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What is physics beyond the Standard Model?

?
I don’t know. Nobody knows [If it were known, it would be part of the SM!]

Many evidences that BSM exist
We just don’t know what it is

We have plenty of good ideas and there are rich opportunities
But no guarantee we are on the right track

We should stay open-minded and also learn from our failures

“Looking and not finding is different than not looking”

2
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Current status of BSM searches

lost in translation: Babel tower! the ultimate goal

theorists and experimentalists also need 
to start speaking a common language
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What is the scale of New Physics?

small FCNC:

tiny neutrino masses:

slow proton decay:

High Scale Wishes
gFµ⌫ ̄H�

µ⌫ 

M2
NP

(LH)2

MNP

UUDE

M2
NP

Low Scale Wishes

⤿ light susy?

small EDMs:

tiny vacuum energy:

light Higgs boson:

argdetY  10�10

m2
H ⇡ M2

NP � (125GeV)2

⇤ ⇡ M4
NP �

�
10�3eV

�4
⤿ axion?

⤿ ?
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even new physics at few hundreds of GeV might be difficult to see and could escape our detection
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Two approaches to make progress:

⦿ Theoretically motivated: UV gives constraints on IR (string, GUT, naturalness…)
⦿ Data driven: infer UV completions from IR data

Best objects at our disposal: Higgs, top, heavy mesons??? 
In this talk, I’ll focus on the Higgs and I’ll discuss both approaches.
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HEP with a Higgs boson

The Higgs discovery has been an important milestone for HEP
but it hasn’t taught us much about BSM yet

current (and future) LHC sensitivity 
O(10-20)% ⇔ ΛBSM > 500(g*/gSM) GeV 

not doing better than direct searches unless in the case of strongly coupled new physics
(notable exceptions: New Physics breaks some structural features of the SM

e.g. flavor number violation as in h→μτ)

typical Higgs coupling deformation:
�gh
gh

⇠ v2

f2
=

g2⇤ v
2

⇤2
BSM

Higgs precision program is very much wanted 
to probe BSM physics
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Why going beyond inclusive Higgs processes?
So far the LHC has mostly produced Higgses on-shell 

in processes with a characteristic scale μ ≈ mH 
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Why going beyond inclusive Higgs processes?
So far the LHC has mostly produced Higgses on-shell 

in processes with a characteristic scale μ ≈ mH 

access to Higgs couplings @ mH 

κV  κF Contours (1) 
All vector and fermion couplings are scaled by!κV and!κF 

All results in agreement with SM (κV = κf = 1) within 1� 

22 

κV  κF Contours (2) 
Allow for negative κF (which changes the sign of t-W loop interference) 

Note: all physical quantities depend on a product of two κ’s ⇔ 
          other two quadrants are symmetric with respect to (0,0)  

•  Almost 5s exclusion  
    of kF < 0  !!! 
 
•  Some decays in least 

significant production 
channels pulled towards 
inverted interference 

27 
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1. off-shell gg → h* → ZZ → 4l

2. boosted Higgs: Higgs+ high-pT jet

3. double Higgs production

Examples of interesting channels to explore further:

6

Why going beyond inclusive Higgs processes?
So far the LHC has mostly produced Higgses on-shell 

in processes with a characteristic scale μ ≈ mH 

Producing a Higgs with boosted additional particle(s)
probe the Higgs couplings @ large energy

(important to check that the Higgs boson ensures perturbative unitarity)

access to Higgs couplings @ mH 
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Boosted Higgs+jet

high pT tail discriminates 
short and long distance physics contribution to gg ➙ h

Are the NLOm QCD corrections (not known) going to destroy all the sensitivity?
Frontier priority: N3LO∞ for inclusive xs or NLOmt for pT spectrum?

competitive/complementary to htt channel 
for the measure the top-Higgs coupling

➾➾

G
ro

je
an

, S
al

vi
on

i, 
Sc

hl
af

fe
r,

 W
ei

le
r 

 ‘1
3

p
s = 14 TeV,

Z
dtL = 3ab�1, pT > 650 GeV

(partonic analysis in the boosted “ditau-jets” channel)

10-20% precision on κt

see Schlaffer et al ’14 for a more complete analysis 
including WW channel 
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(d) Scale variation

Figure 2: Figures (a)-(c) show the 95% CL contours obtained from the �2 in Eq. (2.11) for

di↵erent choices of the actual parameters 0

t and 0

g, or equivalently of µ0

incl

and R0. The

colors blue, red and black correspond to 0

t = 0.8, 1.0 and 1.2, respectively, or equivalently to

the indicated values of R0 = R(0

t ,
p
µ0

incl

� 0

t ). The gray band is obtained by considering

only the inclusive measurement. The SM point is indicated by the black star. Figure (d)

shows the variation of the 95% CL contours for di↵erent choices of the renormalization and

factorization scale µ. For all plots we assumed an integrated luminosity of
R L dt = 3 ab�1

and
p
s = 14TeV.
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2 Analysis of pp ! h + jet

At the parton level, three subprocesses contribute to the pp ! h+jet cross section: these are

gg, qg, qq̄ ! h+ jet.5 The expressions of the SM matrix elements for gg ! hg and qq̄ ! hg,

mediated by quark loops, were first calculated at LO in QCD in Ref. [18] and shortly after

with a di↵erent notation in Ref. [19], which we used for our calculations. The matrix element

for the qg ! hq process is obtained from the one of qq̄ ! hg by crossing. Some of the

Feynman diagrams contributing to pp ! h+ jet are shown in Fig. 1. When the Lagrangian

in Eq. (1.3) is considered, the top contribution to the amplitudes is simply given by the SM

one rescaled by the modified coupling t.6 On the other hand, the contribution of heavy

g
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h

t

q q

g h
t

q

q̄

g

h

t

g

g

g

h

Figure 1: Example Feynman diagrams for pp ! h+jet in the SM and with the contact term.

top partners in the loop is described by the e↵ective interaction parameterized by g, which

generates Feynman diagrams such as the lower-right one in Fig. 1. Roughly speaking, this

description is reliable as long as the mass of the heavy states is larger than the transverse

momentum cut applied, see Section 3 for a more precise assessment. The corresponding

matrix element is obtained from the SM one by sending to infinity the mass of the quark

running in the loop. Thus the matrix element squared for each partonic subprocess can be

written as

|M|2 / |t MIR

(mt) + g MUV

|2 , (2.5)

5For brevity, we denote the sum qg + q̄g by qg.
6In the SM, the e↵ect of including the bottom quark contribution in addition to the dominant one due

to the top is only of a few percent, if the cut on the transverse momentum is larger than 50GeV [20]. Since

we are interested in larger Higgs transverse momenta, we consistently neglect the bottom in our calculation.
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to the top is only of a few percent, if the cut on the transverse momentum is larger than 50GeV [20]. Since

we are interested in larger Higgs transverse momenta, we consistently neglect the bottom in our calculation.
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Light stop searches from Higgs+jet
Further constraints on Xt and the stop masses can be obtained by examining the correc-

tions to the h ! �� and h $ gg rates:

�(h $ gg)
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where, in the limit in which we decouple the pseudoscalar Higgs, we find
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Present data (fitted in the context of the SM plus light stops) give [13]

�t = �0.04± 0.11 (5)

and do not yet imply a significant constraint, as it is clear from fig. 2 where we plot iso-curves

of �t after imposing the mh requirement. The situation will improve in the future. Note

that no deviations from the SM (�t ⇡ 0) are obtained for m
˜t2 ⇡ 6m

˜t1 if we insist on having

X2

t ⇡ 6.

