Baryogenesis from L-violating Higgs doublet decay

Thomas Hambye
Univ. of Brussels (ULB), Belgium

Work in collaboration with Daniele Teresi (ULB): arXiv: 1606.00017 (PRL 2016) arXiv: I 705.00016 (PRD 20 I7)

Baryogenesis via leptogenesis

\longrightarrow very highly motivated: same origin as neutrino masses

very natural at high scale: a series of numerical coincidences which make it particularly efficient but very difficult to test

clearly possible at low scale: if seesaw
seesaw states have a quasi-degenerate mass spectrum and/or if large cancellation among Yukawa couplings
\longrightarrow this talk: new way at low scale: total lepton number violating Higgs doublet decay into $\sim 0.1-100 \mathrm{GeV}$ right-handed neutrinos

Leptogenesis relevant scales for low m_{N}

$T_{\text {Sphaler }} \sim 135 \mathrm{GeV}$
usual leptogenesis: $m_{N} \gg T_{\text {Sphaler. }}>m_{H, L}$: leptogenesis from $N \rightarrow L H$ decay
\hookrightarrow creation of L asymmetry at $T \sim m_{N} \gg T_{\text {Sphaler. }} \Rightarrow$ B asymmetry

very low scale leptogenesis: $T_{\text {Sphater. }}>m_{H} \gg m_{N, L}$
\hookrightarrow creation of L asymmetry at $T>T_{\text {Sphaler. }} \gg m_{N} \Rightarrow \neq$ regime
\measuredangle thermal effects are fully relevant: $T>T_{\text {Sphaler. }}>m_{H} \gg m_{N, L}$

$$
m_{H}^{2}(T)=m_{H}^{2}+c_{H} \cdot T^{2} \quad m_{L}^{2}(T)=m_{L}^{2}+c_{L} \cdot T^{2} \quad m_{N}^{2}(T)=m_{N}^{2}+c_{N} \cdot T^{2}
$$

$\hookrightarrow N \rightarrow L H$ forbidden but $H \rightarrow N L$ allowed

Temperatures allowing the $N \rightarrow L H$ and $H \rightarrow N L$ decays

$H \rightarrow N L$ leptogenesis from this region?

L asymmetry production from $H \rightarrow N L$ decay

2 issues at first sight:
I) out-of-equilibrium decay? $\leftarrow 3$ rd Sakharov condition
$\longrightarrow H$ decaying particle is in deep thermal equilibrium at $T>T_{\text {Sphaler }}$. but N in decay product is not necessarily in thermal equilibr.

$$
\begin{aligned}
& \frac{d n_{N}}{d t} \propto\left(n_{N}^{e q}-n_{N}\right) \cdot \Gamma_{H \rightarrow N L} \\
& \uparrow \uparrow \\
& H \rightarrow N L \quad N L \rightarrow H
\end{aligned}
$$

L asymmetry production from $H \rightarrow N L$ decay

2) Absorptive part for CP violation?

$$
m_{H}+m_{L}>m_{N} \Rightarrow \text { no absorptive part? }
$$

$$
\longrightarrow \text { but only for } T=0!
$$

finite T corrections: thermal cut: if H or L comes
from the thermal bath the cut is kinematically allowed
Giudice, Notari, Raidal, Riotto, Strumia 03'
Frossard, Garny, Hohenegger, Kartavtsev, Mitrouskas 12'
\Rightarrow absorptive part $\Gamma_{N}(T)$ (calculated in Kadanoff Baym formalism)
Frossard, Garny, Hohenegger, Kartavtsev, Mitrouskas 12’

$$
\begin{aligned}
& \Pi^{\alpha \beta}\left(q_{N}\right)= \underline{\Pi_{>}^{\alpha \beta}\left(q_{N}\right)} \\
& \longrightarrow \ni-2 \int \frac{d^{4} p_{l}}{(2 \pi)^{4}} \frac{d^{4} p_{H}}{(2 \pi)^{4}}(2 \pi)^{4} \delta^{4}\left(q_{N}-p_{l}-p_{H}\right)\left(Y_{N}^{\dagger} Y_{N}\right)_{\alpha \beta}\left[P_{L} S_{>}^{l}\left(t, p_{l}\right) P_{R} \Delta_{>}^{H}\left(t, p_{H}\right)\right] \\
& \downarrow \\
& \propto f_{\bar{l}}^{F D}
\end{aligned}
$$

