Baryogenesis from L-violating Higgs doublet decay

Thomas Hambye Univ. of Brussels (ULB), Belgium

Work in collaboration with Daniele Teresi (ULB): arXiv:1606.00017 (PRL 2016) arXiv:1705.00016 (PRD 2017)

Scalars 2017, Warsaw, 1/12/2020

Baryogenesis via leptogenesis

very highly motivated: same origin as neutrino masses

very natural at high scale: a series of numerical coincidences which make it particularly efficient but very difficult to test clearly possible at low scale: if seesaw seesaw states have a quasi-degenerate mass spectrum and/or if large cancellation among Yukawa couplings

this talk: new way at low scale: total lepton number violating Higgs doublet decay into ~0.1-100 GeV right-handed neutrinos

Leptogenesis relevant scales for low m_N

 $T_{Sphaler.} \sim 135 \,\mathrm{GeV}$

usual leptogenesis: $m_N >> T_{Sphaler.} > m_{H,L}$: leptogenesis from $N \rightarrow LH$ decay

← creation of L asymmetry at $T \sim m_N >> T_{Sphaler}$ ⇒ B asymmetry

very low scale leptogenesis: $T_{Sphaler.} > m_H >> m_{N,L}$

 \bigcirc creation of L asymmetry at $T > T_{Sphaler.} >> m_N \implies \neq$ regime

Temperatures allowing the $N \rightarrow LH$ and $H \rightarrow NL$ decays

 $H \rightarrow NL$ leptogenesis from this region?

L asymmetry production from $H \rightarrow NL$ decay

2 issues at first sight:

 \hookrightarrow H decaying particle is in deep thermal equilibrium at $T > T_{Sphaler}$. but N in decay product is not necessarily in thermal equilibr.

$$\frac{dn_N}{dt} \propto (n_N^{eq} - n_N) \cdot \Gamma_{H \to NL}$$

$$\uparrow \qquad \uparrow$$

$$H \to NL \quad NL \to H$$

L asymmetry production from $H \rightarrow NL$ decay

2) Absorptive part for CP violation?

 $m_H + m_L > m_N \implies$ no absorptive part?

but only for
$$T = 0$$
 !

finite T corrections: thermal cut: if H or L comes from the thermal bath the cut is kinematically allowed

> Giudice, Notari, Raidal, Riotto, Strumia 03' Frossard, Garny, Hohenegger, Kartavtsev, Mitrouskas 12'

 \Rightarrow absorptive part $\Gamma_N(T)$ (calculated in Kadanoff Baym formalism)

Frossard, Garny, Hohenegger, Kartavtsev, Mitrouskas 12'

$$\Pi^{\alpha\beta}(q_{N}) = \underbrace{\Pi_{>}^{\alpha\beta}(q_{N}) + \Pi_{<}^{\alpha\beta}(q_{N})}_{\Rightarrow = -2 \int \frac{d^{4}p_{l}}{(2\pi)^{4}} \frac{d^{4}p_{H}}{(2\pi)^{4}} (2\pi)^{4} \delta^{4}(q_{N} - p_{l} - p_{H}) (Y_{N}^{\dagger}Y_{N})_{\alpha\beta} [P_{L}S_{>}^{l}(t, p_{l})P_{R}\Delta_{>}^{H}(t, p_{H})]}_{\Rightarrow f_{l}^{FD} \propto 1 + f_{H}^{BE}}$$

$$\Rightarrow \Gamma_{N}(T) = \frac{1}{8\pi} m_{N_{2}}(Y_{N}Y_{N}^{\dagger})_{22} \cdot \frac{p.L_{N}}{q_{N}.p_{l}}$$

$$\downarrow L_{N} = 16\pi \int \frac{d^{3}p_{l}}{(2\pi)^{3}2E_{l}} \frac{d^{3}p_{H}}{(2\pi)^{3}2E_{H}} (2\pi)^{4} \delta^{4}(q_{N} - p_{l} - p_{H}) (f_{l}^{FD} + f_{H}^{BE}) p_{l}$$

T.H., Teresi 16'