A few comments are in order:

• An independent indication of a large splitting between m
˜t2 and m

˜t1 can be obtained if

we assume that At is not significantly larger than the trace of the stop mass matrix.
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Vacuum stability arguments imply a < 3 (assuming m2

Hu
⌧ m2

˜t2
), but this does not

allow us to deduce a significant constraint on r. However, if a ⇠< 1 (as naturally

expected from RG arguments, see next section) then we are forced to assume small

values of r in order to reach X2

t ⇡ 6.

• Despite the large value of Xt, the mixing of the two stop eigenstates is suppressed in

the limit r ⌧ 1:
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So, in this limit, we can approximately identify the two mass eigenstates with the

electroweak eigenstates. As we will show in the next section, it is natural to identify

the lightest state with an almost right-handed stop. Note also that for r ⌧ 1 the

lightest stop mass is significantly lighter than the average stop mass in eq. (2): r ⇡ 1/6

corresponds to m
˜t1 ⇡ 200 GeV.
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... or not if Δt≈0 ⇒ light stop window in the MSSM 
(stop right ~200-400GeV ~ neutralino w/ gluino < 1.5 TeV)

flavor constraints (εK, B→Xs+γ)
 RG evolution
 DM

 Delgado et al  ’12 

and difficult direct search (trigger on stop+extra jet)

Bechtle, Plehn, Sander: The Status of Supersymmetry after the LHC Run 1 19
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Fig. 15. A selection of published limits on the production of third-generation squarks from the ATLAS experiment.
All limits are given in the form of SMS limits on individual production processes (see references in the plot). Similar
results are obtained from the CMS experiment (see e.g. Ref. [79]). (Adapted from Refs. [78, 81, 83, 86, 90–92].)

that carry a fraction of more than 0.05 of the transverse momentum of the large-R jet, an invariant mass is
reconstructed. The distribution of this reconstructed mass is shown in figure 14(a) after preselection cuts.
Flavour tagging is then applied to the sub-jets, which should contain a b-quark jet. It can be seen that
for signal events, the jet-mass distribution shows a very broad peak-like structure around the top-quark
mass. The remaining backgrounds are tt̄ and single top quark production, tt̄ production in association
with a vector boson, Z+jets, and diboson production. The data show a slight, but insignificant excess
over the background.

An example is a search from the CMS experiment, which is both sensitive to t̃
1

! t�̃0

1

and to non-
resonant t̃

1

! bW �̃0

1

at intermediate values of m
˜t1

[79]. There, the variable m
T

already introduced in
the previous section is used as a discriminator against events where the real missing transverse energy is
exclusively stemming from a W ! `⌫ decay, such as semileptonic tt̄ events. No excess over the background
is observed, and the variable is used as an input to a multivariate selection, from which limits are derived.

An overview of the currently published search results and limits is given in figure 15 using examples
from the ATLAS collaboration [78, 81, 83, 86, 90–92]. Similar results are available from CMS [79].
As expected, the observed sensitivity is governed by the kinematic regions defined in figure 13. The
strongest limits reach up to m

˜t1
> 700 GeV for the assumption of the full strong-production cross section

and, more importantly, of 100% branching ratio into the given decay. This limit by itself is already
touching the areas which could be considered theoretically interesting for an elaboration on the natural
ability of SUSY to explain the hierarchy problem of the SM, without unduly fine-tuning the SUSY-
parameters themselves. For m

˜

11
⇡ O(1 TeV) and higher, the di↵erence between the SUSY scale and

the electroweak scale becomes too large to explain the hierarchy problem of the SM Higgs mass without
additional assumptions. However, as explained in section 4.1, the kinematics of the decays close to the

` inclusive Higgs measurements cannot rule out light stop

There are various arguments that favour this light stop region

One prime example where large statistics opens up new search strategy

with
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Light stop searches from Higgs+jet
Further constraints on Xt and the stop masses can be obtained by examining the correc-

tions to the h ! �� and h $ gg rates:

�(h $ gg)

�(h $ gg)
SM

= (1 +�t)
2 ,

�(h ! ��)
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= (1� 0.28�t)
2 , (3)

where, in the limit in which we decouple the pseudoscalar Higgs, we find

�t ⇡ m2

t

4

 
1

m2

˜t1

+
1

m2

˜t2

� X2

t

m2

S

!

. (4)

Present data (fitted in the context of the SM plus light stops) give [13]

�t = �0.04± 0.11 (5)

and do not yet imply a significant constraint, as it is clear from fig. 2 where we plot iso-curves

of �t after imposing the mh requirement. The situation will improve in the future. Note

that no deviations from the SM (�t ⇡ 0) are obtained for m
˜t2 ⇡ 6m

˜t1 if we insist on having

X2

t ⇡ 6.

A few comments are in order:

• An independent indication of a large splitting between m
˜t2 and m

˜t1 can be obtained if

we assume that At is not significantly larger than the trace of the stop mass matrix.

Assuming A2

t < a(m2

˜t1
+m2

˜t2
), then (for large tan �) X2

t is bounded by
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Vacuum stability arguments imply a < 3 (assuming m2

Hu
⌧ m2

˜t2
), but this does not

allow us to deduce a significant constraint on r. However, if a ⇠< 1 (as naturally

expected from RG arguments, see next section) then we are forced to assume small

values of r in order to reach X2

t ⇡ 6.

• Despite the large value of Xt, the mixing of the two stop eigenstates is suppressed in

the limit r ⌧ 1:

✓t =
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2
arcsin

 
2mtmSXt
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!
r⌧1' rXtmt

mS

. (7)

So, in this limit, we can approximately identify the two mass eigenstates with the

electroweak eigenstates. As we will show in the next section, it is natural to identify

the lightest state with an almost right-handed stop. Note also that for r ⌧ 1 the

lightest stop mass is significantly lighter than the average stop mass in eq. (2): r ⇡ 1/6

corresponds to m
˜t1 ⇡ 200 GeV.
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the lightest state with an almost right-handed stop. Note also that for r ⌧ 1 the

lightest stop mass is significantly lighter than the average stop mass in eq. (2): r ⇡ 1/6

corresponds to m
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... or not if Δt≈0 ⇒ light stop window in the MSSM 
(stop right ~200-400GeV ~ neutralino w/ gluino < 1.5 TeV)
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but O(10%) sensitivity on boosted h+j can 
close up the light stop window

Low rate ⇔ large luminosity needed

inclusive Higgs measurements cannot rule out light stop

Grojean, Salvioni, Schlaffer, Weiler  ‘13

There are various arguments that favour this light stop region

Light stop benchmark
that leaves no signal in inclusive rate

but predicts different tail in pT 
distribution

One prime example where large statistics opens up new search strategy

with
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In conventional realizations of SUSY, a special role is played by the 
Higgsinos, stops, and gluinos, as these couple strongest to the Higgs. 

