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          Baryogenesis via leptogenesis      

very highly motivated: same origin as neutrino masses

very natural at high scale: a series 
of numerical coincidences which 
make it particularly efficient 

clearly possible at low scale: if seesaw
seesaw states have a quasi-degenerate
mass spectrum and/or if large cancellation
 among Yukawa couplingsbut very difficult to test

 this talk: new way at low scale:
                    total lepton number violating Higgs          

doublet decay into ~0.1-100 GeV
right-handed neutrinos



          Leptogenesis relevant scales for low 

usual leptogenesis: mN >> TSphaler. > mH,L : leptogenesis from                 decayN ! LH

creation of L asymmetry at T ⇠ mN >> TSphaler.
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with ∆M2
ij = M2

Nj
− M2

Ni
. The factors Sj (Vj) comes from the one-loop

self-energy (vertex) contribution to the decay widths, Fig. 1. The Ij factors
are the CP-violating coupling combinations entering in the asymmetry.

2.2. The Efficiency Factor

Once the averaged ∆L produced per decay has been calculated, the sec-
ond ingredient to consider is the efficiency factor η. This factor allows to
calculate the lepton asymmetry produced from the CP-asymmetry,

nL

s
= εNi

YNi
|T>>MNi

η , (5)

where YNi
= nNi

/s is the number density of Ni over the entropy density,
with YNi

|T>>MNi
= 135ζ(3)/(4π4g∗) where g∗ = 112 is the number of de-

grees of freedom in thermal equilibrium in the “type-I” model before the Ni

decayed. If all right-handed neutrinos decay out-of-equilibrium, the lepton
asymmetry produced is just given by the CP asymmetry times the number
of Ni over the entropy density before the Ni decayed, i.e. η = 1. However,
the efficiency factor can be much smaller than one, if they are not fully out-
of-equilibrium while decaying, and/or if there are at this epoch L-violating
processes partly in thermal equilibrium. The processes which can put the
Ni in thermal equilibrium and/or violate L are the inverse decay process
and ∆L = 1, 2 scatterings. To avoid a large damping effect, it is necessary
that these processes are not too fast with respect to the Hubble constant.
For the inverse decay process (which is the most dangerous process, see e.g.
the discussion of Ref.6), this gives the condition: ΓNi

/H(T ≃ MNi
) ≤ 1

with H(T ) =
√

4π3g∗/45T 2/MPlanck. In practice to calculate η we need to
put all these processes in the Boltzmann equations7,8 which allow a precise
calculation of the produced lepton asymmetry as a function of the temper-
ature T . The corresponding efficiency factor including finite temperature
effects can be found in Ref.8 in the limit where the right-handed neutri-
nos have a hierarchical spectrum MN1

<< MN2,3
. In this limit only the
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Figure 1. One-loop diagrams contributing to the asymmetry from the Ni decay.

very low scale leptogenesis: 

T > TSphaler. >> mN

TSphaler. > mH >> mN,L

creation of L asymmetry at 6= regime

thermal effects are fully relevant: T > TSphaler. > mH >> mN,L

m2
H(T ) = m2

H + cH · T 2 m2
L(T ) = m2

L + cL · T 2 m2
N (T ) = m2

N + cN · T 2

forbidden but                allowedN ! LH H ! NL

mN

resonant propagator if mNj ⇠ mNi

~TeV scale 
  leptogenesis

B asymmetry  

TSphaler. ⇠ 135GeV



          Temperatures allowing the            and             decays

2

150 200 250 300 350 400
0

50

100

150

200

T [GeV]

m
N
[G
eV

]

mN > mH+mL

mH > mN+mL

FIG. 1: Values of mN and T for which the N ! LH and
H ! LN decays are kinematically allowed.

by m2

i ⌘ mi(T )2 ' M2

i (v(T )) + ciT 2, where M2

i (v) is
the VEV-dependent zero-temperature mass. The coe�-
cients ci can be found e.g. in Ref. [9]. Note that, given
the small values of the RH neutrino Yukawa couplings at
low scale, the thermal corrections are negligible for the
masses of the RH neutrinos, but not necessarily for their
mass splitting when they are quasi-degenerate, see be-
low. For the thermal mass of the Higgs doublet mH(T ),
instead, we will consider the result that is obtained from
the second derivative of the thermal e↵ective potential,
as given e.g. in Ref. [10].