Total L number violating CP asymmetry

$$\varepsilon_{CP} = \frac{\text{Im}[(Y_N Y_N^{\dagger})_{12}^2]}{(Y_N Y_N^{\dagger})_{11} (Y_N Y_N^{\dagger})_{22}} \cdot \frac{2\,\Delta m_N^0\,\Gamma_N(T)}{4\,\Delta m_N(T)^2 + \Gamma_N(T)^2}$$

with thermal mass splitting: $\Delta m_N(T) \simeq \Delta m_N^0 + \frac{\pi T^2}{4 m_N^2} \Gamma_{22} \sqrt{\left(1 - \frac{\Gamma_{11}}{\Gamma_{22}})^2 + 4 \frac{|\Gamma_{12}|^2}{\Gamma_{22}^2}\right)}$ $\Gamma_{ij} \equiv m_N (Y_N Y_N^{\dagger})_{ij} / (8\pi)$

Boltzmann equations:

$$\frac{n_{\gamma}H_{N}}{z}\frac{d\eta_{N}}{dz} = \left(1 - \frac{\eta^{N}}{\eta_{N}^{eq}}\right)\left[\gamma_{D} + 2(\gamma_{Hs} + \gamma_{As}) + 4(\gamma_{Ht} + \gamma_{At})\right],$$

$$\frac{n_{\gamma}H_{N}}{z}\frac{d\eta_{L}}{dz} = \gamma_{D}\left[\left(\frac{\eta^{N}}{\eta_{N}^{eq}} - 1\right)\epsilon_{CP}(z) - \frac{2}{3}\eta_{L}\right]$$

$$-\frac{4}{3}\eta_{L}\left[2(\gamma_{Ht} + \gamma_{At}) + \frac{\eta^{N}}{\eta_{N}^{eq}}(\gamma_{Hs} + \gamma_{As})\right]$$

$$\eta_{N} \equiv n_{N}/n_{\gamma}$$

$$z \equiv m_{N}/T$$

Results for the case where the N have thermalized

if N thermalized by large Y_N Yukawas or other interaction (e.g. a W_R) before an asymmetry is produced

requires that at least 2 of the N have quasi-degenerate masses

Results for the case where the N have not thermalized

• if no extra interaction thermalizing N, no thermalization is much more natural than in ordinary leptogenesis: thermalization at $T > T_{Sphaler.} >> m_N$ requires much larger Y_N Yukawas than in ordinary leptogenesis at $T \sim m_N$

$$\tilde{m} \equiv \frac{Y_N Y_N^{\dagger} v^2}{2m_N} \qquad \qquad \tilde{m} >> 10^{-3} \,\mathrm{eV} \qquad \qquad \tilde{m} \gtrsim 10^{-3} \,\mathrm{eV}$$

• for $H \rightarrow NL$ decay, to start from no N in the thermal bath boosts the asymmetry production, unlike for ordinary $N \rightarrow LH$ leptogenesis $H \rightarrow NL$: many H to decay and produce the asymmetry but few N to $NL \rightarrow H$ inverse decay $n_N^{eq} - n_N \sim n_N^{eq} >> n_N$

Results for the case where the N have not thermalized

for example for $m_N \sim 10 \,\text{GeV}$ and $\tilde{m} \sim 0.1 \,\text{eV}$ one needs $\Delta m_N^0/m_N \lesssim 10^{-5}$ | leptogenesis for m_N as low as $\sim 20 \,\text{MeV}$ is possible (but BBN concerns) in all cases: asymmetry production at T just above $T_{Sphaler}$. \Rightarrow no dependence on UV physics!

Testability!

Two important comparisons to do

• for $m_N \sim \text{GeV}$: well-known baryogenesis mechanism in seesaw model: baryogenesis from right-handed neutrino oscillations: ``ARS'' mechanism

> Akhmedov, Rubakov, Smirnov 98' Asaka, Shaposhnikov 05'; Shaposhnikov 08' Drewes, Garbrecht 11' Canetti, Drewes, Frossard, Shaposhnikov 13' Hernandez, Kekic, Lopez-Pavon, Racker, Rius 15'

 \rightarrow comparison of ARS with L-violating Higgs decay setup???