$$
\Rightarrow \Gamma_{N}(T)=\frac{1}{8 \pi} m_{N_{2}}\left(Y_{N} Y_{N}^{\dagger}\right)_{22} \cdot \frac{p \cdot L_{N}}{q_{N} \cdot p_{l}}
$$

$$
\longrightarrow L_{N}=16 \pi \int \frac{d^{3} p_{l}}{(2 \pi)^{3} 2 E_{l}} \frac{d^{3} p_{H}}{(2 \pi)^{3} 2 E_{H}}(2 \pi)^{4} \delta^{4}\left(q_{N}-p_{l}-p_{H}\right)\left(f_{l}^{F D}+f_{H}^{B E}\right) p_{l}
$$

Total L number violating CP asymmetry

$$
\varepsilon_{C P}=\frac{\operatorname{Im}\left[\left(Y_{N} Y_{N}^{\dagger}\right)_{12}^{2}\right]}{\left(Y_{N} Y_{N}^{\dagger}\right)_{11}\left(Y_{N} Y_{N}^{\dagger}\right)_{22}} \cdot \frac{2 \Delta m_{N}^{0} \Gamma_{N}(T)}{4 \Delta m_{N}(T)^{2}+\Gamma_{N}(T)^{2}}
$$

\longrightarrow with thermal mass splitting: $\Delta m_{N}(T) \simeq \Delta m_{N}^{0}+\frac{\pi T^{2}}{4 m_{N}^{2}} \Gamma_{22} \sqrt{\left(1-\frac{\Gamma_{11}}{\Gamma_{22}}\right)^{2}+4 \frac{\left|\Gamma_{12}\right|^{2}}{\Gamma_{22}^{2}}}$

$$
\Gamma_{i j} \equiv m_{N}\left(Y_{N} Y_{N}^{\dagger}\right)_{i j} /(8 \pi)
$$

Boltzmann equations:

$$
\begin{array}{rlrl}
\frac{n_{\gamma} H_{N}}{z} \frac{d \eta_{N}}{d z} & =\left(1-\frac{\eta^{N}}{\eta_{N}^{\text {eq }}}\right)\left[\gamma_{D}+2\left(\gamma_{H s}+\gamma_{A s}\right)\right. & \\
& \left.+4\left(\gamma_{H t}+\gamma_{A t}\right)\right], & \\
\frac{n_{\gamma} H_{N}}{z} \frac{d \eta_{L}}{d z} & =\gamma_{D}\left[\left(\frac{\eta^{N}}{\eta_{N}^{\text {eq }}}-1\right) \epsilon_{C P}(z)-\frac{2}{3} \eta_{L}\right] & \eta_{N} \equiv n_{N} / n_{\gamma} \\
& -\frac{4}{3} \eta_{L}\left[2\left(\gamma_{H t}+\gamma_{A t}\right)+\frac{\eta^{N}}{\eta_{N}^{\text {eq }}}\left(\gamma_{H s}+\gamma_{A s}\right)\right] & & z \equiv m_{N} / T
\end{array}
$$

Results for the case where the N have thermalized

C
if N thermalized by large Y_{N} Yukawas or other interaction (e.g. a W_{R}) before an asymmetry is produced

$\tilde{m} \equiv \frac{Y_{N} Y_{N}^{\dagger} v^{2}}{2 m_{N}}$
the lower is m_{N}, the later it goes out-of-equilibrium, the more it will be in equilibr. at $T>T_{\text {Sphaler }}$.

$$
\text { lower bound on } m_{N}
$$

$$
m_{N}>2.2 \mathrm{GeV}
$$

if only $N \rightarrow L H$ decay we get: $m_{N}>50 \mathrm{GeV}$
requires that at least 2 of the N have quasi-degenerate masses