(Dimopoulos & Giudice ’95; Cohen, Kaplan & Nelson ’96 ......) 

t̃
t

g̃

t̃

hh

h
µ

h

hh

t̃

�m2
H ⇠ � y2t

⇡2

↵s

⇡
m2

gluino

✓
log

⇤

mgluino

◆2

�m2
H ⇠ � 3

8⇡2
y2tm

2
stop log

⇤

mstop

�m2
H ⇠ |µ|2

Λ = “messenger scale,” a 
UV scale where the soft 
masses are generated

What should we expect?
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(RG effects)
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very low sensitivity @ LHC
ILC needed to probe the other side 

Probing natural SUSY

light stops, light gluinos!
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Probing natural SUSY

Fig. 12: Left: Discovery potential and Right: Projected exclusion limits for 3000 fb

�1 of total integrated lumi-
nosity at

p
s = 100 TeV. The solid lines show the expected discovery or exclusion obtained from the boosted top

(black) and compressed spectra (blue) searches. In the boosted regime we use the E/
T

cut that gives the strongest
exclusion for each point in the plane. The dotted lines in the left panel show the ±1� uncertainty band around the
expected exclusion.

Collider Energy Luminosity Cross Section Mass
LHC8 8 TeV 20.5 fb�1 10 fb 650 GeV
LHC 14 TeV 300 fb�1 3.5 fb 1.0 TeV

HL LHC 14 TeV 3 ab�1 1.1 fb 1.2 TeV
HE LHC 33 TeV 3 ab�1 91 ab 3.0 TeV
FCC-hh 100 TeV 1 ab�1 200 ab 5.7 TeV

Table 1: The first line gives the current bound on stops from the LHC 8 TeV data [106, 132]. The remaining lines
give the estimated 5� discovery reach in stop pair production cross section and mass for different future hadron
collider runs (from [131]). At 100 TeV, NLL+NLO cross sections can be used to extend the reach.

boosted top tagging may suffer from intrinsic limitations due to the nature of calorimeters [18], the
search presented here avoids specialized substructure variables and instead uses top-tagging techniques
established at the LHC. This is applied to stop searches in theory studies in [108,127–131]. Top tagging
has been used by experiments at the LHC [137, 138] in other types of searches, and from [137] we take
the efficiency of top tagging to be 50% for tops with pT > 500 GeV. From the same search we take the
fake rate to be 5% for the same pT range. There is very little data for pT > 800 GeV, but we will use
these efficiencies throughout out study, even at very high energy. The HPTTopTagger [15] study focuses
on pT > 1 TeV and finds somewhat lower tagging efficiency but also lower fake rates.

Therefore, we make the following cuts taking the efficiency from the literature:

– Require both tops decay hadronically (46%),
– Require one b-tag (70%) [139, 140],
– Require both tops pass a top tagger (25%).

We also simulate pair production of 6 TeV stops decaying to a nearly massless (1 GeV) neutralino
at a 100 TeV machine. The simulation is done at parton level with MadGraph 5 [121] and is used to
compute the efficiency for the following two cuts:

– Require that both tops have pT > 500 GeV (97%),
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Fig. 16: Results for the gluino-squark-neutralino model. The neutralino mass is taken to be 1 GeV. The left [right]
panel shows the 5 � discovery reach [95% CL exclusion] for the four collider scenarios studied here. A 20%

systematic uncertainty is assumed and pile-up is not included.

3.4.2.2 Associated production with meq > meg

The gluino-squark-neutralino model in the previous section was probed in a region where meg ⇠ meq. In
this section, we consider squark-gluino associated production in a region of parameter space in which
the gluinos are relatively light, while the squarks are heavier, but not completely decoupled. This work
is documented more completely in [150], where we have analysed the prospects for squark-gaugino
associated production at a 100 TeV collider.

Squark-gluino associated production is interesting because it has the potential to probe much
higher squark masses than those reached in pair production. Spectra with a hierarchy between the gluino
and the first two generation squarks are predicted in many scenarios, such as anomaly-mediated SUSY
breaking [151, 152], or in “mini-split"-type models [33, 153, 154].

We consider two simplified models for squark-gluino associated production. In both, the particle
content consists only of first and second generation squarks, gluino, and a Bino LSP (e�0

1

=

˜B). The two
models correspond to different choices of the LSP mass:

– Non-compressed: M
1

= 100 GeV (results in Fig. 18(a))
– Compressed: meg � me�0

1
= 15 GeV (results in Fig. 18(b))

where we take the first and second generation squarks to be degenerate in mass, and decouple all other
superpartners. Our results are insensitive to the choice of M

1

= 100 GeV in the non-compressed spectra,
as the LSP is effectively massless for me�0

1
⌧ meg. The compressed spectra are consistent with the gluino-

neutralino dark matter (DM) coannihilation region [155, 156].
Events from squark-gluino associated production have distinctive event topologies, with a hard

leading jet and significant E/T . Both arise primarily from the decay of the heavy squark, since the gluino
is produced at relatively low pT . As in the gluino simplified models above, the dominant sources of
background are top pair production and production of an SM boson + jets [78]. However, both of these
backgrounds fall off rapidly both with increasing pT (j

1

), E/T , and E/T
p

HT (where HT is the scalar sum
of the jet transverse energies). This can be seen for an example spectrum point in Fig. 17.

The leading jet typically has a pT (j
1

) ⇠ meq/2, while the decay of the squark into the LSP
eq ! qeg ! 3 qe�0

1

results in a highly boosted neutralino and large E/T . As such, heavy squark - light
gluino associated production events have a striking collider signature with very low SM backgrounds.

We impose the following baseline cuts for both spectra:

HT > 10 TeV, E/T /
p

HT > 20 TeV

1/2.
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Fig. 12: Left: Discovery potential and Right: Projected exclusion limits for 3000 fb

�1 of total integrated lumi-
nosity at

p
s = 100 TeV. The solid lines show the expected discovery or exclusion obtained from the boosted top

(black) and compressed spectra (blue) searches. In the boosted regime we use the E/
T

cut that gives the strongest
exclusion for each point in the plane. The dotted lines in the left panel show the ±1� uncertainty band around the
expected exclusion.

Collider Energy Luminosity Cross Section Mass
LHC8 8 TeV 20.5 fb�1 10 fb 650 GeV
LHC 14 TeV 300 fb�1 3.5 fb 1.0 TeV

HL LHC 14 TeV 3 ab�1 1.1 fb 1.2 TeV
HE LHC 33 TeV 3 ab�1 91 ab 3.0 TeV
FCC-hh 100 TeV 1 ab�1 200 ab 5.7 TeV

Table 1: The first line gives the current bound on stops from the LHC 8 TeV data [106, 132]. The remaining lines
give the estimated 5� discovery reach in stop pair production cross section and mass for different future hadron
collider runs (from [131]). At 100 TeV, NLL+NLO cross sections can be used to extend the reach.

boosted top tagging may suffer from intrinsic limitations due to the nature of calorimeters [18], the
search presented here avoids specialized substructure variables and instead uses top-tagging techniques
established at the LHC. This is applied to stop searches in theory studies in [108,127–131]. Top tagging
has been used by experiments at the LHC [137, 138] in other types of searches, and from [137] we take
the efficiency of top tagging to be 50% for tops with pT > 500 GeV. From the same search we take the
fake rate to be 5% for the same pT range. There is very little data for pT > 800 GeV, but we will use
these efficiencies throughout out study, even at very high energy. The HPTTopTagger [15] study focuses
on pT > 1 TeV and finds somewhat lower tagging efficiency but also lower fake rates.

