A global view on the Higgs self coupling

Planck 2017, Warsaw

Thibaud Vantalon DESY - IFAE

Based on:

ArXiv:1704.01953, S. Di Vita, C. Grojean, G. Panico, M.Riembau, T. Vantalon

Gorbahn et al '16 arXiv:1607.03773 [hep-ph]

And

Degrassi et al '16 arXiv:1607.04251 [hep-ph]

Bizon et al '16 arXiv:1610.05771 [hep-ph]

The Higgs potential

$$V_{\rm SM} = \frac{1}{2}m_h^2 + \lambda_3^{\rm SM}h^3 + \lambda_4^{\rm SM}h^4$$
$$\lambda_3^{\rm SM} = \frac{m_h^2}{2v} \qquad \qquad \lambda_4^{\rm SM} = \frac{m_h^2}{8v^2}$$

Standard model Higgs potential depend on only 2 parameters and is precisely measured

Direct measurements of h³ and h⁴ are challenging but an important consistency check.

- Stability of EW vacuum
- Baryogenesis through first order phase transition?

h³ challenging to measure at LHC

h⁴ out of reach of LHC

The Higgs potential

$$V_{\rm SM} = \frac{1}{2}m_h^2 + \lambda_3^{\rm SM}h^3 + \lambda_4^{\rm SM}h^4$$
$$\lambda_3^{\rm SM} = \frac{m_h^2}{2v} \qquad \qquad \lambda_4^{\rm SM} = \frac{m_h^2}{8v^2}$$

Standard model Higgs potential depend on only 2 parameters and is precisely measured

Direct measurements of h³ and h⁴ are challenging but an important consistency check.

- Stability of EW vacuum
- Baryogenesis through first order phase transition?

h³ challenging to measure at LHC

Double Higgs production

Negative interference decrease cross section by 50%

$$\frac{\sigma(pp \to hh)}{\sigma(pp \to h)} \sim 10^{-3}$$

Need a trade off between cleanness and statistic

 $\operatorname{Br}(h \to b\overline{b}) \times \operatorname{Br}(h \to \gamma\gamma) \sim 60\% \times 0.1\%$

HL-LHC @ 3 ab⁻¹ $\kappa_{\lambda} \in [-0.8, 8.8]$ ATL-PHYS_PUB_2017-001

Idea, since the bounds are so loose and trilinear enter at NLO in single Higgs process

Can single Higgs process help?

McCullough, 1312.3322 Gorbahn, Haisch 1607.03773 Degrassi, et al. 1607.04251 Bizon, et al. 1610.05771 Degrassi, et al. 1702.01737

LHC from discovery to high precision

The trilinear coupling enter at loop level in single Higgs observables

Degrassi, et al. 1607.04251

McCullough, 1312.3322 Gorbahn, Haisch 1607.03773 Degrassi, et al. 1607.04251 Bizon, et al. 1610.05771 Degrassi, et al. 1702.01737

Only κ_{λ} deviate from SM:

0000000000

$$\kappa_{\lambda} \in [-0.7, 4.2]$$

Compared to other double Higgs expected bound in $\operatorname{HH} \to b \overline{b} \gamma \gamma$

 $\kappa_{\lambda} \in [0, 2.8] \cup [4.5, 6.1]$

Azatov et al. 1502.00539

LHC from discovery to high precision

The trilinear coupling enter at loop level in single Higgs observables

 \sim $\delta \sigma_{\lambda_2}[\%]$ Kλ -20-1020 ggF VBF ZH -60WH ttH -80

Degrassi, et al. 1607.04251

McCullough, 1312.3322 Gorbahn, Haisch 1607.03773 Degrassi, et al. 1607.04251 Bizon, et al. 1610.05771 Degrassi, et al. 1702.01737

Only κ_{λ} deviate from SM: $\kappa_{\lambda} \in [-0.7, 4.2]$

Compared to other double Higgs expected bound in $\mbox{HH} \rightarrow b \bar{b} \gamma \gamma$

 $\kappa_{\lambda} \in [0, 2.8] \cup [4.5, 6.1]$

Azatov et al. 1502.00539

But this comparison is not fair

Setting on one anomalous coupling at a time is a strong assumption.

Is it possible to disentangle the different contributions?