Results for the case where the N have not thermalized

- if no extra interaction thermalizing N, no thermalization is much more natural than in ordinary leptogenesis: thermalization at $T>T_{\text {Sphaler. }} \gg m_{N}$ requires much larger Y_{N} Yukawas than in ordinary leptogenesis at $T \sim m_{N}$
$\tilde{m} \equiv \frac{Y_{N} Y_{N}^{\dagger} v^{2}}{2 m_{N}}$

- for $H \rightarrow N L$ decay, to start from no N in the thermal bath boosts the asymmetry production, unlike for ordinary $N \rightarrow L H$ leptogenesis
$\longrightarrow H \rightarrow N L$: many H to decay and produce the asymmetry but few

$$
n_{N}^{e q}-n_{N} \sim n_{N}^{e q} \gg n_{N}
$$

Results for the case where the N have not thermalized

\longrightarrow for example for $m_{N} \sim 10 \mathrm{GeV}$ and $\tilde{m} \sim 0.1 \mathrm{eV}$ one needs $\Delta m_{N}^{0} / m_{N} \lesssim 10^{-5}$ \longrightarrow leptogenesis for m_{N} as low as $\sim 20 \mathrm{MeV}$ is possible (but BBN concerns)
\longrightarrow in all cases: asymmetry production at T just above $T_{\text {Sphaler. }} \Rightarrow$ no dependence on UV physics!

Testability!

Two important comparisons to do

- for $m_{N} \sim \mathrm{GeV}$: well-known baryogenesis mechanism in seesaw model: baryogenesis from right-handed neutrino oscillations: '`ARS" mechanism

Akhmedov, Rubakov, Smirnov 98’
Asaka, Shaposhnikov 05'; Shaposhnikov 08'
Drewes, Garbrecht II'
Canetti, Drewes, Frossard, Shaposhnikov I 3'
Hernandez, Kekic, Lopez-Pavon, Racker, Rius I 5'

comparison of ARS with L-violating Higgs decay setup???

- to compute evolution of asymmetries with thermal effects: another well-known formalism: density matrix formalism \longrightarrow comparison of results of decay formalism and density matrix formalism???

Density matrix formalism

$N_{R_{\alpha}}$ quantum system is described by density matrix : $n_{\alpha \beta}^{N} \equiv\left\langle a_{\beta}^{+\dagger} a_{\alpha}^{+}\right\rangle=\operatorname{Tr}\left(\rho a_{\beta}^{+\dagger} a_{\alpha}^{+}\right)$ $\overline{N_{R_{\alpha}}}$ quantum system is described by density matrix : $n_{\alpha \beta}^{\bar{N}} \equiv\left\langle a_{\beta}^{-\dagger} a_{\alpha}^{-}\right\rangle=\operatorname{Tr}\left(\rho a_{\beta}^{-\dagger} a_{\alpha}^{-}\right)$ \uparrow

$$
\begin{aligned}
& n_{\alpha \alpha}^{N}=n_{\alpha}^{N}=\text { number density of } N_{\alpha} \text { states } \\
& n_{\alpha \beta}^{N}=\text { coherence between } N_{\alpha} \text { and } N_{\beta} \text { states }
\end{aligned}
$$

\Rightarrow evolution of density matrix:

$$
\begin{gathered}
\frac{d}{d t} n_{\alpha \beta}^{N}(\mathbf{k}, t)=i\left\langle\left[H_{0}^{N}, n_{\alpha \beta}^{N}(\mathbf{k}, t)\right]\right\rangle-\frac{1}{2} \int_{-\infty}^{\infty} d t^{\prime}\left\langle\left[H_{\mathrm{int}}\left(t^{\prime}\right),\left[H_{\mathrm{int}}(t), n_{\alpha \beta}^{N}(\mathbf{k}, t)\right]\right]\right\rangle_{t} \\
\text { oscillation term } \\
\text { interaction term }
\end{gathered}
$$