Therefore, we make the following cuts taking the efficiency from the literature:

– Require both tops decay hadronically (46%),
– Require one b-tag (70%) [139, 140],
– Require both tops pass a top tagger (25%).

We also simulate pair production of 6 TeV stops decaying to a nearly massless (1 GeV) neutralino
at a 100 TeV machine. The simulation is done at parton level with MadGraph 5 [121] and is used to
compute the efficiency for the following two cuts:

– Require that both tops have pT > 500 GeV (97%),
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Table 1: The first line gives the current bound on stops from the LHC 8 TeV data [106, 132]. The remaining lines
give the estimated 5� discovery reach in stop pair production cross section and mass for different future hadron
collider runs (from [131]). At 100 TeV, NLL+NLO cross sections can be used to extend the reach.

boosted top tagging may suffer from intrinsic limitations due to the nature of calorimeters [18], the
search presented here avoids specialized substructure variables and instead uses top-tagging techniques
established at the LHC. This is applied to stop searches in theory studies in [108,127–131]. Top tagging
has been used by experiments at the LHC [137, 138] in other types of searches, and from [137] we take
the efficiency of top tagging to be 50% for tops with pT > 500 GeV. From the same search we take the
fake rate to be 5% for the same pT range. There is very little data for pT > 800 GeV, but we will use
these efficiencies throughout out study, even at very high energy. The HPTTopTagger [15] study focuses
on pT > 1 TeV and finds somewhat lower tagging efficiency but also lower fake rates.

Therefore, we make the following cuts taking the efficiency from the literature:

– Require both tops decay hadronically (46%),
– Require one b-tag (70%) [139, 140],
– Require both tops pass a top tagger (25%).

We also simulate pair production of 6 TeV stops decaying to a nearly massless (1 GeV) neutralino
at a 100 TeV machine. The simulation is done at parton level with MadGraph 5 [121] and is used to
compute the efficiency for the following two cuts:

– Require that both tops have pT > 500 GeV (97%),

25



Christophe Grojean Naturalness Warsaw, Nov. 30, 201710

Natural SUSY: beyond standard searches

Run-1: search for heavy stop (t̃
2

)
• 2012 (20 fb�1): stops searches based on t̃1 t̃1

production, with t̃1 ! t�̃0
1 or t̃1 ! b�̃±

1

• No sensitivity for t̃1 ! t�̃0
1 with

mt̃1
& m�̃0

1
+ mt : very similar to SM tt̄

• [New at the LHC] Production of the heavier
stop mass eigenstate (t̃2) relying on the
t̃2 ! Zt̃1 decay to reduce tt̄ ! Signature:
Z(`+`�)+`+b+Emiss

T

• Eur. Phys. J. C 74 (2014) 2883 (20 fb�1)
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Run-2: t̃
2

searches in 2016

• Analysis performed in collaboration with the Bern group

• ATLAS-CONF-2016-038 (13 fb�1): explore t̃2 ! Zt̃1 with 3`+b+Emiss
T

• JHEP 1708 (2017) 006 (36 fb�1): analysis extended to t̃2 ! ht̃1 with
1`+4b+Emiss

T

• Interpretations for varying BRs in t̃2 ! ht̃1/Zt̃1 and also for t̃1 ! t�0
2,

�0
2 ! h/Z �̃0
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Searching for light stop from heavy stop decay

~ RUN 2 ~

X. Poveda @ DESY’17

~ RUN 1 ~
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Naturalness principle @ work
Following the arguments of Wilson, ‘t Hooft (and others):  

only small numbers associated to the breaking of a symmetry survive quantum corrections

Beautiful examples of naturalness  to understand the need of “new” physics
see for instance Giudice ’13 (and refs. therein) for an account

http://arxiv.org/abs/arXiv:1307.7879
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see for instance Giudice ’13 (and refs. therein) for an account

 the need of the positron to screen the electron self-energy:  

 the rho meson to cutoff the EM contribution to the charged pion mass:  

 the kaon mass difference regulated by the charm quark: 

 the light Higgs boson to screen the EW corrections to gauge bosons self-energies 

 ... 

 new physics at the weak scale to cancel the UV sensitivity of the Higgs mass? 
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Apparent fine-tunings have always pointed to new degrees of freedom
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The different paths to Higgs naturalness
 Single vacuum  Multiple vacua

the low Higgs mass is screened from 
large quantum corrections by

1. a symmetry (Susy, PQ) 
2. a form factor (composite Higgs) 
3. a low UV scale (xdim, RS, large N…) 
4. a combination of the above

many metastable vacua  
with a vast range of values for mH 

Dynamical (or anthropic selection) of mH≪Λ

1. anthropic multiverse  
2. NNaturalness with 1016 copies of SM 
3. relaxion and cosmological scanning 
with non-trivial back reaction
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The Darwinian solution to the Hierarchy 
Other origin of small/large numbers according to Weyl and Dirac: 

hierarchies are induced/created by time evolution/the age of the Universe

Can this idea be formulated in a QFT language?  
In which sense is it addressing the stability of small numbers at the quantum level? 
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Other origin of small/large numbers according to Weyl and Dirac: 

hierarchies are induced/created by time evolution/the age of the Universe

 Higgs mass-squared promoted to a field 
 The field evolves in time in the early universe and scans a vast range 

of Higgs mass 
 The Higgs mass-squared relaxes to a small negative value 
 The electroweak symmetry breaking stops the time-evolution of the 

dynamical system

Graham, Kaplan, Rajendran ’15

Self-organised criticality 
dynamical evolution of a system is stopped at a critical point due to back-reaction

Can this idea be formulated in a QFT language?  
In which sense is it addressing the stability of small numbers at the quantum level? 

hierarchies result from dynamics not from symmetries anymore! 
important consequences on the spectrum of new physics

http://arxiv.org/abs/1504.07551
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Higgs-axion cosmological relaxation

slowly rolling field (inflation provides friction) that scans the Higgs mass𝜙 
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If 𝜙 continues rolling, the Higgs vev 
increases, the potential barrier increases 

and ultimately prevents 𝜙 from rolling 
down further 
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to prevent overshooting the EW vacuum
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Two classes of relaxion models (so far)
 H-dependent potential barrier

potential barriers in the 
relaxion potential appear 
soon after EWSB occurs 

and the relaxion gets 
trapped in one minimum

Graham, Kaplan, Rajendran ’15
Espinosa, Grojean, Panico, Pomarol, Pujolas, Servant ’15

drawings borrowed from A. Matsedonskyi, DESY workshop seminar ’17
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note: v<<Λ provided that g<<1. It doesn’t 
explain why the coupling is small (that question 
can be postponed to higher energies, requires 
m o r e m o d e l - b u i l d i n g e n g i n e e r i n g , 
relaxion=PGB?) but it ensures that the solution 
is stable under quantum correction. 
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 n=1: need another source of EWSB 
 QCD condensate <qq>~ ΛQCD 

 new strongly-coupled sector à la Technicolor 
⫦ new physics @ TeV, coincidence problem? ⫣

 n=2: no extra source of EWSB needed 
 quantum stability? h-loops generate extra interactions that will stop 𝜙  

before the Higgs vev develops unless ΛB<v (new physics below TeV again)

V (�, h) = ⇤

3g�� 1

2
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4
B cos(�/f) + . . .
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B(0) + ⇤3
B(1)h+ ⇤2

B(2)h
2 + . . .

Quantum stability of relaxing Lagrangians...

