Multi-peaked Gravitational footprints of neutrino mass and lepton symmetry violation

António P. Morais¹

Andrea Addazi² Antonino Marcianò² Roman Pasechnik³ Bahul Srivastava ⁴ José W. F. Valle⁴

¹Center for Research and Development in Mathematics and Applications (CIDMA) Aveiro University, Aveiro, Portugal

²Department of Physics and Center for Field Theory and Particle Physics Fudan University, Shanghai, China

³Department of Theoretical Physics, Lund university, Lund, Sweden

⁴Institut de Física Corpuscular, Universitat de València Parc Cientific de Paterna, Valencia, Spain

September 13, 2019

SCALARS 2019 – Warasw

INIÃO EUROPEIA

Multi-peaked Gravitational footprints of neutrino mass and lepton symmetry violation

1/31

September 13, 2019

Introduction

- Pigh- and low-scale seesaw variants
 - Gravitational Waves from FOPT
 - Seesaw induced Gravitational Waves

Introduction

- 2 High- and low-scale seesaw variants
- 3 Gravitational Waves from FOPT
- 4 Seesaw induced Gravitational Waves

Introduction

Stochastic Gravitational Wave (GW) background

- Superposition of unresolved astrophysical sources
- Cosmological events
 - (i) Inflation
 - (ii) Cosmic strings
 - iii) Strong cosmological phase transitions (PTs) → by expanding and colliding vacuum bubbles of new a phase

GW background as a gravitational probe for New Physics

• Focus on the EW phase transition (EWPT)

Look for graviational footprints of the various variants of the type-I and inverse seesaw mechanism for Majorana neutrinos

APM (Aveiro U.)

Multi-peaked Gravitational footprints of neutrino mass and lepton symmetry violation

September 13, 2019 4 / 31

Introduction

- High- and low-scale seesaw variants
- Gravitational Waves from FOPT
- 4 Seesaw induced Gravitational Waves

High- and low-scale seesaw variants

Standard type-I

$$\mathcal{L}_{\text{Yuk}}^{\text{Type}-\text{I}} = Y_{\nu} \overline{L} H \nu^{c} + M \nu^{c} \nu^{c} + h.c.$$

- $L = (v, l)^{\top}$; v^c are three SM-singlet RH-neutrinos; M and Y_v are 3×3 matrices
- *M* explicitly breaks lepton number symmetry $U(1)_L \rightarrow \mathbb{Z}_2$
- Mass for light neutrinos after EWSB $\langle H \rangle = v_h / \sqrt{2}$

$$m_{\nu}^{\text{Type}-\text{I}} = \frac{v_h^2}{2} Y_{\nu}^T M^{-1} Y_{\nu} \qquad Y_{\nu} \sim \mathcal{O}(1) \text{ , } M \sim \mathcal{O}\left(10^{14} \text{ GeV}\right) \Rightarrow m_{\nu} \sim \mathcal{O}\left(0.1 \text{ eV}\right)$$

Low-scale variant: Inverse seesaw

• Add two gauge singlet fermion carrying opposite lepton number charge, ν^c and ${\it S}$

$$\mathcal{L}_{\text{Yuk}}^{\text{Inverse}} = Y_{\nu} \overline{L} H \nu^{c} + M \nu^{c} S + \mu S S + \text{h.c.}$$

• Smallness of neutrino mass linked to the breaking of $U(1)_L \to \mathbb{Z}_2$ through the $\mu\text{-term}$

$$m_{\nu}^{\text{Inverse}} = \frac{v_h^2}{2} Y_{\nu}^T M^{T^{-1}} \mu M^{-1} Y_{\nu}$$

Small neutrino masses protected by $U(1)_L$ (restored in the limit $\mu \to 0)$

Type-I and inverse seesaw with majoron

• Add a complex singlet scalar σ , the majoron, with $L(\sigma) = -2$

 $M\nu^c\nu^c \rightarrow Y_\sigma \sigma \nu^c \nu^c$ (type-I variant) $\mu SS \rightarrow Y_\sigma \sigma SS$ (low-scale inverse variant)

• $\langle \sigma \rangle = \nu_{\sigma} / \sqrt{2}$ spontaneously breaks $U(1)_{L} \rightarrow \mathbb{Z}_{2}$ $M \rightarrow Y_{\sigma} \nu_{\sigma} / \sqrt{2}$ (type-I variant) $\mu \rightarrow Y_{\sigma} \nu_{\sigma} / \sqrt{2}$ (low-scale inverse variant)