• to compute evolution of asymmetries with thermal effects: another well-known formalism: density matrix formalism

comparison of results of decay formalism and density matrix formalism???

Density matrix formalism

 $N_{R_{\alpha}}$ quantum system is described by density matrix : $n_{\alpha\beta}^{N} \equiv \langle a_{\beta}^{+\dagger} a_{\alpha}^{+} \rangle = Tr(\rho a_{\beta}^{+\dagger} a_{\alpha}^{+})$ $\overline{N_{R_{\alpha}}}$ quantum system is described by density matrix : $n_{\alpha\beta}^{\overline{N}} \equiv \langle a_{\beta}^{-\dagger} a_{\alpha}^{-} \rangle = Tr(\rho a_{\beta}^{-\dagger} a_{\alpha}^{-})$ $n_{\alpha\alpha}^{N} = n_{\alpha}^{N} =$ number density of N_{α} states $n_{\alpha\beta}^{N} =$ coherence between N_{α} and N_{β} states

 \Rightarrow evolution of density matrix:

$$\frac{d}{dt}n_{\alpha\beta}^{N}(\mathbf{k},t) = i\langle [H_{0}^{N}, n_{\alpha\beta}^{N}(\mathbf{k},t)] \rangle - \frac{1}{2} \int_{-\infty}^{\infty} dt' \langle [H_{int}(t'), [H_{int}(t), n_{\alpha\beta}^{N}(\mathbf{k},t)]] \rangle_{t}$$
oscillation term
$$H_{int} = h_{l\alpha}\bar{L}_{l}\tilde{H}P_{R}N_{\alpha} + h.c.$$

$$H_{int} \cdot H_{int} \cdot H_{int} \cdot H_{int} \to \lim_{\alpha} \frac{1}{\alpha} a_{\beta}^{+\dagger} a_{\alpha}^{+} \to n_{\alpha\beta}^{N}$$

$$\frac{d}{dt}n_{\alpha\beta}^{N}(\mathbf{k}) = -i \left[E_{N}, n^{N}(\mathbf{k}) \right]_{\alpha\beta} - \frac{1}{2E_{N}} \left(\frac{1}{2} \{ \Gamma^{>}(\mathbf{k}), n^{N}(\mathbf{k}) \} - \frac{1}{2} \{ \Gamma^{<}(\mathbf{k}), I-n^{N}(\mathbf{k}) \} \right)_{\alpha\beta}$$

ARS contribution in density matrix formalism

keeping only the transitions where there is no m_N mass insertions because the asymmetry is produced at T >> T_{sphaler}. >> m_N
if mass insertion: m²_N/T² suppression

$$\Gamma_{\alpha\beta}^{\leq}(\mathbf{k}) = -i \operatorname{tr} \left\{ \operatorname{P}_{\mathrm{R}} u_{+}(\mathbf{k}) \overline{u}_{+}(\mathbf{k}) \operatorname{P}_{\mathrm{L}} \Sigma_{\alpha\beta}^{\leq}(k) \right\}$$

with:

Wightman propagator of H

$$-i\Sigma_{\alpha\beta}^{\lessgtr}(k) = \int \frac{d^4p}{(2\pi)^4} \int \frac{d^4q}{(2\pi)^4} (2\pi)^4 \delta^{(4)}(q-k-p) \ iS_l^{\lessgtr}(-p) \ i\Delta^{\gtrless}(-q) \ h_{l\alpha}^* h_{l\beta}$$

Wightman propagator of L

for example:

$$n_N \Gamma^{>} \sim n_N \Sigma^{>} \propto n_N \cdot S_l^{>} \cdot \Delta^{<} \cdot h_{l\alpha}^* h_{l\beta} \propto n_N \cdot n_{\bar{l}} \cdot (1 + n_H) \cdot h_{l\alpha}^* h_{l\beta}$$