In Fig. 1 the regions in the T -mN plane in which the
two di↵erent decay processes are active is shown. For
the moment, we work in the approximation of only one
RH neutrino. Taking into account thermal masses, the
decay widths for the processes N ! LH and H ! NL
are respectively given by

�N!LH =
mN

8⇡
YNY †

N �
1
2(1, aH , aL) (1� aH + aL) , (2)

�H!NL =
mN

8⇡
YNY †

N �
1
2(1, aH , aL)

aH � aL � 1

2 a3/2H

, (3)

with aX ⌘ (mX(T )/mN )2. We calculate the thermally-
averaged decay rates �N!LH and �H!NL in the classical-
statistics approximation, finding

�N!LH =
m3

N

⇡2z
K

1

(z)�N!LH , (4)

�H!NL =
m2

H mN

⇡2z
K

1

✓
mH

mN
z

◆
2�H!NL , (5)

with z ⌘ mN/T . The total decay rate is thus given by
�D = �N!LH ✓(mN � mH � mL) + �H!NL ✓(mH �
mN � mL). In the low-mN region the �H!NL rate re-
ceives O(1) corrections [11] due to IR-enhanced processes
involving electroweak bosons [12].

The way the H ! LN decays lead to a CP-asymmetry
is from the one loop self-energy diagram of Fig. 2. Clearly
this diagram does not lead to any CP-violation at T = 0,
because the loop cannot have an absorptive contribution

H

L
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N

N

H

FIG. 2: Thermal cut in the H ! NL decay, which gives rise
to its purely-thermal L-violating CP-violation.

for mH > mN + mL. However, it does from thermal
corrections, since one of the particles in the loop can
originate on-shell from the thermal bath. Denominating
by �T (z) the thermal cut of the self-energy, one obtains,
for |�mN (z)| ⌧ mN , the usual resonant [3, 4] form for
the unflavoured L-violating CP asymmetry [3, 13]

✏CP (z) = I
1

2�m0

N�T (z)

4�mN (z)2 + �T (z)2
, (6)

where I
1

= Im[(YNY †
N )2

12

]/(|YNY †
N |

11

|YNY †
N |

22

) and
�mN (z) = �m0

N + �mT
N (z) is the mass splitting in-

cluding thermal corrections

�mT
N (z) ' ⇡

4z2
�
22

s✓
1� �

11

�
22

◆
2

+ 4
|�

12

|2
�2

22

⌘ ⇡

4z2
�
22

f , (7)

with �ij = mN (YNY †
N )ij/(8⇡). Here we have conserva-

tively taken the regulating expression in the denomina-
tor to be equal to the same �T (z) as in the numerator.
This is based on the physical expectation that the diver-
gence in the degenerate limit is regulated by the (ther-
mal) width of the heavy neutrinos. Notice that correc-
tions to the precise form of the asymmetry (e.g. taking
into account heavy-neutrino oscillations at T ⇠ mN in
addition to mixing [6, 14]) can be absorbed into a re-
definition of f . As shown in detail in [15], the masses
appearing in the numerator of (6) should be taken as the
Lagrangian masses without thermal corrections, �m0

N .
This also guarantees the vanishing of the asymmetry in
the CP-conserving limit �m0

N ! 0. The thermal cut
of the Majorana RH neutrino self-energy has been cal-
culated in [9, 13]. Here, neglecting the thermal mo-
tion of the decaying particle , we use the results of [13],
obtained in the Kadano↵-Baym formalism (which cor-
responds to taking the cut of the retarded self-energy,
rather than of the time-ordered one, as done instead in
[9]). The temperature dependence of �T can be extracted
as �T (z) ⌘ �

22

�(z), where �(z) is [13]

�(z) ⌘ pL⇢(q)

pq
, (8)

with p and q the 4-momenta of the charged lepton and
RH neutrino, respectively. The absorptive function L⇢(q)
is given by

L⇢(q) = 16⇡

Z
d⇧q

Hd⇧p
L (2⇡)4�4(l) /pB , (9)

H ! NLN ! LH

leptogenesis from this region?H ! NL

TSphaler.