Extended scalar sector:

$$V_{0} = V_{\rm SM} + \mu_{\sigma}^{2} \sigma^{*} \sigma + \lambda_{\sigma} (\sigma^{*} \sigma)^{2} + \lambda_{h\sigma} H^{\dagger} H \sigma^{*} \sigma + \left(\frac{1}{2} \mu_{b}^{2} \sigma^{2} + \text{c.c.}\right)$$

- Tiny $U(1)_L$ soft breaking term $\mu_b \sim O(1 \text{ keV})$
- Resulting pseudo-Goldstone boson can provide testable dark matter candidate [Valle et al PRD (1993), PRL (2007); Bazzocchi et al JCAP (2008)]

Introduction

- 2 High- and low-scale seesaw variants
- 3 Gravitational Waves from FOPT
- Seesaw induced Gravitational Waves

Gravitational Waves from FOPT

- Vacuum bubbles nucleated from first order phase transitions (FOPT)
- Three sources of GW production: 1) collision, 2) sound waves and
 3) plasma turbulence

$$h^2 \Omega_{\rm GW} = h^2 \Omega_{\rm col} + h^2 \Omega_{\rm sw} + h^2 \Omega_{\rm MHD}$$

• $h^2\Omega_{col}$ dominates for large wall velocities, $v_b \rightarrow 1$

$$h^2\Omega\left(f; \alpha, \beta/H, f_{\text{peak}}\right) \qquad f_{\text{peak}}\left(\alpha, \beta/H, T_n\right)$$

 $\alpha \rightarrow$ released latent heat, $\beta/H \rightarrow$ inverse time scale, $T_n \rightarrow$ nucleation temp.

$$\alpha \propto \frac{1}{T_n^4} \left[V_i - V_f - T \left(\frac{\partial V_i}{\partial T} - \frac{\partial V_f}{\partial T} \right) \right] \qquad \frac{\beta}{H} = T_n \frac{\partial}{\partial T} \left(\frac{\hat{S}_3}{T} \right) \bigg|_{T_n}$$

- Bubble nucleation takes place when the probability to realize 1 transition per cosmological horizon is equal to one $\Rightarrow \hat{S}_3/T_n = 140$
- Strong transition criterion: $v_h(T_n)/T_n \gtrsim 1 \Rightarrow$ enhances GW production

$$\hat{S}_3 = 4\pi \int_0^\infty \mathrm{d}r \, r^2 \left\{ \frac{1}{2} \left(\frac{\mathrm{d}\hat{\varphi}}{\mathrm{d}r} \right)^2 + V_{\mathrm{eff}}(\hat{\varphi}, T) \right\} \,,$$

• $\hat{\varphi} \rightarrow$ solution of the e.o.m. found by the path that minimizes the energy.

Effective potential: loop and thermal corrections

$$V_{\rm eff}^{(1)}(\hat{\Phi},T) = V_0 + V_{\rm CW} + \Delta V^{(1)}(T)$$

Formalism implemented in CosmoTransitions [Wainwright]

APM (Aveiro U.)

September 13, 2019 11 / 31

Introduction

- 2 High- and low-scale seesaw variants
- 3 Gravitational Waves from FOPT
- 4 Seesaw induced Gravitational Waves

Seesaw induced Gravitational Waves

High scale type-I seesaw with explicit $U(1)_L$ violation $(M\nu^c\nu^c)$

 Heavy isosinglet neutrinos decoupled from EW-scale play no role in the EW phase transition (EWPT) ⇒ no FOPT thus no GW signals

Low-scale inverse seesaw with explicit $U(1)_L$ violation ($M\nu^c S + \mu SS$)

- Singlet neutrinos lie closer to EW scale and coupling to Higgs can be sizeable
- Thermal contributions from heavy neutrinos induce FOPT
- Fermions affect PT only at loop level ⇒ weak FOPT

 $v_h(T_n)/T_n \sim \mathcal{O}(0.1)$ even for large Y_{ν} and up to 30 neutrino species

Seesaw induced Gravitational Waves

Y_{ν}	M/GeV	generations
[0.2, 3.0]	[50, 500]	[3, 30]

GW signal too weak to be detectable by future gravitational interferometers

APM (Aveiro U.)