$$
H_{i n t}=h_{l \alpha} \bar{L}_{l} \tilde{H} P_{R} N_{\alpha}+h . c .
$$

$$
\begin{gathered}
\longleftrightarrow H_{\text {int }} \cdot H_{\text {int }}^{\rightarrow} \rightarrow \text { terms in } a_{\beta}^{+\dagger} a_{\alpha}^{+} \rightarrow n_{\alpha \beta}^{N} \\
\text { terms in } a_{\alpha}^{-} a_{\beta}^{-\dagger} \rightarrow 1-n_{\alpha \beta}^{N} \\
\Rightarrow \frac{d}{d t} n_{\alpha \beta}^{N}(\mathbf{k})=-i\left[E_{N}, n^{N}(\mathbf{k})\right]_{\alpha \beta}-\frac{1}{2 E_{N}}\left(\frac{1}{2}\left\{\Gamma^{>}(\mathbf{k}), n^{N}(\mathbf{k})\right\}-\frac{1}{2}\left\{\Gamma^{<}(\mathbf{k}), \mathrm{I}-n^{N}(\mathbf{k})\right\}\right){ }_{\alpha \beta} \\
\uparrow \\
\uparrow+\bar{L} \rightarrow H
\end{gathered} \begin{gathered}
\uparrow \rightarrow N+\bar{L}
\end{gathered}
$$

ARS contribution in density matrix formalism

keeping only the transitions where there is no m_{N} mass insertions because the asymmetry is produced at $T \gg T_{\text {sphaler. }} \gg m_{N}$ \hookrightarrow if mass insertion: m_{N}^{2} / T^{2} suppression

$$
\Gamma_{\alpha \beta}^{\lessgtr}(\mathbf{k})=-i \operatorname{tr}\left\{\mathrm{P}_{\mathrm{R}} u_{+}(\mathbf{k}) \bar{u}_{+}(\mathbf{k}) \mathrm{P}_{\mathrm{L}} \Sigma_{\alpha \beta}^{\lessgtr}(k)\right\}
$$

with:

$$
-i \Sigma_{\alpha \beta}^{\lessgtr}(k)=\int \frac{d^{4} p}{(2 \pi)^{4}} \int \frac{d^{4} q}{(2 \pi)^{4}}(2 \pi)^{4} \delta^{(4)}(q-k-p) i S_{l}^{\lessgtr}(-p) i \Delta \stackrel{\downarrow}{\gtrless}(-q) h_{l \alpha}^{*} h_{l \beta}
$$

$$
\text { Wightman propagator of } L
$$

for example:

$$
n_{N} \Gamma^{>} \sim n_{N} \Sigma^{>} \propto n_{N} \cdot S_{l}^{>} \cdot \Delta^{<} \cdot h_{l \alpha}^{*} h_{l \beta} \propto n_{N} \cdot n_{\bar{l}} \cdot\left(1+n_{H}\right) \cdot h_{l \alpha}^{*} h_{l \beta}
$$