Parametrization of dominating BSM effects in Higgs physics using dimension 6 Lagrangian in the "Higgs basis"

Assuming flavour universality and no CP violating operator

Tested in TGC

8 (+2) Independent operators that affect Higgs physics at leading order and have not been tested in existing precision measurements

6 parameters controlling deformations of the couplings to the SM gauge bosons

 $\delta c_z \,, \, c_{zz} \,, \, c_{z\Box} \,, \, \hat{c}_{z\gamma} \,, \, \hat{c}_{\gamma\gamma} \,, \, \hat{c}_{gg} \,,$

3 related to the deformations of the fermion Yukawa's

 $\delta y_t, \ \delta y_d, \ \delta y_{\tau},$

1 distortion to the Higgs trilinear self-coupling

 κ_λ .

Inclusive observables

Global C	Chi s	squared	fit	of the	signal	strengths

We explore the sensitivity of HL-LHC at 3/ab, using the ATLAS projection.

ATL-PHYS-PUB-2014-016 ATL-PHYS-PUB-2016-008 ATL-PHYS-PUB-2016-018

+ Updated ggF uncertainties

Process		Combination	Theory	Experimental	
3 0	$_{\rm ggF}$	0.07	0.05	0.05	
	VBF	0.22	0.16	0.15	
$H\to\gamma\gamma$	$t\overline{t}H$	0.17	0.12	0.12	
	WH	0.19	0.08	0.17	
	ZH	0.28	0.07	0.27	
	ggF	0.06	0.05	0.04	
	VBF	0.17	0.10	0.14	
$H \to Z Z$	$t\overline{t}H$	0.20	0.12	0.16	
	WH	0.16	0.06	0.15	
	ZH	0.21	0.08	0.20	
$H \rightarrow WW$	ggF	0.07	0.05	0.05	
$\Pi \rightarrow VV VV$	VBF	0.15	0.12	0.09	
$H \to Z \gamma$	incl.	0.30	0.13	0.27	
$H \rightarrow b\overline{b}$	WH	0.37	0.09	0.36	
$11 \rightarrow 00$	ZH	0.14	0.05	0.13	
$H \to \tau^+ \tau^-$	VBF	0.19	0.12	0.15	

We assume that in our EFT the dim 6 level is a good approximation.

Higher order therm can be neglected so we linearized the signal strength in the wilson coefficient

$$\mu = \frac{\sigma_i}{(\sigma_i)_{\rm SM}} \times \frac{{\rm BR}[f]}{({\rm BR}[f])_{\rm SM}}$$
$$\approx 1 + \delta\sigma + \delta {\rm BR}$$

Single Higgs observable without the trilinear

Run 1 channel, Observable = SM exactly

ATL-PHYS-PUB-2014-016

Inclusive observables at 8 TeV

Receiving modifications from 9+1 parameters

$$\hat{c}_{gg}, \, \delta c_z, \, c_{zz}, \, c_{z\Box}, \, \hat{c}_{z\gamma}, \, \hat{c}_{\gamma\gamma}, \, \delta y_t, \, \delta y_b, \, \delta y_{ au}, \, \kappa_{\lambda}$$

So, we should be able to constrain them by looking at the signal strengths

This is not possible

Only 9 Independent signal strength combinations (at the linear level)

Shift in production can be compensated by opposite shift in decay

$$\delta \sigma = -\delta BR$$
 — Unconstrained direction

Single Higgs without NLO effect validity

Incl. single Higgs data

Single Higgs without NLO effect validity

Incl. single Higgs data

This is true for a broad class of model

A counter example

May not be valid for Higgs portal

$$\mathcal{L} \supset \theta g_* m_* H^{\dagger} H \varphi - \frac{m_*^4}{g_*^2} V(g_* \varphi/m_*)$$

Will generate:

$$\delta c_z \sim \theta^2 g_*^2 \frac{v^2}{m_3^2} \qquad \qquad \delta \kappa_\lambda \sim \theta^3 g_*^4 \frac{1}{\lambda_3^{\rm SM}} \frac{v^2}{m^2}$$

With a typical tuning of
$$\ \Delta \sim rac{ heta^2 g_*^2}{\lambda_3^{SM}}$$

Perturbative expansion $\ \varepsilon \equiv {\theta g_*^2 v^2 \over m_*^2} \ll 1$

 $\theta \simeq 1, g_* \simeq 3 \text{ and } m_* \simeq 2.5 \text{ TeV}$

 $\varepsilon \simeq 0.1 \,, \quad 1/\Delta \simeq 1.5\%$

$$\delta c_z \simeq 0.1, \quad \delta \kappa_\lambda \simeq 6$$

Hard to have model with large deviation only in $\delta\kappa$

Single Higgs fit valid for most model Way out:

