

negligible and the e↵ective coupling y
e↵
DD of Eq. (20) reads

y
e↵
DD / yh�1�1 / ±MD sin 2✓ + |m

�
0
1
|, (26)

which coincides with the expression obtained in ref. [11] for just one Higgs, as expected. Note that

in this limit a blind spot is only possible when MD < 0. The reason is the following. From Eq. (25),

the blind spot condition, yh�1�1 = 0, implies that m
�
0
1
does not depend on v, and thus must be

equal to one of the mass eigenvalues of the mass matrix, Eq. (7), when v = 0, i.e. MS , MD or �MD.

However, since ±MD sin 2✓ + |m
�
0
1
| = 0, this can only be achieved (barring the sin 2✓ = 1 case) if

m
�
0
1
= MS (and thus positive) and MD < 0. Note also that in the decoupling limit the existence of

a blind spot requires MS  |MD|, barring the aforementioned case.

All this is illustrated in the scan of Fig. 1 which shows the physically viable region in them
�
0
1
�mD

plane where ⌦
�
0
1
 ⌦obs

DM, fulfilling DD bounds from XENON1T [21,22] and PICO-60 [23]. The two

narrow and dense strips at m
�
0
1
= ±MD correspond to models where �1 is either almost a pure

doublet, i.e. a combination of the D
0
1, D

0
2 fields; or a well-tempered mixture of S and D

0
1, D

0
2 [24].

Comparison of the upper branch (where there is no blind spot and the dark matter is in a well-

tempered regime) with the lower one shows the noticeable e↵ect of the blind spot. The Z� and

h�funnel regions are also visible in the plot.
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• One candidate for DM which is insensitive to DD 
measurements is the Gravitino


• It is the LSP in models of GMSB.


• It allows to a spectrum where the NLSP may be a 
chargino leading to a very interesting signal.

Gravitino
arXiv:1912.03215



• This spectrum is insensitive to tri-leptons if the neutralinos 
do not decay to the LSP directly and the whole doublet 
contributes to the same signal WW+MET 

4

in any model where the charged particle belongs to a non-trivial SU(2)w multiplet, electroweak
invariance prevents splitting the di↵erent components by arbitrarily large values – and any term
that distinguishes among the di↵erent members of the multiplet have to be proportional to the
vacuum expectation value of the Higgs.

However, as will review below, it is possible to reverse the mass order of the lightest chargino
and the lightest neutralino. With no further additions, this mass ordering is not acceptable cosmo-
logically, as the lightest electroweakino is now charged, but if we embed the scenario in the context
of gauge mediated supersymmetry breaking (or another setup with supersymmetry breaking at a
low scale) then the gravitino is the LSP and there is no immediate issue4.

With the gravitino as LSP, an NLSP chargino will decay to W±+ LSP. The lightest neutralino
can decay directly to Z0+ LSP, however it now also has the possibility to decay to W⌥+�± (beta
decay). If the latter dominates su�ciently, Z0 decays are eliminated and the trilepton signal is
stifled.

Finally, even if beta decay of neutralinos dominates, neutralino production followed by beta
decay and �± ! W± + LSP can still lead to a trilepton signal, i.e. pp ! �2�± ! W±�+�� !
3`+/ET . This contribution can be suppressed as well if �0

2 and �± have similar mass. In this case,
the lepton from the beta decay is too soft to pass the detector id requirements.

While this set of requirements removes (or at least strongly suppresses) the trilepton signal,
there are now several channels (�+��,�±�2, �1�2, etc.) contributing to the `+`� + /ET final state
and must be considered when interpreting the W+W� channel bound. In Fig. 2 we summarize the
necessary criteria for W+W�+/ET to be the most sensitive channel.

�+
�01
�02

LSP

� � decay

W + ET

Figure 2. Schematic spectrum that will have W+W�+/ET as discovery channel. The mass splitting between
the neutralinos and the chargino is small so the products from �-decay are very soft. The number of
neutralinos is model dependent but it does not a↵ect the conclusion. In this case, the LSP is the gravitino.