Density matrix formalism: evolution equations and rates

$$
\begin{aligned}
& n_{l}=n_{l}^{E q}+\frac{\delta n_{l}}{2} \\
& n_{\bar{l}}=n_{l}^{E q}-\frac{\delta n_{l}}{2} \\
& \frac{d n_{\alpha \beta}^{N}}{d t}=-i\left[\mathcal{E}_{N}, n^{N}(k)\right]_{\alpha \beta}-\frac{1}{2}\left\{\gamma^{L C}, \frac{n^{N}}{n_{e q}^{N}}-\mathrm{I}\right\}_{\alpha \beta}+\frac{\delta n_{l}^{L}}{2 n_{e q}^{L}}\left(\left(\gamma_{W Q, l}^{L C}\right)+\frac{1}{2}\left\{\gamma_{W C, l}^{L C}, \frac{n^{N}}{n_{e q}^{N}}\right\}\right)_{\alpha \beta} \\
& \begin{aligned}
\frac{d \delta n_{l}^{L}}{d t}=\frac{1}{n_{e q}^{N}} \operatorname{tr} & \left\{\left(\gamma_{l}^{L C}\right) n^{N}\right\}-\frac{1}{n_{e q}^{N}} \operatorname{tr}\left\{\left(\gamma_{l}^{L C *}\right) \bar{n}^{N}\right\} \\
& -\frac{\delta n_{l}^{L}}{n_{e q}^{L}} \operatorname{tr}\left\{\gamma_{W Q, l}^{L C}\right\}-\frac{\delta n_{l}^{L}}{2 n_{e q}^{L}} \frac{1}{n_{e q}^{N}} \operatorname{tr}\left\{n^{N}\left(\gamma_{W C, l}^{L C}\right)\right\}-\frac{\delta n_{l}^{L}}{2 n_{e q}^{L}} \frac{1}{n_{e q}^{N}} \operatorname{tr}\left\{\bar{n}^{N}\left(\gamma_{W C, l}^{L C *}\right)\right\}
\end{aligned} \\
& \gamma_{\alpha \beta}^{L C} \equiv \int d \Pi_{\mathrm{PS}} n_{e q}^{N}(\mathbf{k})\left(n_{e q}^{L}(\mathbf{p})+n_{e q}^{H}(\mathbf{q})\right) \times \operatorname{tr}\left\{\mathrm{P}_{\mathrm{R}} u_{+}(\mathbf{k}) \bar{u}_{+}(\mathbf{k}) \mathrm{P}_{\mathrm{L}} \not p\right\} h_{l \alpha}^{*} h_{l \beta} \\
& =\frac{g_{\text {iso }}}{4 \pi^{2}} \int_{0}^{\infty} d k \frac{k}{e^{k / T}+1} \frac{M_{H}^{2}-M_{L}^{2}}{8 \pi k} \times \int_{E^{*}}^{\infty} d E\left(\frac{1}{e^{\frac{E}{T}}+1}+\frac{1}{e^{\frac{E+k}{T}}-1}\right) h_{l \alpha}^{*} h_{l \beta} \\
& \simeq 3.26 \times 10^{-4} T^{4} h_{l \alpha}^{*} h_{l \beta} \\
& \gamma_{W Q}^{L C}=\frac{g_{i s o}}{4 \pi^{2}} \int_{0}^{\infty} d k k \frac{M_{H}^{2}-M_{L}^{2}}{8 \pi k} \times \int_{E^{*}}^{\infty} d E \frac{1}{e^{\frac{E}{T}}+1} \frac{1}{e^{\frac{E+k}{T}}-1} h_{l \alpha}^{*} h_{l \beta} \simeq 1.05 \times 10^{-4} T^{4} h_{l \alpha}^{*} h_{l \beta} \\
& \gamma_{W C}^{L C}=\frac{g_{i s o}}{4 \pi^{2}} \int_{0}^{\infty} d k \frac{k}{e^{k / T}+1} \frac{M_{H}^{2}-M_{L}^{2}}{8 \pi k} \int_{E^{*}}^{\infty} d E \frac{1}{e^{\frac{E}{T}}+1} h_{l \alpha}^{*} h_{l \beta} \simeq 1.86 \times 10^{-4} T^{4} h_{l \alpha}^{*} h_{l \beta}
\end{aligned}
$$

Density matrix formalism:ARS final result

$$
Y_{L C} \simeq-18.5 \times\left(\alpha^{L C}\right)^{2} \alpha_{W}^{L C} \frac{M_{0}^{7 / 3}}{T_{c}\left(\Delta m_{N}^{2}\right)^{2 / 3}} \times\left(h^{\dagger} h\right)_{11}\left(h^{\dagger} h\right)_{22} \sum_{l} \delta_{l}^{L C}\left(h h^{\dagger}\right)_{l l}
$$

$$
\delta_{l}^{L C}=\frac{\operatorname{Im}\left[h_{11}^{*} h_{22}\left(h^{\dagger} h\right)_{21}\right]}{\left(h^{\dagger} h\right)_{11}\left(h^{\dagger} h\right)_{22}}
$$

\longrightarrow ARS is based on processes where there is no m_{N} mass insertions

$$
\begin{gathered}
\text { only } N \rightarrow L \text { and } \bar{N} \rightarrow \bar{L} \text { transitions } \\
\downarrow \\
\text { assigning } L \\
\qquad=1 \text { to } N \text { and } L=-1 \text { to } \bar{N} \text {, all processes conserve } L \text { : } \\
\sum_{i=e, \mu, \tau}\left(n_{L_{i}}-n_{\bar{L}_{i}}\right)+\sum_{\alpha}\left(n_{N_{\alpha}}-n_{\bar{N}_{\alpha}}\right)=0 \\
\text { no } \bar{N} \rightarrow L
\end{gathered}
$$