Extra constraints

- **1** Higgs total width
- **\$** Compare different energies
- **1** decay $\mu\mu$
- 2 Anomalous triple gauge couplings(aTGCs)
- 1 decay $Z\gamma$
 - Differential distributions
- **1** Add double Higgs

Not helping too much See paper for detail

Inclusive observables

aTGCs

At dimension 6, the aTGCs can be written in terms of the Higgs basis parameters

$$\begin{split} \delta g_{1,z} &= \frac{1}{2(g-g')} \left[c_{\gamma\gamma} e^2 g' + c_{z\gamma} \left(g^2 - g'^2 \right) g'^2 \right. \\ &\left. - c_{zz} \left(g^2 + g'^2 \right) g'^2 - c_{z\Box} \left(g^2 + g'^2 \right) g^2 \right], \\ \delta \kappa_{\gamma} &= -\frac{g^2}{2} \left(c_{\gamma\gamma} \frac{e^2}{g^2 + g'^2} + c_{z\gamma} \frac{g^2 - g'^2}{g^2 + g'^2} - c_{zz} \right) \end{split}$$

$\Delta \mu / \mu$	3	300 fb ⁻¹	3000 fb ⁻¹		
	All unc. No theory unc.		All unc.	No theory unc.	
$H \rightarrow \gamma \gamma \text{ (comb.)}$	0.13	0.09	0.09	0.04	
(0j)	0.19	0.12	0.16	0.05	
(1j)	0.27	0.14	0.23	0.05	
(VBF-like)	0.47	0.43	0.22	0.15	
(WH-like)	0.48	0.48	0.19	0.17	
(ZH-like)	0.85	0.85	0.28	0.27	
(ttH-like)	0.38	0.36	0.17	0.12	
$H \rightarrow ZZ \text{ (comb.)}$	0.11	0.07	0.09	0.04	
(VH-like)	0.35	0.34	0.13	0.12	
(ttH-like)	0.49	0.48	0.20	0.16	
(VBF-like)	0.36	0.33	0.21	0.16	
(ggF-like)	0.12	0.07	0.11	0.04	
$H \rightarrow WW$ (comb.)	0.13	0.08	0.11	0.05	
(0j)	0.18	0.09	0.16	0.05	
(1j)	0.30	0.18	0.26	0.10	
(VBF-like)	0.21	0.20	0.15	0.09	
$H \rightarrow Z\gamma$ (incl.)	0.46	0.44	0.30	0.27	
$H \rightarrow b\bar{b}$ (comb.)	0.26	0.26	0.14	0.12	
(WH-like)	0.57	0.56	0.37	0.36	
(ZH-like)	0.29	0.29	0.14	0.13	
$H \rightarrow \tau \tau$ (VBF-like)	0.21	0.18	0.19	0.15	
$H \rightarrow \mu\mu$ (comb.)	0.39	0.38	0.16	0.12	
(incl.)	0.47	0.45	0.18	0.14	
(ttH-like)	0.74	0.72	0.27	0.23	