Inverse seesaw with majoron: Spontaneous breaking $U(1)_L \to \mathbb{Z}_2$

 $M\nu^c\nu^c \rightarrow Y_\sigma \sigma \nu^c \nu^c$ (type-I variant) $\mu SS \rightarrow Y_\sigma \sigma SS$ (low-scale inverse variant)

New scalar σ responsible for a richer pattern of FOPTs

• Tree-level contributions in V_0 substantially enhance the strength of the PT

Observable signals including multi-peaked scenarios

APM (Aveiro U.)

Multi-peaked Gravitational footprints of neutrino mass and lepton symmetry violation

All three scenarios with nearly preserved U(1)_L, i.e., v_{σ} (T = 0) ~ O(1 keV)

Peak Id	$\left(v_{h}^{i}, v_{\sigma}^{i}\right) \rightarrow \left(v_{h}^{f}, v_{\sigma}^{f}\right)$	α	β/H
Green 1	$(249, 0) \rightarrow (238, 0)$	16.0	715
Red 1	$(0, 70.7) \rightarrow (212, 0)$	$8.83 imes 10^{-2}$	109
Red 2	$(228,0) \rightarrow (245,0)$	$6.85 imes 10^{-3}$	$2.31 imes 10^4$
Blue 1	$(0,98.9) \rightarrow (205,0)$	5.72×10^{-2}	5.08×10^{3}
Blue 2	$(239,0) \rightarrow (248,0)$	$3.73 imes 10^{-3}$	86.7

Curve	m_{σ_R}/GeV	$\lambda_{\sigma h}$	λ_{σ}	$M_{ m v}/{ m GeV}$	Y_{σ}
Green	68.9	3.56	7.86×10^{-3}	147	4.83
Red	439	7.42	8.48	324	2.71
Blue	378	5.08	1.67	303	0.126

- Green curve at the reach o LISA: very strong FOPT with ν_n/T_n = 119
 Consistent with invisible Higgs decays LHC bounds [Bonilla, Romão, Valle (2016)]
- Two-peak scenarios at the reach of DECIGO
- Large quartic couplings enhance *m*/*T* and facilitate these scenarios:

> Bosonic $(m/T)^3$ contributions in $\Delta V^{(1)}(T)$ produce potential barriers

APM (Aveiro U.)

Generic feature for multi-peaked scenarios

At least one quartic coupling involving σ is sizeable

Multi-peak feature is a generic prediction of the inverse seesaw with majoron

- The third peak is typically hard to resolve
- Multi-peaks due to distinct phase transitions and not competition between GW sources (collision, sound waves, turbulence)
- Possibility to distinguish/falsify the underlying neutrino mass generation mechanism

18/31

Type-I seesaw with majoron

- High scale variant: $Y_{\nu} \sim \mathcal{O}(1) \Rightarrow M = Y_{\sigma} v_{\sigma} / \sqrt{2} \sim \mathcal{O}(10^{14} \text{ GeV})$
 - > For $Y_{\sigma} \sim O(1)$ then $v_{\sigma} \sim O(10^{14} \text{ GeV}) \Rightarrow$ no FOPT and no GW
- Low scale variant: $Y_{\nu} \sim \mathcal{O}(10^{-6}) \Rightarrow M = Y_{\sigma} v_{\sigma} / \sqrt{2} \sim \mathcal{O}(100 \text{ GeV})$
 - > New states do not decouple and can lead to FOPT and to GW

Double-peak feature within experimental reach is much rarer

In contrast to inverse seesaw + majoron, one PT is typically much stronger hiding the smaller peak

APM (Aveiro U.)

Multi-peaked Gravitational footprints of neutrino mass and lepton symmetry violation

Curve	m_{h_2}/GeV	λ_h	$\lambda_{\sigma h}$	λσ	$\cos \theta$	$v_{\sigma}(T=0)$	$M_{\rm v}/{ m GeV}$	Yσ
Green	83.1	0.0624	0.310	8.16	0.962	30.3	456	2.08
Red	793	0.389	0.594	0.350	0.974	924	90.5	2.59
Blue	334	0.265	0.332	0.243	0.913	449	57.8	2.97