\Rightarrow at $\mathcal{O}\left(h^{4}\right)$: SM lepton number and N lepton number are separately conserved

$$
\begin{array}{r}
\sum_{i=e, \mu, \tau}\left(n_{L_{i}}-n_{\bar{L}_{i}}\right)=0 \quad \sum_{\alpha}\left(n_{N_{\alpha}}-n_{\bar{N}_{\alpha}}\right)=0 \quad \text { but flavor lepton number is not conserved: } \\
\delta n_{l_{i}} \equiv n_{L_{i}}-n_{\bar{L}_{i}} \neq 0
\end{array}
$$

\Rightarrow at $\mathcal{O}\left(h^{6}\right)$: if for example Yukawa for electron much smaller than for muon:
$n_{L_{\mu}}-n_{\bar{L}_{\mu}}$ strongly washed-out
$n_{L_{e}}-n_{\bar{L}_{e}}$ much less washed-out

Total lepton number violating density matrix contribution

the L-violating Higgs decay contribution to baryogenesis is clearly \neq from the ARS one since it is a $\mathcal{O}\left(h^{4}\right)$ contribution based on processes which do involve a Majorana mass insertion, i.e. which do violate total lepton number, unlike ARS
\longrightarrow where to find this contribution in density matrix formalism??

the density matrix commutators lead also to contributions $\propto m_{N}^{2}$ which corresponds to processes with a Majorana mass insertion

$$
N \text { to } \bar{L} \text { transition instead of } N \text { to } L \text { transition }
$$

$$
\Gamma_{\alpha \beta}^{\lessgtr}(\mathbf{k}) \ni+i \operatorname{tr}\left\{\mathrm{P}_{\mathrm{R}} v_{+}(\mathbf{k}) \bar{v}_{+}(\mathbf{k}) \mathrm{P}_{\mathrm{L}} \Sigma_{\beta \alpha}^{\lessgtr}(-k)\right\}
$$