ATL-PHYS-PUB-2014-016

 $H \to Z\gamma$

Correlation with new observables

$\left(\hat{c}_{gg} \right)$		(0.07	(0.02)		1	-0.01	-0.02	0.03	0.08	0.01	-0.71	0.03	0.01
δc_z		0.07	(0.01)			1	-0.45	0.36	-0.61	-0.33	0.18	0.89	0.53
c_{zz}		0.64	(0.02)				1	-0.99	0.69	0.11	0.38	-0.47	-0.74
$c_{z\Box}$		0.24	(0.01)					1	-0.58	-0.23	-0.42	0.42	0.71
$\hat{c}_{z\gamma}$	$=\pm$	4.94	(0.65)						1	-0.58	0.09	-0.46	-0.63
$\hat{c}_{\gamma\gamma}$		0.08	(0.02)							1	0.14	0.04	0.04
δy_t		0.09	(0.02)								1	0.25	-0.08
δy_b		0.14	(0.03)									1	0.57
$\langle \delta y_{\tau} \rangle$		$\setminus 0.17$	(0.09)										1
		New	chann	els he	elp	the co	orrelat	ions					
	L				-								
\hat{c}_{gg}	\ \	(0.07	(0.02)		•	0.04	-0.01	-0.01	0.04	0.31	-0.76	0.05	0.02 .
$\left(\begin{array}{c} \hat{c}_{gg} \\ \delta c_z \end{array}\right)$		$\left(\begin{array}{c} 0.07\\ 0.05\end{array}\right)$	(0.02) (0.01)			0.04	-0.01 -0.07	-0.01 -0.26	0.04 0.01	0.31 0.01	-0.76 0.36	0.05 0.88	$0.02 \\ 0.27$
$\left(egin{array}{c} \hat{c}_{gg} \\ \delta c_z \\ c_{zz} \end{array} ight)$		$\left(\begin{array}{c} 0.07 \\ 0.05 \\ 0.05 \end{array} \right)$	$(0.02) \\ (0.01) \\ (0.02)$			0.04	-0.01 -0.07 1	-0.01 -0.26 - 0.87	0.04 0.01 0.13	$0.31 \\ 0.01 \\ 0.20$	-0.76 0.36 0.03	0.05 0.88 -0.07	$0.02 \\ 0.27 \\ -0.06$
$\left(\begin{array}{c} \hat{c}_{gg} \\ \delta c_z \\ c_{zz} \\ c_{z\Box} \end{array}\right)$		$\left(\begin{array}{c} 0.07 \\ 0.05 \\ 0.05 \\ 0.02 \end{array} \right)$	(0.02) (0.01) (0.02) (0.01)			0.04	-0.01 -0.07 1	-0.01 -0.26 -0.87 1	0.04 0.01 0.13 -0.09	0.31 0.01 0.20 -0.09	-0.76 0.36 0.03 -0.09	0.05 0.88 -0.07 -0.17	0.02 0.27 -0.06 0.08
$\left(\begin{array}{c} \hat{c}_{gg} \\ \delta c_z \\ c_{zz} \\ c_{z\square} \\ \hat{c}_{z\gamma} \end{array}\right)$		$\left(\begin{array}{c} 0.07 \\ 0.05 \\ 0.05 \\ 0.02 \\ 0.09 \end{array} \right)$	(0.02) (0.01) (0.02) (0.01) (0.09)			0.04	-0.01 -0.07 1	-0.01 -0.26 - 0.87 1	0.04 0.01 0.13 -0.09 1	0.31 0.01 0.20 -0.09 0.05	-0.76 0.36 0.03 -0.09 -0.02	0.05 0.88 -0.07 -0.17 -0.02	0.02 0.27 -0.06 0.08 -0.03
