

20th Planck Conference from Kazimierz to Warsaw

Cosmic abundances of SIMP dark matter

Hyun Min Lee

Chung-Ang University, Korea

20th Planck Conference University of Warsaw, Poland, May 25, 2017

Outline

- Motivation
- SIMP paradigm & production
- Models for SIMP dark matter
- Conclusions

Motivation

Dark matter from sky

 Various evidences from galaxy rotation curves, CMB, and gravitational lensing, and large scale structure.

But, we don't know the origin of dark matter.

WIMP Paradigm

[Lee,Weinberg(1977)]

Weak interaction with 100GeV-1TeV mass:

$$\square \square \square h^2 = 0.1 \left(\frac{1 \, \mathrm{pb} \cdot c}{\langle \sigma_A v \rangle} \right)$$

Interplay of direct, indirect and collider detections!

WIMP in challenge

Small-scale problems

 Core-cusp problem: simulation with CDM (cusp) overshoots galaxy rotation curves.

> Isothermal (core) profile is favored over NFW or Einasto (cusp).

Other problems: missing satellites (fewer DM subhalos), too-big-to-fail (masses of dwarf galaxies)

Self-interacting DM

• Self-interacting DM: core profile and no small-scale problems.

 $\sigma_{\rm self}/m_{\rm DM}=0.1-10\,{\rm cm}^2/{\rm g}$

cf. WIMP DM without light mediator: $\sigma_{\text{self}}/m_{\text{WIMP}} \sim 10^{-11} \text{GeV}^{-3} \sim 10^{-14} \text{cm}^2/g$.

No evidence from Bullet cluster; smaller self-scattering at clusters $\sigma_{
m self}/m_{
m DM} < 1\,{
m cm}^2/{
m g}$

Off-set of DM halo: $\Delta = 1.62^{+0.47}_{-0.49} \, \mathrm{kpc}$ hint for large self-interaction?

Beyond vanilla DM

• Dynamics for self-interacting dark matter and its portals

Portals: Higgs, Z', axion, graviton, etc

- SU(N)xU(I)x ···
- Dark local or global U(I)_d stability of DM
- New strong int, dark flavor self-interacting DM

• $SU(3) \times SU(2) \times U(1)$

•
$$U(I)_{em}, U(I)_{B}$$

stable electron, proton

 Strong int, SU(3) flavor self-interacting, long-lived mesons

SIMP paradigm & production

SIMP mechanism

SIMP abundances

[S.-M. Choi, HML, M.-S. Seo, 2017]

• Thermal average of $3 \rightarrow 2$ annihilation cross section

$$\langle \sigma v^2 \rangle = \frac{1}{2} x^3 \sum_{l=0}^{\infty} \frac{a_l}{l!} \int_0^{\infty} d\eta \, \eta^{l+2} e^{-x\eta} = \frac{1}{2} \sum_{l=0}^{\infty} (l+1)(l+2)a_l \, x^{-l}$$

$$\boxed{\text{General:}} \quad \langle (v_1^2)^n (v_2^2)^m (v_3^2)^l \rangle \equiv c_{nml} \, x^{-n-m-l} \quad \boxed{(n,m,l) \ (1,0,0) \ (1,1,0) \ (2,0,0) \ (1,1,1) \ (2,1,0) \ (3,0,0) \ (2,0,0) \ (2,0,0) \ (1,1,1) \ (2,1,0) \ (3,0,0) \ (2,0,0) \$$

SIMP resonances

[S.-M. Choi, HML, M.-S. Seo, 2017]

• $3 \rightarrow 2$ annihilation cross enhances near resonance.