Density matrix formalism: evolution equations and rates ARS scenario

$$\begin{array}{l} \text{writing} & n_{l} = n_{l}^{Eq} + \frac{\delta n_{l}}{2} \\ n_{\overline{l}} = n_{l}^{Eq} - \frac{\delta n_{l}}{2} \end{array} \text{ a term proportional to } \delta n_{l} \text{ shows up: washout term: } W \\ & n_{\overline{l}} = n_{l}^{Eq} - \frac{\delta n_{l}}{2} \end{aligned} \text{ a term proportional to } \delta n_{l} \text{ shows up: washout term: } W \\ & \frac{d n_{\alpha\beta}^{N}}{dt} = -i \left[\mathcal{E}_{N}, n^{N}(k) \right]_{\alpha\beta} - \frac{1}{2} \left\{ \gamma^{LC}, \frac{n^{N}}{n_{eq}^{N}} - I \right\}_{\alpha\beta} + \frac{\delta n_{l}^{L}}{2n_{eq}^{L}} \left(\left(\gamma^{LC}_{WQ,l} \right) + \frac{1}{2} \left\{ \gamma^{LC}_{WC,l}, \frac{n^{N}}{n_{eq}^{N}} \right\} \right)_{\alpha\beta} \\ & \text{ and similarly for } \overline{N} \\ & \frac{d \delta n_{l}^{L}}{dt} = \frac{1}{n_{eq}^{N}} \text{tr} \left\{ (\gamma_{l}^{LC}) n^{N} \right\} - \frac{1}{n_{eq}^{N}} \text{tr} \left\{ (\gamma_{l}^{LC*}) \bar{n}^{N} \right\} \\ & - \frac{\delta n_{l}^{T}}{n_{eq}^{L}} \text{tr} \left\{ \gamma^{LC}_{WQ,l} \right\} - \frac{\delta n_{l}^{T}}{2n_{eq}^{L}} \frac{1}{n_{eq}^{N}} \text{tr} \left\{ n^{N} (\gamma^{LC*}_{WC,l}) \right\} - \frac{\delta n_{l}^{T}}{2n_{eq}^{L}} \frac{1}{n_{eq}^{N}} \text{tr} \left\{ n^{N} (\gamma^{LC*}_{WC,l}) \right\} \\ & \gamma^{LC}_{\alpha\beta} \equiv \int d\Pi_{\text{PS}} n_{eq}^{N}(\mathbf{k}) (n_{eq}^{L}(\mathbf{p}) + n_{eq}^{H}(\mathbf{q})) \times \text{ tr} \left\{ P_{R} u_{+}(\mathbf{k}) \overline{u}_{+}(\mathbf{k}) P_{L} \not{p} \right\} h_{l\alpha}^{*} h_{l\beta} \\ & \simeq 3.26 \times 10^{-4} T^{4} h_{l\alpha}^{*} h_{l\beta} \\ & \gamma^{LC}_{WQ} = \frac{g_{iso}}{4\pi^{2}} \int_{0}^{\infty} dk \frac{k}{e^{k/T} + 1} \frac{M_{H}^{2} - M_{L}^{2}}{8\pi k} \\ & \times \int_{E^{*}}^{\infty} dE \left(\frac{1}{e^{\frac{\pi}{T}} + 1} \frac{1}{e^{\frac{\pi}{T^{*}}} - 1} \right) h_{l\alpha}^{*} h_{l\beta} \\ & \gamma^{LC}_{WQ} = \frac{g_{iso}}{4\pi^{2}} \int_{0}^{\infty} dk \frac{k}{e^{k/T} + 1} \frac{M_{H}^{2} - M_{L}^{2}}{8\pi k} \\ & \gamma^{LC}_{WC} = \frac{g_{iso}}{4\pi^{2}} \int_{0}^{\infty} dk \frac{k}{e^{k/T} + 1} \frac{M_{H}^{2} - M_{L}^{2}}{8\pi k} \right)$$

Density matrix formalism: ARS final result

first non-vanishing term in Yukawa coupling expansion

$$\sum_{i=e,\mu,\tau} (n_{L_i} - n_{\bar{L}_i}) = 0 \qquad \sum_{\alpha} (n_{N_{\alpha}} - n_{\bar{N}_{\alpha}}) = 0 \quad \text{but flavor lepton number is not conserved:} \\ \delta n_{l_i} \equiv n_{L_i} - n_{\bar{L}_i} \neq 0$$