$\left(\begin{array}{c} \hat{c}_{gg} \\ \delta c_z \\ c_{zz} \\ c_{z\square} \\ \hat{c}_{z\gamma} \\ \hat{c}_{\gamma\gamma} \end{array}\right)$		$\left(\begin{array}{c} 0.07 \\ 0.05 \\ 0.05 \\ 0.02 \\ 0.09 \\ 0.03 \end{array} \right)$	$\begin{array}{c} (0.02) \\ (0.01) \\ (0.02) \\ (0.01) \\ (0.09) \\ (0.02) \end{array}$			0.04	-0.01 -0.07 1	-0.01 -0.26 - 0.87 1	0.04 0.01 0.13 -0.09 1	0.31 0.01 0.20 -0.09 0.05 1	-0.76 0.36 0.03 -0.09 -0.02 -0.32	0.05 0.88 -0.07 -0.17 -0.02 -0.19	0.02 0.27 -0.06 0.08 -0.03 -0.12
$\left(\begin{array}{c} \hat{c}_{gg} \\ \delta c_z \\ c_{zz} \\ c_{z\square} \\ \hat{c}_{z\gamma} \\ \hat{c}_{\gamma\gamma} \\ \delta y_t \end{array}\right)$		$\left(\begin{array}{c} 0.07 \\ 0.05 \\ 0.05 \\ 0.02 \\ 0.09 \\ 0.03 \\ 0.08 \end{array} \right)$	$\begin{array}{c} (0.02) \\ (0.01) \\ (0.02) \\ (0.01) \\ (0.09) \\ (0.02) \\ (0.02) \end{array}$			0.04	-0.01 -0.07 1	-0.01 -0.26 - 0.87 1	0.04 0.01 0.13 -0.09 1	0.31 0.01 0.20 -0.09 0.05 1	-0.76 0.36 0.03 -0.09 -0.02 -0.32 1	0.05 0.88 -0.07 -0.17 -0.02 -0.19 0.50	0.02 0.27 -0.06 0.08 -0.03 -0.12 0.28
$\left(egin{array}{ccc} \hat{c}_{gg} & \delta c_z & \delta y_t & \delta y_t & \delta y_b & \delta y$		$\left(\begin{array}{c} 0.07\\ 0.05\\ 0.05\\ 0.02\\ 0.09\\ 0.03\\ 0.08\\ 0.12\end{array}\right)$	$\begin{array}{c} (0.02) \\ (0.01) \\ (0.02) \\ (0.01) \\ (0.09) \\ (0.02) \\ (0.02) \\ (0.03) \end{array}$			0.04	-0.01 -0.07 1	-0.01 -0.26 -0.87 1	0.04 0.01 0.13 -0.09 1	0.31 0.01 0.20 -0.09 0.05 1	-0.76 0.36 0.03 -0.09 -0.02 -0.32 1	0.05 0.88 -0.07 -0.17 -0.02 -0.19 0.50 1	0.02 0.27 -0.06 0.08 -0.03 -0.12 0.28 0.36
$\left(egin{array}{ccc} \hat{c}_{gg} \\ \delta c_z \\ c_{zz} \\ c_{z\Box} \\ \hat{c}_{z\gamma} \\ \hat{c}_{\gamma\gamma} \\ \delta y_t \\ \delta y_b \\ \delta y_{ au} \end{array} ight)$	$\left = \pm \right $	$\left(\begin{array}{c} 0.07\\ 0.05\\ 0.05\\ 0.02\\ 0.09\\ 0.03\\ 0.08\\ 0.12\\ 0.11\end{array}\right.$	$\begin{array}{c} (0.02) \\ (0.01) \\ (0.02) \\ (0.01) \\ (0.09) \\ (0.02) \\ (0.02) \\ (0.03) \\ (0.09) \end{array}$			0.04	-0.01 -0.07 1	-0.01 -0.26 -0.87 1	0.04 0.01 0.13 -0.09 1	0.31 0.01 0.20 -0.09 0.05 1	-0.76 0.36 0.03 -0.09 -0.02 -0.32 1	0.05 0.88 -0.07 -0.17 -0.02 -0.19 0.50 1	$\begin{array}{c} 0.02 \\ 0.27 \\ -0.06 \\ 0.08 \\ -0.03 \\ -0.12 \\ 0.28 \\ 0.36 \\ 1 \end{array}$