⇤4
B < v4necessary condition for the Higgs vev to stop the relaxion:
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2 Double scanner mechanism

The key new ingredient of our proposal, with respect to [4], is a second scanning field, that

we call �. The full potential, up to terms of order ✏, g� and g, is given by1

V (�, �, H) = ⇤4

✓
g�

⇤
+

g��

⇤

◆
� ⇤2

✓
↵� g�

⇤

◆
|H|2 + 1

2
�|H|4 + A(�, �, H) cos (�/f) , (4)

where

A(�, �, H) ⌘ ✏⇤4

✓
� + c�

g�

⇤
� c�

g� �

⇤
+

|H|2

⇤2

◆
, (5)

with 0 < g, g�, ✏ ⌧ 1, while ↵, � and c�, c� are O(1) positive coe�cients. We assume that all

terms of Eq. (4) are generated at the cut-o↵ scale ⇤. For simplicity and clarity, we are only

considering linear terms in g�/⇤ (resp. g��/⇤), but we could have taken a generic function

of g�/⇤ (resp. g��/⇤) with the only requirement that it is monotonically decreasing or

increasing in a wide region of order ⇤/g (resp. ⇤/g�).

From Eq. (4) and Eq. (5), we see that � scans the Higgs mass-squared, while � scans

A(�, �, H) which is the overall amplitude –the envelope– of the oscillating term. This de-

pendence of A(�, �, H) on � is crucial for our mechanism to work, while the other terms in

Eq. (5) are added since, as we said, they are anyway generated at the quantum level (by loops

of H). The potential in Eq. (4) is stable under quantum corrections in the small-coupling

limit (g, g�, ✏ ⌧ 1) we consider. A possible UV origin of the periodic term in Eq. (4) is given

in Appendinx A.

We will sudy the time evolution of �, � and H during the inflationary epoch. Inflation is

needed, as in [4], to provide the friction that makes the fields slow-roll and reach the desired

minimum. The time evolution of � is quite trivial, as for ✏ ⌧ 1, it simply slides down:

�(t) = �
0

� g�⇤
3t/(3HI) . (6)

In the cosmological evolution of � we can distinguish four stages, depicted in Fig. 1, that we

qualitatively describe next:

I) At the beginning of inflation we assume � & ⇤/g and � & ⇤/g� such that the Higgs

mass-squared and the amplitude A are positive. The field � is stuck in some deep

minimum coming from the A cos(�/f) term of Eq. (4), while the Higgs field value is

zero.
1NOT NEEDED: Notice the unusal normalization of the Higgs quartic coupling, � ⇠ 0.26. Do we really

want to keep this normalization? Or, who’s afraid of factors of 2??
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4

Figure 1: Left: Scalar potential in the {�, �} plane. The band without barriers is colored

green while the barriers getting high(er) are indicated by dark(er) brown. The blue line shows

a possible slow-roll cosmological trajectory of the fields during the inflationary period. The

dashed purple line is the critical line for EWSB. Right: Classical time evolution of � (blue

curve) in the potential on the left. The black lines show the extremal points of the potential,

with closely spaced minima (bold) and maxima (thin) alternating. (Arbitrary units and scales

in both plots.)

II) As � evolves down, the amplitude A decreases until the point at which the steepness

of A cos(�/f) is smaller than the slope coming from the linear term of Eq. (4), and �

can start to move down. The region in field-space at which this occurs is shown by

a “green-band” in Fig. 1. In this region, the bumps from A cos(�/f) are very small

and, for g� . g, � goes down tracking �: �(t) ' const. + c�g��(t)/(c�g), which is the

solution of A ⇡ 0 (this solution neglects e↵ects of size �� ⇠ f which correspond to

the stepwise behavior visible in Fig. 1).

III) When � crosses the critical value

�c ⌘
↵⇤

g
, (7)

the Higgs mass-squared term becomes negative, turning on H. This gives, according

to Eq. (5), a positive contribution to the amplitude A, that, for certain values of the
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~interesting cosmology signatures~ 

◎ BBN constraints 
◎ decaying DM signs in 𝛾-rays background 

◎ ALPs 
◎ superradiance

~interesting signatures @ SHiP~ 

◎ production of light scalars  
by B and K decays 

Espinosa et al ’15 Choi and Im ’16

~interesting atomic physics~ 
◎ change of atom sizes

Flacke et al ’16

G. Perez et al ‘in progress

A QFT rationale for light and weakly coupled degrees of freedom
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Phenomenological signatures
Phenomenological signatures are very model-dependent 

Results shown before are for CHAIN model w/o new physics till Λ 
Pheno of models w/ TeV scale new physics to generate potential barrier studied by Weizmann people 
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Figure 3. Constraints on the relaxion-Higgs mixing sin2 ✓ for relaxions with m� between MeV and
5GeV. The laboratory probes include: proton beam dump experiments (red for CHARM, light
red for the projected sensitivity for SHIP and SeaQuest), K-meson decays (blue, our conservative
projection from NA62 in a lighter shade of blue), B-meson decays (turquoise), LHC search for
h ! 4µ (light blue) and LEP (green). Astrophysical and cosmological probes include the Supernova
1987a (pale violet, labelled as SN), ⌘b (orange) and N

e↵

( pink). Contours for ⇤
br

= 0.99⇤max

br

'
104GeV (gray, thick, solid), ⇤

br

= 10GeV (gray, dashed), f/GeV = 106, 104, 125 (black, solid) are
presented. Here ⇤max

br

is the upper bound on ⇤
br

arising from the requirement of a non-tachyonic �
in Eq. (3.12) for sin(�

0

/f) = 1/
p
2. The vertical light gray line corresponds to the contour for the

relaxion mass at the muon threshold; the yellow contour corresponds to c⌧ = 2m and the purple
one to ⌧ = 1 s.

decays by almost an order of magnitude. They expect to see 90 SM signal events and 20

background events in two years [54]. Using only this information about the total rate and

no information about the di↵erential distribution of the SM and background events, we

show a conservative estimate of the 95% CL excluded region in light blue in figure 3 where

we have assumed a 10% theoretical error [55]. The gap in the excluded region is again due

to the veto around the charged pion mass, 100MeV . m� . 160MeV [54].

Finally, for GeV-scale masses we see from figure 3 that some regions of the parameter

space are bounded by LEP and LHC searches that we describe in detail in the next section.

5.2.2 The m� > 5 GeV mass range

Finally we consider the mass region m� > 5GeV where the mixing angle sin ✓ can become

O(1) and the expressions in Eq. (5.1) do not apply anymore. To compute the mixing angle,

sin ✓, and the mass, m�, as functions of ⇤br

and f , we therefore exactly diagonalise the mass

matrix in appendices A and B for the j = 2 (j = 1) case. We fix the value of the unknown

– 22 –

Figure 4. Constraints on the relaxion-Higgs mixing sin2 ✓ for relaxions with m� between 5GeV
and 90GeV from LEP and the LHC: 4-fermion final states from Higgs strahlung at LEP (green,
labelled as LEP hZ); Higgs decays to NP with BR(h ! NP)  20% at the LHC (purple, solid) as
well as a projection for BR(h ! NP)  10% (purple, dashed); explicit searches for h ! �� with
final states 4⌧ (dark blue, dotted, m� < 10GeV, Run 3 projection) and 2µ2b (dark blue, dotted,
m� > 25GeV, Run 3 projection). Contours for ⇤

br

= 120GeV (gray, dashed for j = 2; brown,
dashed for j = 1), f = mh and f = 1TeV (black for j = 2, brown for j = 1).