Peak Id	$(v_h^i, v_\sigma^i) \to \left(v_h^f, v_\sigma^f\right)$	α	β/H	$f_{\rm peak}/{ m Hz}$
Green 1	$(0, 45.4) \rightarrow (33.4, 45.1)$	$6.39 imes 10^{-4}$	$2.36 imes 10^4$	0.955
Green 2	$(246, 30.8) \rightarrow (246, 29.7)$	6.70	$3.50 imes 10^3$	$5.37 imes10^{-4}$
Red 1	$(0,967) \rightarrow (64.8,964)$	1.20×10^{-2}	$8.16 imes 10^4$	1.26
Red 2	$(213,935) \to (536,750)$	0.249	$2.68 imes 10^3$	0.0240
Blue 1	$(293, 305) \rightarrow (0, 479)$	1.30×10^{-2}	$2.04 imes 10^4$	1.17
Blue 2	$(0, 554) \rightarrow (246, 450)$	0.632	574	$3.48 imes 10^{-3}$

• m_{h_2} : Second CP-even Higgs and $h = \cos \theta h_1 + \sin \theta h_2$

Consistency with Higgs invisible decays bounds assured

Introduction

- 2 High- and low-scale seesaw variants
- 3 Gravitational Waves from FOPT
- Seesaw induced Gravitational Waves

Conclusions

- Explicit lepton number violation cannot induce strong FOPT thus testable GW signals
- Spontaneous U(1)_L breaking leads to clearer GW footprints
- So Both majoron models, type-I seesaw and inverse seesaw, predict testable GW in the 0.1 100 mHz frequency range
- Different seesaw variants lead to distinct GW spectra potentially distinguishable by upcoming experiments

Multi-messenger era

Gravitational wave physics may shed light on the mystery of neutrino mass generation

Dynamics of phase transitions

• High T
ightarrow classical motion in Euclidean space described by action \hat{S}_3

$$\hat{S}_3 = 4\pi \int_0^\infty \mathrm{d}r \, r^2 \left\{ \frac{1}{2} \left(\frac{\mathrm{d}\hat{\varphi}}{\mathrm{d}r} \right)^2 + V_{\mathrm{eff}}(\hat{\varphi}) \right\} \,,$$

Effective potential: loop and thermal corrections

$$\begin{split} V_{\text{eff}}^{(1)}(\hat{\Phi}) &= V_{\text{tree}} + V_{\text{CW}} + \Delta V^{(1)}(T) \\ V_{\text{CW}} &= \sum_{i} (-1)^{F} n_{i} \frac{m_{i}^{4}}{64\pi^{2}} \left(\log \left[\frac{m_{i}^{2}(\hat{\Phi}_{\alpha})}{\Lambda^{2}} \right] - c_{i} \right) \\ \Delta V^{(1)}(T) &= \frac{T^{4}}{2\pi^{2}} \left\{ \sum_{b} n_{b} J_{B} \left[\frac{m_{b}^{2}(\hat{\Phi}_{\alpha})}{T^{2}} \right] - \sum_{f} n_{f} J_{F} \left[\frac{m_{f}^{2}(\hat{\Phi}_{\alpha})}{T^{2}} \right] \right\} \,, \end{split}$$

• $\hat{\varphi} \rightarrow$ solution of the e.o.m. found by the path that minimizes the energy.

APM (Aveiro U.)

Nucleation temperature

- Nucleation temperature $T_n \rightarrow$ the PT does effectively occur \rightarrow vacuum bubble nucleation processes
- Satisfies $T_n < T_c$, where T_c is the critical temperature \rightarrow degenerate minima
- Corresponds to probability to realize one transition per cosmological horizon volume equal one

$$\frac{\Gamma}{H^4} \sim 1 \qquad \Rightarrow \qquad \frac{\hat{S}_3}{T_n} \sim 140$$

The phase transition rate

$$\Gamma \sim T^4 \left(rac{\hat{S}_3}{2\pi T}
ight)^{3/2} \exp\left(-\hat{S}_3/T
ight) \,.$$

 This formalism is implemented in CosmoTransitions package (Wainwright'12)

The need for a strong first order PT and New Physics

Observed baryon asymmetry (BA) in the Universe

$$\frac{n_B-n_{\overline{B}}}{s}\sim 10^{-11}$$

Conditions for dynamical production of the baryon asymmetry Sakharov'67

(i) B violation

- (ii) C and CP violation
- (iii) Departure from thermal equilibrium \rightarrow strong 1st-order PT

Nucleation of expanding broken-phase vacuum bubbles \rightarrow sphaleron suppression

$$\frac{\Phi(T_c)}{T_c} \gtrsim 1.1 \qquad \rightarrow \qquad 1^{\text{st}} \text{ order PT}$$

Standard Model (SM) does not explain the BA \rightarrow the need to go beyond the SM

APM (Aveiro U.)