(If we can constrain the trilinear!)

The flat direction

Value of all the couplings in function of $\delta \kappa_{\lambda}$ such that All the $\delta \mu$ =0

The flat direction

Value of all the couplings in function of $\delta \kappa_{\lambda}$ such that All the $\delta \mu$ =0

What we constrained

Value of all the couplings in function of $\delta \kappa_{\lambda}$ such that

All the $\delta\mu=0$ Higgs couplings variation along the flat direction

Inclusive observables

TGCs

At dimension 6, the aTGCs can be written in terms of the Higgs basis parameters

$$\begin{split} \delta g_{1,z} &= \frac{1}{2(g-g')} \left[c_{\gamma\gamma} e^2 g' + c_{z\gamma} \left(g^2 - g'^2 \right) g'^2 \right. \\ &\left. - c_{zz} \left(g^2 + g'^2 \right) g'^2 - c_{z\Box} \left(g^2 + g'^2 \right) g^2 \right], \\ \delta \kappa_{\gamma} &= -\frac{g^2}{2} \left(c_{\gamma\gamma} \frac{e^2}{g^2 + g'^2} + c_{z\gamma} \frac{g^2 - g'^2}{g^2 + \eta^2} \right) \left. \right] \end{split}$$

			/				
	$\Delta \mu / \mu$	3	500 fb^{-1}	3000 fb ⁻¹			
		All unc.		All unc.	No theory unc.		
	$H \rightarrow \gamma \gamma \text{ (comb.)}$	0.12	ctio.	0.09	0.04		
	(0j)	92.2	0.12	0.16	0.05		
	(LL	. 011	0.14	0.23	0.05		
	(VPr cl 2		0.43	0.22	0.15		
		0.48	0.48	0.19	0.17		
	the c)	0.85	0.85	0.28	0.27		
	A-like)	0.38	0.36	0.17	0.12		
/ rx	ZZ (comb.)	0.11	0.07	0.09	0.04		
, SU	(VH-like)	0.35	0.34	0.13	0.12		
2115	(ttH-like)	0.49	0.48	0.20	0.16		
	(VBF-like)	0.36	0.33	0.21	0.16		
ſ	(ggF-like)	0.12	0.07	0.11	0.04		
	$H \rightarrow WW$ (comb.)	0.13	0.08	0.11	0.05		
	(0j)	0.18	0.09	0.16	0.05		
	(1j)	0.30	0.18	0.26	0.10		
	(VBF-like)	0.21	0.20	0.15	0.09		
	$H \rightarrow Z\gamma$ (incl.)	0.46	0.44	0.30	0.27		
	$H \rightarrow b\bar{b} \text{ (comb.)}$	0.26	0.26	0.14	0.12		
	(WH-like)	0.57	0.56	0.37	0.36		
	(ZH-like)	0.29	0.29	0.14	0.13		
	$H \rightarrow \tau \tau$ (VBF-like)	0.21	0.18	0.19	0.15		
	$H \rightarrow \mu\mu$ (comb.)	0.39	0.38	0.16	0.12		
	(incl.)	0.47	0.45	0.18	0.14		
	(ttH-like)	0.74	0.72	0.27	0.23		

 $H \to Z\gamma$

ATL-PHYS-PUB-2014-016

Not enough constraints

Not enough constraints

Differential Observables

Rough analysis looking at the prospects of differential observables

Cross section in each bin in terms of the EFT parameters computed using MadGraph.

Dependence on Higgs trilinear computed in Degrassi, et al. 1607.04251

Restore some power to the method, may be seen as complement to double Higgs

 $\Delta \chi^2$

Maybe other differential observable can be more powerful

$$\delta \kappa_{\lambda} \in [-5.4, 5.4]$$

Differential Observables versus double Higgs

Double Higgs analysis more powerful

It also **solves** the flat direction issue in single Higgs

Single and double Higgs together

Single Higgs help little

Robustness of the analysis

Sensibility to single Higgs uncertainties

- Single Higgs observables are a complementary source of information for the Higgs trilinear.
- At the inclusive level the trilinear corrections to single Higgs observables introduce a flat direction in the global fit.
- This flat direction degrades the precision achievable on the wilson coefficients. Some control on the trilinear is needed to solve this issue.
- Double Higgs is still the best way to extract Higgs trilinear and to restore the control over single Higgs fit.
- Most promising way to remove the flat direction without using double Higgs is to use differential distribution. More work in this direction is needed.

More results in ArXiv:1704.01953

For preliminary results on the trilinear extraction at future lepton collider see Jiayin Gu talk tomorrow morning Thank you

Our parametrisation:

Parametrization of dominating BSM effects in Higgs couplings couplings:

$$\begin{split} \mathcal{L}^{\rm NP} &\supset \frac{h}{v} \left[\delta c_w \frac{g^2 v^2}{2} W^+_{\mu} W^{-\mu} + \delta c_z \frac{(g^2 + g'^2) v^2}{4} Z_{\mu} Z^{\mu} \right. \\ &+ c_{ww} \frac{g^2}{2} W^+_{\mu\nu} W_{-\mu\nu} + c_w \Box g^2 \left(W^+_{\mu} \partial_{\nu} W_{+\mu\nu} + {\rm h.c.} \right) \\ &+ \hat{c}_{\gamma\gamma} \frac{e^2}{4\pi^2} A_{\mu\nu} A^{\mu\nu} + c_z \Box g^2 Z_{\mu} \partial_{\nu} Z^{\mu\nu} + c_{\gamma \Box} gg' Z_{\mu} \partial_{\nu} A^{\mu\nu} \\ &+ c_{zz} \frac{g^2 + g'^2}{4} Z_{\mu\nu} Z^{\mu\nu} + \hat{c}_{z\gamma} \frac{e \sqrt{g^2 + g'^2}}{2\pi^2} Z_{\mu\nu} A^{\mu\nu} \right] \\ &+ \frac{g_s^2}{48\pi^2} \left(\hat{c}_{gg} \frac{h}{v} + \hat{c}_{gg}^{(2)} \frac{h^2}{2v^2} \right) G_{\mu\nu} G^{\mu\nu} \\ &- \sum_f \left[m_f \left(\delta y_f \frac{h}{v} + \delta y_f^{(2)} \frac{h^2}{2v^2} \right) \bar{f}_R f_L + {\rm h.c} \right] \\ &+ (\kappa_{\lambda} - 1) \lambda_{SM} v h^3 \checkmark \end{split}$$