N ! LH

H ! NL



          L asymmetry production from             decayH ! NL

2 issues at first sight:

1) out-of-equilibrium decay? 3rd Sakharov condition

decaying particle is in deep thermal equilibrium atH T > TSphaler.

but     in decay product is not necessarily in thermal equilibr.N

H ! NL NL ! H

dnN

dt
/ (neq

N � nN ) · �H!NL



2) Absorptive part for CP violation? 2

FIG. 1: Values of mN and T for which the N ! LH and
H ! LN decays are kinematically allowed.
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FIG. 2: Thermal cut in the H ! NL decay, which gives rise
to its purely-thermal L-violating CP-violation.

for mH > mN + mL. However, it does from thermal
corrections, since one of the particles in the loop can
originate on-shell from the thermal bath. Denominating
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This also guarantees the vanishing of the asymmetry in
the CP-conserving limit �m0

N ! 0. The thermal cut
of the Majorana RH neutrino self-energy has been cal-
culated in [9, 13]. Here, neglecting the thermal mo-
tion of the decaying particle , we use the results of [13],
obtained in the Kadano↵-Baym formalism (which cor-
responds to taking the cut of the retarded self-energy,
rather than of the time-ordered one, as done instead in
[9]). The temperature dependence of �T can be extracted
as �T (z) ⌘ �
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�(z), where �(z) is [13]

�(z) ⌘ pL⇢(q)

pq
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with p and q the 4-momenta of the charged lepton and
RH neutrino, respectively. The absorptive function L⇢(q)
is given by

L⇢(q) = 16⇡
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d⇧q

Hd⇧p
L (2⇡)4�4(l) /pB , (9)

mH +mL > mN no absorptive part?

          L asymmetry production from             decayH ! NL

but only for           ! T = 0

finite T corrections: thermal cut: if      or     comes
from the thermal bath the cut is kinematically allowed    

absorptive part            (calculated in Kadanoff Baym formalism)
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          Total L number violating CP asymmetry

"CP =
Im[(YNY †

N )212]

(YNY †
N )11(YNY †

N )22
· 2�m0

N �N (T )

4�mN (T )2 + �N (T )2

with thermal mass splitting:

�ij ⌘ mN (YNY †
N )ij/(8⇡)

�mN (T ) ' �m0
N +

⇡ T 2

4m2
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�22

s⇣
1� �11

�22
)2 + 4

|�12|2
�2
22
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where the momentum and statistical factor are l =
p � k � q, B = 1 + fH � fL for RH neutrino decay,
and l = q � k � p, B = fH + fL for H decay (with
fX the corresponding Bose-Einstein or Fermi-Dirac dis-
tribution), and d⇧ denoting the phase-space integration.
Thus, L⇢ for both decays are as given in Appendix D of
[13] except that for H decay we find that the J

0

term in
~L⇢ in [13] must be multiplied by z2. Thus the asymmetry
(6) takes on the form

✏CP (z;x, f) = I
1

x �(z)
�
x+ ⇡

4z2 f
�
2

+ �(z)2
, (10)

where x ⌘ 2 �m0
N

�22
.

The Boltzmann equations for the RH neutrino and the
lepton asymmetry, including the e↵ect of the processes
discussed above, are [5, 6, 9]

n�HN

z

d⌘N
dz

=

✓
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◆h
�D + 2(�Hs + �As)

+ 4(�Ht + �At)
i
, (11)

n�HN

z
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dz
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✓
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⌘eqN
� 1

◆
✏CP (z)�

2

3
⌘L

�

� 4

3
⌘L


2(�Ht + �At) +

⌘N

⌘eqN
(�Hs + �As)

�
, (12)

where ⌘a ⌘ na/n� andHN is the Hubble rate at T = mN .
These equations take into account additional important
washout terms, which are active also when the decay pro-
cesses are kinematically forbidden. For them we adopt
the results and the notations of [9], where they are cal-
culated including the leading thermal e↵ects. The fi-
nal asymmetry produced in this way depends on 5 pa-
rameters: mN , I

1

, x, f and the e↵ective neutrino mass
em ⌘ v2(YNY †

N )
11

/mN .

II. LOWER BOUND ON mN FOR A
THERMALIZED N

At first sight one could believe that the Boltzmann
equations above do not lead to a lower bound on the mass
of the RH neutrino, since the lower is mN , the larger is
the phase space available for theH ! NL decay to occur.
However, there exists one. Here, the out-of-equilibrium
Sakharov condition is not realized as usual from the fact
that the decaying particle is not in thermal equilibrium
(here it is) but from the fact that the RH neutrino in the
decay product is not. Thus, for mN < Tsph, the lower
mN , the more N is in thermal equilibrium at T > Tsph,
the less successful is leptogenesis.