Full set of density matrix equation with LC and LV contributions

$$
\begin{aligned}
& \frac{d n_{\alpha \beta}^{N}}{d t}=-i\left[\mathcal{E}_{N}, n^{N}(\mathbf{k})\right]_{\alpha \beta}-\frac{1}{2}\left\{\gamma^{L C}+\gamma^{L V}, \frac{n^{N}}{n_{e q}^{N}}-\mathrm{I}\right\}_{\alpha \beta} \\
& +\frac{\delta n_{l}^{L}}{2 n_{e q}^{L}}\left(\left(\gamma_{W Q, l}^{L C}-\gamma_{W Q, l}^{L V}\right)+\frac{1}{2}\left\{\gamma_{W C, l}^{L C}-\gamma_{W C, l}^{L V}, \frac{n^{N}}{n_{e q}^{N}}\right\}\right)_{\alpha \beta}, \\
& \frac{d \bar{n}_{\alpha \beta}^{N}}{d t}=-i\left[\mathcal{E}_{N}, \bar{n}^{N}(\mathbf{k})\right]_{\alpha \beta} \\
& -\frac{1}{2}\left\{\gamma^{L C *}+\gamma^{L V *}, \frac{\bar{n}^{N}}{n_{e q}^{N}}-\mathrm{I}\right\}_{\alpha \beta} \\
& -\frac{\delta n_{l}^{L}}{2 n_{e q}^{L}}\left(\left(\gamma_{W Q, l}^{L C *}-\gamma_{W Q, l}^{L V *}\right)+\frac{1}{2}\left\{\gamma_{W C, l}^{L C *}-\gamma_{W C, l}^{L V}, l, \frac{\bar{n}^{N}}{n_{e q}^{N}}\right\}\right) \\
& \begin{aligned}
\frac{d \delta n_{l}^{L}}{d t} & =\frac{1}{n_{e q}^{N}} \operatorname{tr}\left\{\left(\gamma_{l}^{L C}-\gamma_{l}^{L V}\right) n^{N}\right\} \\
& -\frac{1}{n_{e q}^{N}} \operatorname{tr}\left\{\left(\gamma_{l}^{L C *}-\gamma_{l}^{L V *}\right) \bar{n}^{N}\right\} \\
& -\frac{\delta n_{l}^{L}}{n_{e q}^{L}} \operatorname{tr}\left\{\gamma_{W Q, l}^{L C}+\gamma_{W Q, l}^{L V}\right\} \\
& -\frac{\delta n_{l}^{L}}{2 n_{e q}^{L}} \frac{1}{n_{e q}^{N}} \operatorname{tr}\left\{n^{N}\left(\gamma_{W C, l}^{L C}+\gamma_{W C, l}^{L V}\right)\right\} \\
& -\frac{\delta n_{l}^{L}}{2 n_{e q}^{L}} \frac{1}{n_{e q}^{N}} \operatorname{tr}\left\{\bar{n}^{N}\left(\gamma_{W C, l}^{L C *}+\gamma_{W C, l}^{L V *}\right)\right\}
\end{aligned} \\
& \gamma^{L V}=\frac{g_{\text {iso }}}{4 \pi^{2}} \int_{0}^{\infty} d k \frac{k}{e^{k / T}+1} \frac{m_{N}^{2}}{32 \pi k^{3}} \times \int_{E^{*}}^{\infty} d E\left(4 E k+M_{L}^{2}-M_{H}^{2}\right)\left(\frac{1}{e^{\frac{E}{T}}+1}+\frac{1}{e^{\frac{E+k}{T}}-1}\right) h_{l \alpha}^{*} h_{l \beta} \\
& \simeq 3.35 \times 10^{-3} m_{N}^{2} T^{2} h_{l \alpha}^{*} h_{l \beta} \\
& \gamma_{W Q}^{L V}=\frac{g_{i s o}}{4 \pi^{2}} \int_{0}^{\infty} d k k \frac{m_{N}^{2}}{32 \pi k^{3}} \times \int_{E^{*}}^{\infty} d E\left(4 E k+M_{L}^{2}-M_{H}^{2}\right)\left(\frac{1}{e^{\frac{E}{T}}+1}+\frac{1}{e^{\frac{E+k}{T}}-1}\right) h_{l \alpha}^{*} h_{l \beta} \simeq 5.49 \times 10^{-4} m_{N}^{2} T^{2} h_{l \alpha}^{*} h_{l \beta} \\
& \gamma_{W C}^{L V}=\frac{g_{i s o}}{4 \pi^{2}} \int_{0}^{\infty} d k \frac{k}{e^{k / T}+1} \frac{m_{N}^{2}}{32 \pi k^{3}} \times \int_{E^{*}}^{\infty} d E\left(4 E k+M_{L}^{2}-M_{H}^{2}\right) \frac{1}{e^{\frac{E}{T}}+1} h_{l \alpha}^{*} h_{l \beta} \simeq 1.79 \times 10^{-3} m_{N}^{2} T^{2} h_{l \alpha}^{*} h_{l \beta}
\end{aligned}
$$

Analytical solution for the LV contribution for weak washout

$$
\begin{array}{r}
Y_{L V} \simeq 7.9 \times \alpha^{L C} \alpha^{L V} \frac{M_{0}}{T_{c}} \frac{m_{N}^{2}}{\Delta m_{N}^{2}}\left(h^{\dagger} h\right)_{11}\left(h^{\dagger} h\right)_{22} \delta^{L V} \leftarrow \delta^{L V} \equiv \sum_{l} \delta_{l}^{L V} \neq 0 \quad \text { T.....Teresi } 17^{\prime} \\
\text { CP-violating Yukawa combination } \\
\text { which breaks total lepton number } \longrightarrow \delta_{l}^{L V}=\frac{\operatorname{Im}\left[h_{11}^{*} h_{l 2}\left(h^{\dagger} h\right)_{12}\right]}{\left(h^{\dagger} h\right)_{11}\left(h^{\dagger} h\right)_{22}} \\
Y_{L C} \simeq-18.5 \times\left(\alpha^{L C}\right)^{2} \alpha_{W}^{L C} \frac{M_{0}^{7 / 3}}{T_{c}\left(\Delta m_{N}^{2}\right)^{2 / 3}} \times\left(h^{\dagger} h\right)_{11}\left(h^{\dagger} h\right)_{22} \sum_{l} \delta_{l}^{L C}\left(h h^{\dagger}\right)_{l l} \leftarrow \delta_{l}^{L C}=\frac{\operatorname{Im}\left[h_{11}^{*} h_{l 2}\left(h^{\dagger} h\right)_{21}\right]}{\left(h^{\dagger} h\right)_{11}\left(h^{\dagger} \dagger\right)_{22}} \\
\text { ¢ }
\end{array}
$$

