Quo Vadis, DM?

Antonio Delgado University of Notre Dame

- Introduction: Problems with "standard" DM
- Solutions:
 - Pure Higgisino
 - Blind spots
 - Gravitino
- Conclusion

Collaborators: M.E. Cabrera, A. Casas, A. Martin, M. Quirós and S. Robles

Introduction

• DM may be the most stablished reason for physics BSM

 It turns out that a WIMP: a stable massive object with weak interactions and a mass around the EW scale reproduces the observed relic abundance.

 $\Omega h^2 \simeq 0.118$

• It has interesting experimental consequences.

• But:

- Most models (well-tempered, higgs portals,....) are excluded by DD bounds.
- Among the usual candidates for DM in the MSSM (neutralinos) the ones with less constrains (specially from direct detections):
 - Pure Higgsino with mass ~1.1-1.2 TeV.
 - Blind spot in a Higgsino-Bino
 - Gravitino

Pure Higgsino

arXiv:1812.08019

- The model is 5D extension of the MSSM.
- The extra dimension of size πR is compactified on an orbifold S^{1}/Z_{2}
- The discrete symmetry Z₂ breaks half of the super symmetries making all fields either even/odd
- The model has three free parameters (q_R,q_H,R)

Higgsino not the LSP

Higgsino not the LSP

Higgsino not the LSP

Higgsino not the LSP

Point	q_R	q_H	1/R (TeV)	q_R/R (TeV)	q_H/R (TeV)	$M_{\tilde{g}}$ (TeV)	$m_{\mathcal{H}'}$ (TeV)
A	0.31	0.2	5.5	1.7	1.1	2.0	2.7
	0.31	0.2	5.9	1.9	1.2	2.1	2.9

 Range of values for masses of the LSP between 1.1-1.2 TeV

 The LSP is 99% Higgsino and has a cross section of 10⁻¹⁰ pb

- A 2 TeV gluino may need HL (~1 ab⁻¹) LHC
- The best chance to discover the Higgsino is in direct detection experiments like XENON-nT or LZ
- Fine tuning in this model is smaller than normal due to:
 - Low supersymmetry breaking scale
 - The electroweak scale depends linearly and not quadratically on the parameters

Blind Spots

arXiv:1912.01578

- Blind spots corresponds to points in parameter space where the coupling of the DM to nuclei is suppressed.
- We are going to analyze those in a generic model where DM is an admixture of a singlet and doublet fermion (bino-higgsino) in a 2HDM

$$-\mathcal{L} \supset \frac{1}{2}M_SSS + M_DD_1D_2 + y_1^1SD_1\bar{\Phi}_1 + y_2^1SD_2\Phi_1 + y_1^2SD_1\bar{\Phi}_2 + y_2^2SD_2\Phi_2 + h.c.$$

• Higgs measurements force us to be in the alignment limit

Decoupling limit

 $y_{h\chi_1\chi_1} \propto \pm M_D \sin 2\theta + |m_{\chi_1^0}|$

Alignment without decoupling Z6=0

$$y_{\rm DD}^{\rm eff} \equiv \sum_{q} \left[y_{h\chi_1\chi_1} + \frac{m_h^2}{m_H^2} C_q \ y_{H\chi_1\chi_1} \right] f_q^N$$

$$y_{h\chi_i\chi_i} = -\frac{1}{2\mathcal{D}}y^2 v \left(\pm M_D \sin 2\theta + |m_{\chi_i^0}|\right),$$

$$y_{H\chi_i\chi_i} = -\frac{1}{2\mathcal{D}}y\tilde{y}v \left(\pm M_D \sin(\theta + \tilde{\theta}) + |m_{\chi_i^0}|\cos(\theta - \tilde{\theta})\right)$$

$$\mathcal{D} = \pm 2|m_{\chi_i^0}|M_S - 3m_{\chi_i^0}^2 + \frac{1}{2}y^2v^2 + M_D^2$$

SI DD cross section for a 2HDM

arXiv:1912.03215

- One candidate for DM which is insensitive to DD measurements is the Gravitino
- It is the LSP in models of GMSB.
- It allows to a spectrum where the NLSP may be a chargino leading to a very interesting signal.

$$---- \chi_{2}^{0} \downarrow \beta - decay \quad \text{very soft products}$$

$$---- \chi_{1}^{0} \downarrow \beta - decay \quad \text{very soft products}$$

$$---- \chi_{1}^{0} \downarrow \beta - decay \quad \text{very soft products}$$

$$---- \chi_{1}^{0} \downarrow \beta - decay \quad \text{very soft products}$$

$$---- \chi_{1}^{0} \downarrow \beta - decay \quad \text{very soft products}$$

$$---- \chi_{1}^{0} \downarrow \beta - decay \quad \text{very soft products}$$

$$---- \chi_{1}^{0} \downarrow \beta - decay \quad \text{very soft products}$$

$$---- \chi_{1}^{0} \downarrow \beta - decay \quad \text{very soft products}$$

Sample spectrum with the chargino as NLSP

 This spectrum is insensitive to tri-leptons if the neutralinos do not decay to the LSP directly and the whole doublet contributes to the same signal WW+MET

Region of the parameter space where the neutralino do not decay to the LSP

 There is a search (arXiv:1908.08215) for WW+MET, with the full run II date There is a search (arXiv:1908.08215) for WW+MET, with the full run II date

We have reinterpreted the bound and we obtained m>460 GeV (ATLAS quotes a bound of 410 GeV For an isolated chargino) There is a search (arXiv:1908.08215) for WW+MET, with the full run II date

We have reinterpreted the bound and we obtained m>460 GeV (ATLAS quotes a bound of 410 GeV For an isolated chargino)

There is a search (arXiv:1908.08215) for WW+MET, with the full run II date

We have reinterpreted the bound and we obtained m>460 GeV (ATLAS quotes a bound of 410 GeV For an isolated chargino)

The figure indicates the spectrum of the Third lepton that could be use To discriminate between models

Conclusions

- In this talk I have shown three different scenarios of DM that scape DD detection:
 - Pure Higgisino (~1.1 TeV) in an extra dimensional model
 - Blind spots in a 2HDM in the alignment without decoupling limit
 - Chargino NLSP in GMSB
- There are still a lot of parameter space in WIMP scenarios that can lead to very interesting signatures. Specially in new colliders (FCC-hh, muon collider) 'work in progress'