6 Cosmological and astrophysical probes of relaxion-Higgs mixing

As discussed in the previous section, laboratory measurements can probe a significant region

of the relaxion parameter space. However, in the sub-MeV region, before the fifth force

experiments start to gain sensitivity in the sub-eV region, a large portion of the parameter

space is left unconstrained. In this section we show how astrophysical and cosmological

probes can explore part of this region of the parameter space, as shown in figure 5, and

also provide relevant bounds if the relaxion mass is in the MeV-GeV range (also shown in

figure 3). In order to identify the part of the parameter space most relevant for relaxion

models and to gain an understanding of the theory contours in figure 5, we refer the reader

to the discussion at beginning of section 5.

6.1 Cosmological probes

Late relaxion decays can be constrained by a variety of cosmological probes such as light

element abundances, CMB spectral distortions and distortions of the di↵use extragalactic

background light (EBL) spectrum. In this section we first compute the relaxion abundance

– 25 –

Flacke et al ’16

http://arxiv.org/abs/arXiv:1610.02025
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Relaxing without multiple vacua: pole attractors

• The relaxion has a non canonical kinetic term 1

h2n
(@µ�)

2

• When                then              and the kinetic term grows.

m2
h0

⇤/

V�

�

V�c

(V� = �⇤3�)Vh � (�⇤2 + ⇤�)h2

• The Higgs mass is scanned by the relaxion field  �

� ! h(�c)�c

� ! ⇤/ h ! 0

• The slope of the relaxion potential and coupling to the Higgs 
decrease and the scanning effectively stops.

• derivative Higgs-relaxion couplings becomes non-perturbative
• UV completions unknown

Matsedonskyi, Montull ‘17

http://arxiv.org/abs/arXiv:1709.09090


Christophe Grojean Naturalness Warsaw, Nov. 30, 201723

Pole attractors: minimal realistic model
Matsedonskyi, Montull ‘17

m2
h0

⇤/

V�

�
0

V�

�

1) kinetic terms controlled by a 
new field

1

�2

�
(@�)2 + (@�)2

 

 2)     provides a limited time for 
a scan until it gets to zero and 
blocks all the evolution

�

 3)    moves quickly before 
reaching h~0, and after it’s 
slowed down by particle friction 
provided

�

� ! W,B

4) remaining part of the limited 
time relaxion is very slow, almost 
no scan is possible

fast slow

�̇ & mW f
* f controls particle friction

motivated by SUSY-based 
inflation models

�
mW ⇠ ⇤

⇤2

http://arxiv.org/abs/arXiv:1709.09090
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Conclusions

 Relaxion = existence proof that technical naturalness 
doesn’t require new physics at the weak scale.

 Is technical naturalness the right criterion to structure BSM?

 Any in case: The energy frontier might be different  than 
what we thought for many years!

 Neutral naturalness (twin Higgs etc): we knew that new 
physics stabilising the weak scale may escape detection

LHC has shown no indication of TeV scale new physics  
It challenges our understanding of QFT 

What does it imply?
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interesting signatures in cosmology and possibly at SHiP

Phenomenological signatures

𝜙 and 𝜎 couple to SM matter via their mixing with the Higgs

from oscillatory potential tree-level quantum mixing  
from 𝜙-loop

the SM states in most of the parameter space, and thus can only have some phenomenological

impact through astrophysical and cosmological e↵ects.

5.1 Properties of � and �

We start by deriving the properties of the � and � scalars. After the slow-rolling process

ends and � settles in a minimum, no cancellation is expected in the A(�, �, H) amplitude, so

that A(�, �, H) ⇠ ✏⇤4. The mass of � is thus controlled by A cos(�/f) and can be estimated

as

m2
� ⇠ ✏⇤4

f 2
⇠ g

⇤5

fv2
. v2 , (26)

where we used Eq. (14) and Eq. (15) to obtain the second equality and the upper bound on

m�. For � we expect that higher-order terms in g��/⇤, not shown for simplicity in Eq. (4),

give it a mass of order

m2
� ⇠ g2�⇤

2 ⌧ m2
� . (27)

In the allowed part of the parameter space of our model the masses of the two scalars

can change by many orders of magnitude, spanning the range [10�20, 100]GeV for � and

[10�45, 10�2] GeV for �. Contours of constant m� and m� are shown in Fig. 3.

These two scalars interact with the SM particles mainly through a mass mixing with the

Higgs. The corresponding mixing angles can be estimated as

✓�h ⇠ g⇤v

m2
h

, ✓�� ⇠ g�fv2

⇤3
, ✓�h ⇠ Max

⇢
✓��✓�h ,

g2

16⇡2

g�⇤7

f 2v3m2
h

�
. (28)

Notice that the �� h mass mixing coming from @2
�hV ⇠ ✏⇤2(v/f) sin(�/f) is suppressed at

the minimum where we have sin(h�i/f) ⇠ gf/(✏⇤) ⇠ v2/⇤2 ⌧ 1.7 The first contribution

in ✓�h arises at tree-level, whereas the second one originates from a �-loop. For most of the

parameter space we consider, this loop term dominates over the tree level one. The scalar

potential Eq. (4) also gives rise to interactions between � and the Higgs, not suppressed by

the small mixing angle ✓�h, that are of order

��hh : ✏⇤2/f 2 , ��h : ✏v⇤2/f 2 , (29)

7This is to be contrasted with the beginning of Phase IV when sin(�/f) ⇠ 1, as used to derive Eq. (15),

since barriers are smaller at this earlier stage. At the end of Phase IV the barriers have grown large, and �

is close to the minimum of its cosine potential.

14
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interesting signatures in cosmology and possibly at SHiP

 unsuppressed quartic interaction with the Higgs: 

the SM states in most of the parameter space, and thus can only have some phenomenological

impact through astrophysical and cosmological e↵ects.
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ends and � settles in a minimum, no cancellation is expected in the A(�, �, H) amplitude, so

that A(�, �, H) ⇠ ✏⇤4. The mass of � is thus controlled by A cos(�/f) and can be estimated

as
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where we used Eq. (14) and Eq. (15) to obtain the second equality and the upper bound on

m�. For � we expect that higher-order terms in g��/⇤, not shown for simplicity in Eq. (4),

give it a mass of order

m2
� ⇠ g2�⇤

2 ⌧ m2
� . (27)

In the allowed part of the parameter space of our model the masses of the two scalars

can change by many orders of magnitude, spanning the range [10�20, 100]GeV for � and

[10�45, 10�2] GeV for �. Contours of constant m� and m� are shown in Fig. 3.