To better illustrate how these requirements work and what they demand of the spectrum, we now
introduce three benchmark scenarios. In the context of supersymmetry, the electroweakino sector
has been vastly studied in the literature. In particular, Ref. [7] precisely analyzed the conditions
for the chargino to be the lightest of the electroweakinos in two di↵erent supersymmetric models.
We now proceed to summarize what was found in Ref. [7] and to quote the results relevant to our
paper.

Starting within the MSSM, and in the limit when one assumes the electroweak breaking e↵ects

4
The gravitino as DM candidate has some challenges from the model builidng point of view [8] but any discussion

in this direction is beyond the scope of this paper since the solutions do not involve the electroweakino spectrum.

Sample spectrum with the chargino as NLSP

very soft products
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GeV. While the turn on of the W±Z0+ /ET sensitivity will not be immediate at �m = 10GeV, we
will focus on �m between 5 (smaller values will lead to a long lived chargino for the values of m3/2

we are considering) and 10 GeV. Since m3/2 < 100 eV when translating experimental constraints
into this scenario, we must be careful to use interpretations that also assume a massless LSP.

One additional feature of this scenario that is worth mentioning is that the neutralinos are
predominantly higgsino like and are therefore pseudo-Dirac [11]. As a result, the production of
same-sign charginos – coming from neutralino decays and leading to a final state of same sign
leptons plus /ET (i.e., pp ! �1�2 ! �+�+G̃G̃ ! W+(`+⌫)W+(`+⌫) + /ET ) – is very suppressed.
The origin of the suppression is an approximate charge conjugation symmetry only broken by the
small splitting between the two neutralinos [11].

0.1 1 10 100 1000
100

200

300

400

500

600

m3/2(eV)

m
�(
G
eV

)

Figure 3. Line of R� = 1/2 for �m = 5 GeV (dashed) and �m = 10 GeV (solid) in the chargino mass versus
gravitino mass plane. The shaded region corresponds to a prompt decay of the chargino. The region right of
the lines while in the shaded region is the parameter space where W+W�+/ET will give the strongest bound
in this model.

While it is possible to arrange for m�± < m
�
0
1
in the MSSM, the parameter space is quite

limited. However, in extensions of the MSSM with Dirac gaugino masses, m�± < m
�
0
1
is far more

common. Some scenarios that contain Dirac gauginos include extra-dimensional supersymmetry
models [15–18] or 4D models where the U(1)R symmetry present in the supersymmetric kinetic
term is imposed on the rest of the theory [6, 19–22]. In these so-called R-symmetric models, there
are actually four charginos: the two states from the MSSM, one from the SU(2)w adjoint Dirac
partner of the wino, and one from an additional SU(2)w doublet (an R-Higgs) whose presence is
required to impose exact R symmetry on the Higgs terms in the superpotential. For reference, the
superpotential for this setup is shown in Appendix A. These four states can be further classified
by their R-charge (±1), so the chargino mass matrix splits into two 2 ⇥ 2 blocks. In the limit of
large tan� and a vanishing SU(2)w adjoint vev, the 2⇥ 2 block containing the lightest eigenvalue
simplifies to

M�± =

✓
MD2 O(gv/

p
2)

O(�v/
p
2) µ

◆
(7)

Region of the parameter space where the neutralino do not decay to the LSP

Displaced vertex

Δm=10 GeV
Δm=5 GeV



• There is a search (arXiv:1908.08215) for WW+MET, with the full run II 
date



• There is a search (arXiv:1908.08215) for WW+MET, with the full run II 
date

We have reinterpreted 
the bound and we obtained 

m>460 GeV 
(ATLAS quotes a bound of 410 GeV 

For an isolated chargino)



• There is a search (arXiv:1908.08215) for WW+MET, with the full run II 
date
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Figure 5. The pT of the third hardest lepton in simulated events that pass the ATLAS analysis. The dotted
lines indicate the contributions from (starting from the bottom) pp ! �0

1�
0
2 (yellow), �0
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(green), �0
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� (violet), and ���+ (cyan). The black line shows the sum of all contributions.

criteria: 1.) a compressed electroweakino spectrum, with a chargino as the lightest state and mass
splittings to heavier neutralino state(s) O(10GeV), 2.) the predominant neutralino decay mode is
beta decay, to �±+W⌥, and 3.) a gravitino LSP (or other, neutral, non-electroweakino state). One
unavoidable consequence of these criteria is that, all �i�j , i = 1, 2,± modes lead to a W±W⌥+ /ET

final state (plus additional, soft particles) and must be considered when interpreting experimental
limits in that channel.