\Rightarrow LV vs LC contributions:

- $\mathcal{O}\left(h^{4}\right)$ instead of $\mathcal{O}\left(h^{6}\right)$ for the LC contribution
- suppressed by 2 rates instead of 3 rates for the LC contribution

~ Planck mass
- but m_{N}^{2} suppression with different Δm_{N}^{2} and M_{0} dependence
\Rightarrow all in all the various factors compensate each other more or less with dominance of one or the other contribution depending on the parameters

Numerical results: comparison of decay and density

 matrix formalisms for the LV contribution\longrightarrow with only one lepton flavour: no ARS, only LV contribution
$Y_{B}=\frac{n_{B}}{s}$ contour plot $\quad \Delta m_{N} / m_{N}=10^{-10}$
$Y_{B}=\frac{n_{B}}{s}$ contour plot $\Delta m_{N} / m_{N}=10^{-8.5}$

\Rightarrow qualitative or even quantitative agreement:

- except for small m_{N} : different thermal masses taken
- except for large \tilde{m} : washout suppression too big in decay formalism because doesn't take into account formation of $N-\bar{N}$ asymmetries
- in decay formalism the H is decaying "at rest" unlike in density matrix formalism

Numerical results: comparison of LC and LV contributions in

 matrix density formalism
dominance of LV= - for "seesaw" expected Yukawa couplings

- for very large Yukawas: less washout for LV than for LC!

$$
\propto m_{N}^{2} T^{2} \ll \propto T^{4}
$$

- the smaller $\Delta m_{N} / m_{N}$ the more LV dominates
- the larger m_{N} the more LV dominates

Numerical results: comparison of LC and LV contributions in matrix density formalism

$Y_{B}=\frac{n_{B}}{s}$ contour plot: full $\mathrm{LC}+\mathrm{LV}$ result \quad ratio of $\mathrm{LV}+\mathrm{LC}$ over LC

dominance of LV= - for "'seesaw" expected Yukawa couplings

- for very large Yukawas: less washout for LV than for LC!

$$
\propto m_{N}^{2} T^{2} \ll \propto T^{4}
$$

- the smaller $\Delta m_{N} / m_{N}$ the more LV dominates
- the larger m_{N} the more LV dominates

Dominance of the LV contribution for low reheating temperatures

\longrightarrow LV contribution produced at lower temperature than the ARS-LC contribution due to the m_{N}^{2} / T^{2} relative factor

Need to incorporate other processes for a full quantitative asymmetry calculation
\longrightarrow top quark scattering processes, gauge scattering processes, ... Besak, Bodeker 12’ see also Ghiglieri, Laine 17'
\longrightarrow have all a $H \rightarrow L N$ transition as building block \Rightarrow same mechanism expected to be operative \longrightarrow additional effect found to be small

Summary

In usual leptogenesis decay formalism the L violating $H \rightarrow N L$ decay can easily lead to enough baryon asymmetry for $m_{N}<m_{H}$
\longleftrightarrow in type-I seesaw model with nothing else
\longrightarrow thanks to thermal effect leading to N self-energy thermal cut
\longleftrightarrow from total L number violating CP asymmetries: no need for flavour interplay
\longrightarrow at electroweak scale temperatures: $T \gtrsim T_{\text {Sphaler }}$.
\longrightarrow with boosted production if no N to begin with
\longrightarrow in a testable way (SHIP,...) for part of the parameter space
We have confirmed these results in density matrix formalism...
\longrightarrow both ARS-LC and LV contributions can dominate baryogenesis depending on parameters
baryon asymmetries obtained for 3 values of $\Delta m_{N}^{0} / m_{N}$