These two scalars interact with the SM particles mainly through a mass mixing with the

Higgs. The corresponding mixing angles can be estimated as
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Notice that the �� h mass mixing coming from @2
�hV ⇠ ✏⇤2(v/f) sin(�/f) is suppressed at

the minimum where we have sin(h�i/f) ⇠ gf/(✏⇤) ⇠ v2/⇤2 ⌧ 1.7 The first contribution

in ✓�h arises at tree-level, whereas the second one originates from a �-loop. For most of the

parameter space we consider, this loop term dominates over the tree level one. The scalar

potential Eq. (4) also gives rise to interactions between � and the Higgs, not suppressed by

the small mixing angle ✓�h, that are of order

��hh : ✏⇤2/f 2 , ��h : ✏v⇤2/f 2 , (29)

7This is to be contrasted with the beginning of Phase IV when sin(�/f) ⇠ 1, as used to derive Eq. (15),

since barriers are smaller at this earlier stage. At the end of Phase IV the barriers have grown large, and �

is close to the minimum of its cosine potential.
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interesting signatures in cosmology and possibly at SHiP

𝜙 and 𝜎 decay to SM particles  
(mostly photons in a large region of parameter space)

and will play an important role in the thermal production of �. The decays of � and � are

mediated by the mixing with the Higgs, and thus the widths are given by

�� ⇠ ✓2�h�h(m�) , �� ⇠ ✓2�h�h(m�) , (30)

where �h(mi) is the SM Higgs width evaluated at mh = mi. Contours for ��,� are shown

in Fig. 3 (the values of the width �h(mi) are subject to large theoretical uncertainties in

the mass region around 1GeV where several hadronic decay channels open up [9]; we used

the expressions given in Ref. [10] –see also Refs. [11, 12]). For masses below 2me ⇠ 1 MeV,

we have �h(mi) ⇠ (mi/mh)
3 �h!��(mh), and therefore, in a major part of the parameter

space, � and � have suppressed decay widths controlled by the decay into photon pairs. As

shown in Fig. 3, there is a sizable part of the parameter space in which � is cosmologically

unstable (�� > H0, where H0 is the present Hubble value), but su�ciently long-lived to

decay after Big Bang Nucleosynthesis (BBN) (�� < HBBN ⌘ H(T = 1 MeV)). As we will

see in the following, this region of the parameter space can be constrained by cosmology. On

the other hand, � is cosmologically stable in most of the relevant parameter space, and can

decay within the age of the universe only in a small corner of the parameter space, namely

for g� & 10�8 and ⇤ . 104GeV.

We can now easily estimate the cosmological abundances of � and �, either stored in

late classical oscillations (vacuum misalignment) or from thermal production. This will

allow us to set bounds on the model from overclosure of the universe, post-BBN decays or

astrophysical constraints.

5.2 Impact of � and � on standard cosmological predictions

In this work we assume for simplicity that, once both � and � have settled in their minima,

inflation ends with an unspecified reheating period. We will assume a reheating temperature

higher than the EW scale in what follows.

Abundances of � and � from vacuum misalignment

If after inflation and reheating, the fields � and � end up displaced from their minima,

they will fall towards them, oscillating around them if their lifetimes are large. The energy

density stored in the field oscillations behaves like cold dark matter and can potentially

overclose the universe today or dissociate light elements if the decay takes place during or

after BBN. At the start, the field energy density is dominated by the potential energy, but
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in ✓�h arises at tree-level, whereas the second one originates from a �-loop. For most of the

parameter space we consider, this loop term dominates over the tree level one. The scalar

potential Eq. (4) also gives rise to interactions between � and the Higgs, not suppressed by

the small mixing angle ✓�h, that are of order

��hh : ✏⇤2/f 2 , ��h : ✏v⇤2/f 2 , (29)

7This is to be contrasted with the beginning of Phase IV when sin(�/f) ⇠ 1, as used to derive Eq. (15),

since barriers are smaller at this earlier stage. At the end of Phase IV the barriers have grown large, and �

is close to the minimum of its cosine potential.
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�hV ⇠ ✏⇤2(v/f) sin(�/f) is suppressed at

the minimum where we have sin(h�i/f) ⇠ gf/(✏⇤) ⇠ v2/⇤2 ⌧ 1.7 The first contribution

in ✓�h arises at tree-level, whereas the second one originates from a �-loop. For most of the

parameter space we consider, this loop term dominates over the tree level one. The scalar

potential Eq. (4) also gives rise to interactions between � and the Higgs, not suppressed by

the small mixing angle ✓�h, that are of order

��hh : ✏⇤2/f 2 , ��h : ✏v⇤2/f 2 , (29)

7This is to be contrasted with the beginning of Phase IV when sin(�/f) ⇠ 1, as used to derive Eq. (15),

since barriers are smaller at this earlier stage. At the end of Phase IV the barriers have grown large, and �

is close to the minimum of its cosine potential.

14

Phenomenological signatures

𝜙 and 𝜎 couple to SM matter via their mixing with the Higgs

from oscillatory potential tree-level quantum mixing  
from 𝜙-loop

the SM states in most of the parameter space, and thus can only have some phenomenological

impact through astrophysical and cosmological e↵ects.

5.1 Properties of � and �

We start by deriving the properties of the � and � scalars. After the slow-rolling process

ends and � settles in a minimum, no cancellation is expected in the A(�, �, H) amplitude, so

that A(�, �, H) ⇠ ✏⇤4. The mass of � is thus controlled by A cos(�/f) and can be estimated

as

m2
� ⇠ ✏⇤4

f 2
⇠ g

⇤5

fv2
. v2 , (26)

where we used Eq. (14) and Eq. (15) to obtain the second equality and the upper bound on

m�. For � we expect that higher-order terms in g��/⇤, not shown for simplicity in Eq. (4),

give it a mass of order

m2
� ⇠ g2�⇤

2 ⌧ m2
� . (27)

In the allowed part of the parameter space of our model the masses of the two scalars

can change by many orders of magnitude, spanning the range [10�20, 100]GeV for � and

[10�45, 10�2] GeV for �. Contours of constant m� and m� are shown in Fig. 3.

These two scalars interact with the SM particles mainly through a mass mixing with the

Higgs. The corresponding mixing angles can be estimated as

✓�h ⇠ g⇤v

m2
h

, ✓�� ⇠ g�fv2

⇤3
, ✓�h ⇠ Max

⇢
✓��✓�h ,

g2

16⇡2

g�⇤7

f 2v3m2
h

�
. (28)

Notice that the �� h mass mixing coming from @2
�hV ⇠ ✏⇤2(v/f) sin(�/f) is suppressed at

the minimum where we have sin(h�i/f) ⇠ gf/(✏⇤) ⇠ v2/⇤2 ⌧ 1.7 The first contribution

in ✓�h arises at tree-level, whereas the second one originates from a �-loop. For most of the

parameter space we consider, this loop term dominates over the tree level one. The scalar

potential Eq. (4) also gives rise to interactions between � and the Higgs, not suppressed by

the small mixing angle ✓�h, that are of order

��hh : ✏⇤2/f 2 , ��h : ✏v⇤2/f 2 , (29)

7This is to be contrasted with the beginning of Phase IV when sin(�/f) ⇠ 1, as used to derive Eq. (15),

since barriers are smaller at this earlier stage. At the end of Phase IV the barriers have grown large, and �

is close to the minimum of its cosine potential.