Breit-Wigner form for SIMP:

SIMP resonances [S.-M. Choi, HML, M.-S. Seo, 2017]

• Thermal average of $3 \rightarrow 2$ annihilation near resonance

Kinetic equilibrium

 Excess of kinetic energy released by SIMP process needs equilibriated by the SM plasma.
 [de Laix et al, 1995]

• Ineffective 2→2 annihilation needs $\epsilon < 2.4 \times 10^{-6} \alpha_{eff}$

Portals to SIMP

• Higgs-portal: scalar DM [Bernal et al, 2015; S.-M.Choi, HML, 2015]

Z'-portal: (built in models with discrete symmetries)

[HML, M.-S. Seo, 2015; S.-M.Choi, HML, 2015]

How to detect SIMP

Models for SIMP dark matter

Discrete symmetries for SIMP [S.-M.Choi, HML, 2015, 2016]

• Z₃, Z₅ are consistent discrete gauge symmetries for SIMP and Z' portal is built-in.

• Self-scattering and (s-wave) $3 \rightarrow 2$ annihilation.

Bounds on Z₃ SIMP

Bounds on dark sector couplings

[S.-M.Choi, HML, 2015]

Bounds on Z' portal BaBar γ+MET; Belle2 projection; EWPT; g-2; XENON10 (similar limits from beam dump).

SIMP pions

 $G=SU(N_f) \times SU(N_f)$ condensate of SU(N_c) dark fermions

• WZW terms for $\pi_5(G/H)=Z$ (i.e. $N_f \ge 3$) [Wess, Zumino, 1971;

 $\mathcal{L}_{WZW} = \frac{2N_c}{15\pi^2 F^5} \epsilon^{\mu\nu\rho\sigma} \mathrm{Tr}[\pi \partial_\mu \pi \partial_\nu \pi \partial_\rho \pi \partial_\sigma \pi]$

[Hochberg et al, 2014]

Witten, 1983]

Dark pions

as SIMP

SIMP process:

Dark flavor

Self-scattering:

• Gauged WZW term [Witten, 1983]

Cancel chiral anomalies for stability of dark pions?

 $\int_{q}^{\infty} Z' \qquad \propto \operatorname{Tr}(Q_D^2 T^a) = 0 \quad \text{if} \quad Q_D^2 = I.$

 $Q_D = \begin{pmatrix} \frac{1}{3} & 0 & 0 \\ 0 & -\frac{1}{3} & 0 \\ 0 & 0 & -\frac{1}{3} \end{pmatrix} : flavor non-universal charges$ [M.-S. Seo, HML, 2015]

Gauge kinetic mixing — Kinetic equilibrium

Bounds on SIMP pions

 $< 2\pi$.

- Bullet cluster; perturbativity bounds.
- SIMP parameter space can be probed by Z' searches.

$$e^+e^- \rightarrow \gamma Z' \rightarrow \gamma (l^+l^-), e^+e^- \rightarrow \gamma + MET$$

 $h \rightarrow ZZ'$ (CMS 8TeV), Drell-Yan, dileptons.

Vector SIMP

[S.-M. Choi, Y. Hochberg, E. Kuflic, Y. Mambrini, H. Murayama, HML, M. Pierre, to appear.]

Z' portal for VSIMP

$$\mu, a \qquad p+q$$

$$k+q+A \qquad k \qquad j \qquad k-p+A$$

$$i \qquad \nu, b$$

$$\mathcal{L}_{CS,\text{even}} = c_1 \epsilon^{\mu\nu\rho\sigma} Z'_{\mu} \vec{X}_{\nu} \cdot (\partial_{\rho} \vec{X}_{\sigma} - \partial_{\sigma} \vec{X}_{\rho})$$

[S.-M. Choi, Y. Hochberg, E. Kuflic, Y. Mambrini, H. Murayama, HML, M. Pierre, to appear.]

Conclusions

- SIMP dark matter is produced by thermal freeze-out of the 3→2 process, without sizable couplings to the SM, but with large self-interactions.
- Thermal averages of DM annihilation cross section is generalized to SIMP case.
- Kinetic equilibrium would need a nonzero coupling between SIMP and the SM, which can be probed by DM direct/indirect detections and Z'-searches.
- A variety of testable SIMP models with local or global symmetries in dark sector were proposed.