Multi-peaked Gravitational footprints of neutrino mass and lepton symmetry violation

September 13, 2019 26 / 31

EW phase transition in multi-scalar SM extensions

- The more scalar d.o.f.'s, the more complicated vacuum structure → new possibilities for strong 1st-order EWPT at tree-level
- Multi-Higgs SM extensions are very common and originate as e.g. low-energy limits of Grand-Unified theories
- Tree-level (strong) EWPT \rightarrow free energy release is largely amplified \rightarrow stronger GW signals
- Tree-level weak (2nd-order) transitions can become 1st-order ones due to quantum corrections
- Certain scenarios exhibit multi-step successive 1st-order PTs
- Multi-step transition → multi-peak structures in the induced GW spectrum → potential access by the next generation of space-based GW interferometers
- GW signature of multiple EW symmetry breaking steps → a gravitational probe for New Physics, yet unreachable at colliders

APM (Aveiro U.)

Backup slides: GW spectrum characteristics

GW signals calculation

(for more details, see Caprini'16; Grojean'07; Leitao'16)

- Using α and β , one computes the bubble-wall velocity (\approx 0.6-0.8) and the efficiency coefficient (accounting for the latent leat saturation for runaway bubbles)
- For each of the three contributions (Ω_{col} , Ω_{sw} , Ω_{MHD} terms)

GWs signal ~ *amplitude* × *spectral shape*(f/f_{peak})

where the peak frequency (contains redshift information)

$$f_{\text{peak}} \simeq 16.5 Hz \left(\frac{f_n}{H_n}\right) \left(\frac{T_n}{10^8 \text{GeV}}\right) \left(\frac{100}{g_{\star}}\right)^{\frac{1}{6}}$$

with peak frequency at nucleation time $f_n = \frac{0.62\beta}{1.8-0.1\nu_w + \nu_w^2}$

Details of the particle physics model encoded in T_n and α.

APM (Aveiro U.)

Backup slides: The sphaleron solution

Note: from the greek *shpaleros* ($\sigma \varphi \alpha \lambda \epsilon \rho \sigma \sigma$): ready to fall

- Non-trivial transitions between physically identical but topologically distinct vacua
 - Identified by the Chern-Simons number $N_{CS} \in \mathbb{Z}$
 - Axial B + L anomaly in a SM-like theory yields $\Delta B = N_f \Delta N_{CS}$
 - B − L current is conserved

• T = 0: Instanton solution

- > Tunnelling prob. $\sim 10^{-170}$ (EW theory)
- $T \neq 0$: Sphaleron solution thermal jump
 - > Transition prob. $\sim T^4$
 - > Static saddle-point solution
 - > $N_f = 3 \Rightarrow B \rightarrow 3B$

Backup slides: Sphaleron washout criterion

First order phase transition:

Nucleation of broken phase vacuum bubbles expanding in the surrounding plasma of unbroken symmetry

- > Particles in the plasma experience the passing bubble
- > Reflection of particles \rightarrow plasma out of equilibrium
- > With CP-violation, matter/anti-matter asymmetry accumulates over time inside the bubble (different reflection coefficients)
- > Sphaleron process (active in unbroken phase) provides
 - (i) B-violation (quantified by sphaleron rate)
 - (ii) C-violation (only couples to LH-fermions)

[hep-ph] 1302.6713

Backup slides: Sphaleron washout criterion

If sphaleron process still active after phase transition the system restores equilibrium, B = 0, after a time of the order of the Hubble scale.

Broken Phase:

$$\Gamma_{sph}\simeq T^4e^{-E_{sph}/T},\qquad E_{sph}\simeq rac{4\pi\Phi_c}{g}\Xi,\qquad \Xi\simeq 2.8$$

Γ_{sph} in broken phase needs to be much smaller than Hubble scale

$$\Gamma_{sph} \ll HT^3 \Rightarrow \frac{\Phi_c}{T_c} \gtrsim 1.1$$

- Sphaleron processes suppressed in the broken phase
- Avoid washout of generated baryon asymmetry
- EWBG can be realized (in the SM needs 40 GeV Higgs mass)

APM (Aveiro U.)

Multi-peaked Gravitational footprints of neutrino mass and lepton symmetry violation