14

𝜙 decays after BBN

𝜎 decays within the age of 
the Universe

𝜙 cosmologically stable

1000 105 107 109
10-50

10-41

10-32

10-23

10-14

10-5

L HGeVL

g

✓�H ⇠ 10�74

✓�H ⇠ 10�72

✓
�H ⇠ 10 �24

✓
�H ⇠ 10 �33

✏ = 10�45

✏ = 10�30

✏ = 10�15

✏ = 1

m� = 10�9GeV

.

quantum unstable potential

no classical rolling

m
� = 10 �18

GeV

m
� = 1GeV

m
� = 10 �2

GeV

m
� = 10 �9

GeV

1000 105 107 109
10-50

10-41

10-32

10-23

10-14

10-5

L HGeVL

g

1000 105 107 109
10-50

10-41

10-32

10-23

10-14

10-5

L HGeVL

g

�� = H0

�� = HBBN

�� = H
0

m� = 10�33GeV

.

m� = 10�20GeV

.

no slow-rolling



Christophe Grojean Naturalness Warsaw, Nov. 30, 201727

Phenomenological signatures
vacuum misalignment: (after reheating) 

quantum spreading makes the scalars oscillate around their minima

�� ⇠ �� ⇠
p
NeHI



Christophe Grojean Naturalness Warsaw, Nov. 30, 201727

Phenomenological signatures
vacuum misalignment: (after reheating) 

quantum spreading makes the scalars oscillate around their minima

�� ⇠ �� ⇠
p
NeHI

the energy stored in these field oscillations behave like cold DM

⇢�ini ⇠ m2
�(��)2ini ⇠ H4

I ⇢�ini ⇠ H4
I



Christophe Grojean Naturalness Warsaw, Nov. 30, 201727

Phenomenological signatures
vacuum misalignment: (after reheating) 

quantum spreading makes the scalars oscillate around their minima

�� ⇠ �� ⇠
p
NeHI

the energy stored in these field oscillations behave like cold DM

⇢�ini ⇠ m2
�(��)2ini ⇠ H4

I ⇢�ini ⇠ H4
I

the oscillations start when H~mi i.e. T i
osc

⇠
p

miMPl



Christophe Grojean Naturalness Warsaw, Nov. 30, 201727

Phenomenological signatures
vacuum misalignment: (after reheating) 

quantum spreading makes the scalars oscillate around their minima

�� ⇠ �� ⇠
p
NeHI

the energy stored in these field oscillations behave like cold DM

⇢�ini ⇠ m2
�(��)2ini ⇠ H4

I ⇢�ini ⇠ H4
I

the oscillations start when H~mi i.e. T i
osc

⇠
p

miMPl

the energy density is then redshifted till today

⌦� ⇠
✓
4⇥ 10�27

g�

◆3/2 ✓
⇤

108
GeV

◆13/2

always very small since ⌦� m� � m� i.e. T�
osc

� T �
osc



Christophe Grojean Naturalness Warsaw, Nov. 30, 201727

Phenomenological signatures
vacuum misalignment: (after reheating) 

quantum spreading makes the scalars oscillate around their minima

�� ⇠ �� ⇠
p
NeHI

the energy stored in these field oscillations behave like cold DM

⇢�ini ⇠ m2
�(��)2ini ⇠ H4

I ⇢�ini ⇠ H4
I

the oscillations start when H~mi i.e. T i
osc

⇠
p

miMPl

the energy density is then redshifted till today

⌦� ⇠
✓
4⇥ 10�27

g�

◆3/2 ✓
⇤

108
GeV

◆13/2

always very small since ⌦� m� � m� i.e. T�
osc

� T �
osc

1000 105 107 109
10-50

10-41

10-32

10-23

10-14

10-5

L HGeVL

g

✓�H ⇠ 10�74

✓�H ⇠ 10�72

✓
�H ⇠ 10 �24

✓
�H ⇠ 10 �33

✏ = 10�45

✏ = 10�30

✏ = 10�15

✏ = 1

m� = 10�9GeV

.

quantum unstable potential

no classical rolling

m
� = 10 �18

GeV

m
� = 1GeV

m
� = 10 �2

GeV

m
� = 10 �9

GeV

⌦�
>
⌦DM

1000 105 107 109
10-50

10-41

10-32

10-23

10-14

10-5

L HGeVL

g

1000 105 107 109
10-50

10-41

10-32

10-23

10-14

10-5

L HGeVL

g

�� = H0

�� = HBBN

�� = H
0

m� = 10�33GeV

.

m� = 10�20GeV

.

no slow-rolling



Christophe Grojean Naturalness Warsaw, Nov. 30, 201728

Phenomenological signatures
𝜙 thermal production via interaction with the Higgs

h+ h ! �+ � SM + SM ! h(⇤) ! �+ �or
single production is subdominant since linear interactions are suppressed by small mixing angle 



Christophe Grojean Naturalness Warsaw, Nov. 30, 201728

Phenomenological signatures
𝜙 thermal production via interaction with the Higgs

h+ h ! �+ � SM + SM ! h(⇤) ! �+ �or
single production is subdominant since linear interactions are suppressed by small mixing angle 

𝜙 almost never in thermal equilibrium (except above ΓBBN line)



Christophe Grojean Naturalness Warsaw, Nov. 30, 201728

Phenomenological signatures
𝜙 thermal production via interaction with the Higgs

h+ h ! �+ � SM + SM ! h(⇤) ! �+ �or
single production is subdominant since linear interactions are suppressed by small mixing angle 

𝜙 almost never in thermal equilibrium (except above ΓBBN line)

possible quantum spreading. The initial energy density arising from this displacement was

at most ⇢�ini ⇠ H4
I , that, since m� � m� and then T �

osc � T �
osc, gives today a completely

negligible e↵ect.

Thermal production of �

Thermal production of � arises mainly from the couplings of Eq. (29). In particular, from the

��hh-coupling we can have double-production from the thermal bath via h+h ! �+�. 8 At

T & mh, this double-production cross-section is estimated to be h�Avi ⇠ ✏2(⇤4/f 4)/T 2. This

implies that � can reach thermal equilibrium only for T in the interval [mh, ✏2MP (⇤/f)4], in

which the � production rate is faster than the rate of expansion. This region corresponds

roughly to the area above the �� = HBBN line of Fig. 3, so we conclude that in most of the

parameter space, � never thermalizes.9

The number density of � produced thermally is obtained by solving the Boltzmann equa-

tion
dn�

dt
+ 3Hn� = �h�Avi(n2

� � n2
�,eq) , (32)

where n�,eq is the equilibrium number-density of �. This equation can be conveniently re-

written in terms of the dimensionless quantities x = m�/T and Y� = n�/s, where s is the

entropy per comoving volume, s = 2⇡2g⇤sT 3/45. Assuming a radiation-dominated era, with

energy density ⇢R = ⇡2g⇤T 4/30 (here, g⇤ ⇠ g⇤s ⇠ 100 counts the number of relativistic

degrees of freedom) and using that Y� ⌧ Y�,eq in the large portion of parameter space in

which � does not thermalize, one gets:

dY�

dx
' h�AviCm�MP

x2
Y 2
�,eq , (33)

where C = 2⇡
p
90g⇤s/(45

p
g⇤) ' 13.7. For relativistic �, x ⌧ 1, the equilibrium density is

approximately given by Yeq ⇠ 0.278/g⇤s. This leads to the approximate formula

Y�(T ) ⇠ ✏2
⇤4

f 4
CY 2

�,eq

MP

T
. (34)

8Double production can also be mediated by the process SM + SM ! h(⇤) ! � + � induced by the

��h-coupling, which can lead to a similar thermal production as the one discussed here. Single production,

on the other hand, is due to interactions that are linear in the � field and are thus suppressed by the small

mixing angle ✓�h, and can be neglected.
9This also implies that we can neglect thermal corrections to the potential for � in the analysis of its

cosmological evolution.
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