Starting from a RH neutrino initially in equilibrium,
Fig. 3 shows the results we get from solving the Boltz-
mann equations (11)-(12), by taking ✏CP = 100,�1,�2,...

when one of the two decay processes is kinematically
allowed, zero otherwise. Taking the maximal CP-
asymmetry ✏CP = 1/2⇥2, (the factor of 2 is to take into

FIG. 3: Logarithm base 10 of the asymmetry ✏CP needed
to obtain successful leptogenesis, with the RH neutrinos ini-
tially at thermal equilibrium. We also plot the relevant ex-
isting bounds (solid lines) and projected sensitivities of the
SHiP [16] and FCC-ee [17] experiments (dashed lines). The
area below the thick blue line requires values of ✏CP which
are not reachable for such low mN .

account the fact that such a maximal CP asymmetry is
obtained in the quasi-degenerate case together with a sec-
ond RH neutrino), we obtain the bound mN > 0.2GeV.
Of course one could wonder if this bound can be sat-

urated, i.e. if taking ✏CP = 1/2 can be justified. Al-
though ✏CP (z) = 1/2 cannot be satisfied at all tem-
peratures, see (10), since the bound occurs for em much
larger than the usual thermal-equilibrium critical value

em⇤ = 8⇡1.66 g1/2⇤ v2/mPL ' 2.15meV, the asymmetry in
this case depends mostly on ✏CP at temperatures close to
T
sph

. Thus, we find that taking ✏CP = const can be jus-
tified in a large portion of the parameter space in Fig. 3.
However, this is not fully the case for the low-mN region.
The full asymmetry of Eq. (10) (including in particular
the I

1

factor) turns out to be maximized for f ' 1. For
such values of f , since �(z ⌧ 1) ⇡ 50, for mN < 10GeV
the thermal-mass contribution in the denominator of (10)
are important. Thus, for T close to Tsph, the asymmetry
is maximized for x ⇠ ⇡fT 2

sph/(4m
2

N ), which gives

✏CP .

4

⇡

50m2

N

f T 2

sph

. (13)

This excludes the area below the thick blue line in Fig. 3,
yielding to a bound one order of magnitude stronger

mN > 2GeV . (14)

This bound can be compared to the much larger one
that we get by considering only N ! LH decays, which
turns out to be mN > 50GeV (as one could approxi-
mately guess from Fig. 1). Note also that possible flavor
e↵ects, disregarded above, do not sizeably change this

Boltzmann equations:

⌘N ⌘ nN/n�

z ⌘ mN/T
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the thermal-mass contribution in the denominator of (10)
are important. Thus, for T close to Tsph, the asymmetry
is maximized for x ⇠ ⇡fT 2

sph/(4m
2

N ), which gives

✏CP .

4
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f T 2

sph
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This excludes the area below the thick blue line in Fig. 3,
yielding to a bound one order of magnitude stronger

mN > 2GeV . (14)

This bound can be compared to the much larger one
that we get by considering only N ! LH decays, which
turns out to be mN > 50GeV (as one could approxi-
mately guess from Fig. 1). Note also that possible flavor
e↵ects, disregarded above, do not sizeably change this
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          Results for the case where the N have not thermalized
4

bound because in the low-mN region, where the bound
occurs, even if em � em?, it turns out that there is no
large washout e↵ects diminishing the asymmetry pro-
duced, due to the sphaleron cut.

III. THE NON-THERMALIZED CASE: AN
EFFICIENT LOW-SCALE MECHANISM

As explained above, the bound of Eq. (14) holds for
leptogenesis induced by CP-violating H-decays if the RH
neutrinos previously thermalize. The fact that it is in
general di�cult to achieve leptogenesis at such low scale,
at the origin of this bound, is easy to understand: the
lower the masses, the more the RH neutrinos were in
thermal equilibrium at T > Tsph � mN . However, this
is true only if one assumes that the N species has ther-
malized before the lepton asymmetry is produced. If in-
stead the RH neutrinos have not thermalized the situa-
tion drastically changes. This can be easily the case as
long as there were no other interactions below the reheat-
ing temperature (such as involving a WR for instance).
For low mN the production of the asymmetry is cut o↵
at Tsph > mh,W,Z > mN . Therefore the less N ther-
malizes, the smaller is nN , the fewer inverse H decays
occur (unlike H decays which occur anyway), the larger
is neq

N � nN ⇠ neq
N , the larger is the L-asymmetry pro-

duced. Note that this is di↵erent from what happens for
large mN o Tsph, where considering a situation with no
N after reheating renders leptogenesis more di�cult [9].
In this case, in the weak washout regime, as the asym-
metry is produced long before sphaleron decoupling, the
more N there are in the thermal bath, the more N decays
occur to produce the L asymmetry at T ⇠ mN .