We provided three example models, two supersymmetric and one non, that realizes the above
features. Then, using a MSSM GMSB model with Higgsinos as the lightest electroweakinos, we
recast the ATLAS W+W� + /ET analysis, including all electroweakino modes. For mass splittings
among all electroweakinos �m < 10GeV, we find all electroweakino modes have the same analysis
e�ciency. The resulting exclusion bound is m� > 460GeV, compared to the ATLAS bound of
410GeV (massless LSP).

In general, there are soft leptons coming from the (beta-)decay of the neutralino to the chargino
that can potentially be used to distinguish between a model with an isolated charged state from a
model with a doublet almost degenerated in mass.

ACKNOWLEDGMENTS

This work was partially supported by the National Science Foundation under grant PHY-
1820860. We would like to thank Benjamin Fuks for helping us with the implementation of the
Feynrules model and Zach Marshall for communication about the ATLAS search.

We have reinterpreted 
the bound and we obtained 

m>460 GeV 
(ATLAS quotes a bound of 410 GeV 

For an isolated chargino)



• There is a search (arXiv:1908.08215) for WW+MET, with the full run II 
date

12

0 5 10 15 20 25 30 35 40 45 50
3rd lepton pT (GeV)

0

0.2

0.4

0.6

0.8

1

-1
ev

en
ts

 p
er

 1
00

 fb

Figure 5. The pT of the third hardest lepton in simulated events that pass the ATLAS analysis. The dotted
lines indicate the contributions from (starting from the bottom) pp ! �0

1�
0
2 (yellow), �0

1�
+ (blue), �0

1�
�

(green), �0
2�

+ (red), �0
2�

� (violet), and ���+ (cyan). The black line shows the sum of all contributions.

criteria: 1.) a compressed electroweakino spectrum, with a chargino as the lightest state and mass
splittings to heavier neutralino state(s) O(10GeV), 2.) the predominant neutralino decay mode is
beta decay, to �±+W⌥, and 3.) a gravitino LSP (or other, neutral, non-electroweakino state). One
unavoidable consequence of these criteria is that, all �i�j , i = 1, 2,± modes lead to a W±W⌥+ /ET

final state (plus additional, soft particles) and must be considered when interpreting experimental
limits in that channel.

We provided three example models, two supersymmetric and one non, that realizes the above
features. Then, using a MSSM GMSB model with Higgsinos as the lightest electroweakinos, we
recast the ATLAS W+W� + /ET analysis, including all electroweakino modes. For mass splittings
among all electroweakinos �m < 10GeV, we find all electroweakino modes have the same analysis
e�ciency. The resulting exclusion bound is m� > 460GeV, compared to the ATLAS bound of
410GeV (massless LSP).

In general, there are soft leptons coming from the (beta-)decay of the neutralino to the chargino
that can potentially be used to distinguish between a model with an isolated charged state from a
model with a doublet almost degenerated in mass.

ACKNOWLEDGMENTS

This work was partially supported by the National Science Foundation under grant PHY-
1820860. We would like to thank Benjamin Fuks for helping us with the implementation of the
Feynrules model and Zach Marshall for communication about the ATLAS search.

We have reinterpreted 
the bound and we obtained 

m>460 GeV 
(ATLAS quotes a bound of 410 GeV 

For an isolated chargino)

The figure indicates the spectrum of the 
Third lepton that could be use 

To discriminate between models



Conclusions
• In this talk I have shown three different scenarios of DM that 

scape DD detection:


• Pure Higgisino (~1.1 TeV) in an extra dimensional model


• Blind spots in a 2HDM in the alignment without 
decoupling limit


• Chargino NLSP in GMSB


• There are still a lot of parameter space in WIMP scenarios 
that can lead to very interesting signatures. Specially in new 
colliders (FCC-hh, muon collider) ‘work in progress’