 \Rightarrow at $\mathcal{O}(h^6)$: if for example Yukawa for electron much smaller than for muon:

Total lepton number violating density matrix contribution

T.H., Teresi 17'

• the L-violating Higgs decay contribution to baryogenesis is clearly \neq from the ARS one since it is a $\mathcal{O}(h^4)$ contribution based on processes which do involve a Majorana mass insertion, i.e. which do violate total lepton number, unlike ARS

→ where to find this contribution in density matrix formalism?? ↓ the density matrix commutators lead also to contributions $\propto m_N^2$ which corresponds to processes with a Majorana mass insertion N to \bar{L} transition instead of N to L transition

 $\Gamma_{\alpha\beta}^{\lessgtr}(\mathbf{k}) \ni + i \operatorname{tr} \left\{ \operatorname{P}_{\mathrm{R}} v_{+}(\mathbf{k}) \bar{v}_{+}(\mathbf{k}) \operatorname{P}_{\mathrm{L}} \Sigma_{\beta\alpha}^{\lessgtr}(-k) \right\}$

Full set of density matrix equation with LC and LV contributions

T.H., Teresi 17'

$$\begin{split} \frac{d \, n_{\alpha\beta}^{N}}{dt} &= -i \left[\mathcal{E}_{N}, n^{N}(\mathbf{k}) \right]_{\alpha\beta} - \frac{1}{2} \left\{ \gamma^{LC} + \gamma^{LV}, \frac{n^{N}}{n_{eq}^{N}} - \mathbf{I} \right\}_{\alpha\beta} \\ &+ \frac{\delta n_{l}^{L}}{2n_{eq}^{L}} \left(\left(\gamma_{WQ,l}^{LC} - \gamma_{WQ,l}^{LV} \right) + \frac{1}{2} \left\{ \gamma_{WC,l}^{LC} - \gamma_{WC,l}^{LV}, \frac{n^{N}}{n_{eq}^{N}} \right\} \right)_{\alpha\beta}, \\ &- \frac{1}{n_{eq}^{N}} \operatorname{tr} \left\{ \left(\gamma_{l}^{LC} - \gamma_{l}^{LV} \right) n^{N} \right\} \\ &- \frac{d \, \bar{n}_{\alpha\beta}^{N}}{dt} = -i \left[\mathcal{E}_{N}, \bar{n}^{N}(\mathbf{k}) \right]_{\alpha\beta} \\ &- \frac{1}{2} \left\{ \gamma^{LC} + \gamma^{LV*}, \frac{\bar{n}^{N}}{n_{eq}^{N}} - \mathbf{I} \right\}_{\alpha\beta} \\ &- \frac{\delta n_{l}^{L}}{2n_{eq}^{L}} \left(\left(\gamma_{WQ,l}^{LC*} - \gamma_{WQ,l}^{LV*} \right) + \frac{1}{2} \left\{ \gamma_{WC,l}^{LC*} - \gamma_{WC,l}^{LV*}, \frac{\bar{n}^{N}}{n_{eq}^{N}} \right\} \right) \\ &- \frac{\delta n_{l}^{L}}{2n_{eq}^{L}} \left(\left(\gamma_{WQ,l}^{LC*} - \gamma_{WQ,l}^{LV*} \right) + \frac{1}{2} \left\{ \gamma_{WC,l}^{LC*} - \gamma_{WC,l}^{LV*}, \frac{\bar{n}^{N}}{n_{eq}^{N}} \right\} \right) \end{split}$$

$$\gamma^{LV} = \frac{g_{iso}}{4\pi^2} \int_0^\infty dk \, \frac{k}{e^{k/T} + 1} \frac{m_N^2}{32\pi k^3} \times \int_{E^*}^\infty dE \, (4Ek + M_L^2 - M_H^2) \left(\frac{1}{e^{\frac{E}{T}} + 1} + \frac{1}{e^{\frac{E+k}{T}} - 1}\right) h_{l\alpha}^* h_{l\beta}$$
$$\simeq 3.35 \times 10^{-3} \, m_N^2 \, T^2 \, h_{l\alpha}^* h_{l\beta}$$

$$\gamma_{WQ}^{LV} = \frac{g_{iso}}{4\pi^2} \int_0^\infty dk \, k \, \frac{m_N^2}{32\pi k^3} \times \int_{E^*}^\infty dE \, (4Ek + M_L^2 - M_H^2) \left(\frac{1}{e^{\frac{E}{T}} + 1} + \frac{1}{e^{\frac{E+k}{T}} - 1}\right) h_{l\alpha}^* \, h_{l\beta} \simeq 5.49 \times 10^{-4} \, m_N^2 \, T^2 \, h_{l\alpha}^* \, h_{l\beta}$$

$$\gamma_{WC}^{LV} = \frac{g_{iso}}{4\pi^2} \int_0^\infty dk \, \frac{k}{e^{k/T} + 1} \, \frac{m_N^2}{32\pi k^3} \times \int_{E^*}^\infty dE \, (4Ek + M_L^2 - M_H^2) \, \frac{1}{e^{\frac{E}{T}} + 1} \, h_{l\alpha}^* \, h_{l\beta} \simeq 1.79 \times 10^{-3} \, m_N^2 \, T^2 \, h_{l\alpha}^* \, h_{l\beta}$$

Analytical solution for the LV contribution for weak washout

- $\mathcal{O}(h^4)$ instead of $\mathcal{O}(h^6)$ for the LC contribution

- suppressed by 2 rates instead of 3 rates for the LC contribution

 $\alpha^{LC} \alpha^{LV}$ $(\alpha^{LC})^2 \alpha^{LC}_W$ ~ Planck mass

- but m_N^2 suppression with different Δm_N^2 and M_0^2 dependence

⇒ all in all the various factors compensate each other more or less with dominance of one or the other contribution depending on the parameters

Numerical results: comparison of decay and density matrix formalisms for the LV contribution

with only one lepton flavour: no ARS, only LV contribution

 \Rightarrow qualitative or even quantitative agreement:

- except for small m_N : different thermal masses taken
- except for large \tilde{m} : washout suppression too big in decay formalism because doesn't take into account formation of $N \bar{N}$ asymmetries

T.H., Teresi 17'

- in decay formalism the H is decaying "at rest" unlike in density matrix formalism

Numerical results: comparison of LC and LV contributions in matrix density formalism

T.H., Teresi 17'

dominance of LV= - for ``seesaw'' expected Yukawa couplings

- for very large Yukawas: less washout for LV than for LC !

- the smaller $\Delta m_N/m_N$ the more LV dominates

- the larger m_N the more LV dominates

Numerical results: comparison of LC and LV contributions in matrix density formalism

T.H., Teresi 17'

dominance of LV= - for ``seesaw'' expected Yukawa couplings

- for very large Yukawas: less washout for LV than for LC !

- the smaller $\Delta m_N/m_N$ the more LV dominates

- the larger m_N the more LV dominates

Dominance of the LV contribution for low reheating temperatures

T.H., Teresi 17'

 \longrightarrow LV contribution produced at lower temperature than the ARS-LC contribution due to the m_N^2/T^2 relative factor

Need to incorporate other processes for a full quantitative asymmetry calculation

 \rightarrow top quark scattering processes, gauge scattering processes, ...

same mechanism have all a $H \to LN$ transition as building block \Rightarrow expected to be

Besak, Bodeker 12' see also Ghiglieri, Laine 17'

same mechanism

 \rightarrow additional effect found to be small

Drewes, Garbrecht, Güter, Klaric, 16'

In usual leptogenesis decay formalism the L violating $H \to NL$ decay can easily lead to enough baryon asymmetry for $m_N < m_H$

- \checkmark in type-I seesaw model with nothing else
- \checkmark thanks to thermal effect leading to N self-energy thermal cut
- from total L number violating CP asymmetries: no need for flavour interplay
- \checkmark at electroweak scale temperatures: $T \gtrsim T_{Sphaler}$.
- \checkmark with boosted production if no N to begin with
- in a testable way (SHIP,...) for part of the parameter space

We have confirmed these results in density matrix formalism...

both ARS-LC and LV contributions can dominate baryogenesis depending on parameters

baryon asymmetries obtained for 3 values of $\Delta m_N^0/m_N$