Fig. 4 shows the numerical solution of the Boltzmann
equations, by starting from a zero number density of
RH neutrinos at T

in

= 10T
sph

and taking a maximal
CP-asymmetry ✏CP = 1/2 (multiplied by 2 as above).
Clearly this shows that, even for mN ⇠ 0.1 GeV, the
parameter space available is large and successful leptoge-
nesis can be achieved with CP-asymmetry far from max-
imal. Note that here most of the asymmetry is created
shortly before sphaleron decoupling because for T � mN

and small N number density, the source term in (12) is
approximately constant: d⌘/dz ⇡ const, since �D / 1/z4

in this regime. Thus, the final asymmetry produced does
not depend on the reheating temperature as long as this
is larger than Tsph by a factor of about 2.

In Figs. 5a-5c we plot the ⌘L numerical solution of
the Boltzmann equations, with the asymmetry as given
in (10), with zero number density of RH neutrinos at
T
in

= 10T
sph

, and taking �m0

N/mN = 10�11,�8.5,�6 re-
spectively. Fig. 5b and 5c show that successful leptoge-
nesis, which requires ⌘L > 2.47 ⇥ 10�8, can be achieved
with level of N mass quasi-degeneracy about two orders
of magnitude smaller than in ordinary TeV-scale resonant
leptogenesis [5, 6]. For �

11

/�
22

= m
sol

/m
atm

, we find
that the minimum level of mass-degeneracy required is
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FIG. 4: Same as Fig. 3, starting from no N at Tin = 10Tsph.

about �m0

N/mN ⇠ 10�5. In the flavoured (total-lepton-
number conserving) mechanism considered in [18] with
3 RH neutrinos, which does not require N mass degen-
eracy (and occurs at T ⇠ 106 GeV), a comparable level
of fine-tuning is instead present in the Yukawa couplings
to guarantee em ⇠ 103 eV ⇡ 105 m

sol

, as required by the
flavour e↵ects taking place.

We may also compare the mechanism considered here
with the ARS oscillation one [19] (which also relies on
non-thermalized N , but with CP-violation given by N
oscillations) in the ⌫MSM scenario considered in [20, 21].
In this scenario, a mass degeneracy between 2 RH neu-
trinos of about �m0

N/mN ' 10�11 is needed to generate
both the observed asymmetry (e.g. at T � Tsph) via
the ARS mechanism and the dark matter relic density
at T ⇠ 100MeV, via N freezeout or decay. The ap-
proximate form of the asymmetry at Tsph generated by
the ARS mechanism in this regime can be found in [20].
Fig. 5a shows that, assuming maximal CP-phases for
both mechanisms, the asymmetry at Tsph generated for
�m0

N/mN ' 10�11 is about 7 (12) times larger than the
ARS one, for mN = 2 (10)GeV (or larger if the reheating
temperature is larger than Tsph but smaller than the typ-
ical T � Tsph ARS asymmetry production temperature).
Note that such a dominance of the asymmetry produced
by H decays slightly before the sphalerons decouple does
not hold for all the available parameter space [11]. No-
tice also that, although the L-violating e↵ects inducing
the baryon asymmetry here can in principle be captured
by the density-matrix formalism used to study the ARS
mechanism (see e.g. [21] and [11]), these have been so far
thought to be negligible and hence disregarded.

A remarkable feature of the framework considered in
this letter is that, along it, leptogenesis is testable! This
is shown in all figures 3-5, which give the actual excluded
mN -em regions from various experiments, together with
future expected sensitivities for N production at SHiP

    for example for                        and                    one needs mN ⇠ 10GeV m̃ ⇠ 0.1 eV

    leptogenesis for       as low as                  is possible (but BBN concerns)mN ⇠ 20MeV

    in all cases: asymmetry production at     just above                      no dependenceT

on UV physics!
TSphaler.

�m0
N/mN . 10�5
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 should probe
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 probe if constructed
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is larger than Tsph by a factor of about 2.
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number conserving) mechanism considered in [18] with
3 RH neutrinos, which does not require N mass degen-
eracy (and occurs at T ⇠ 106 GeV), a comparable level
of fine-tuning is instead present in the Yukawa couplings
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, as required by the
flavour e↵ects taking place.

We may also compare the mechanism considered here
with the ARS oscillation one [19] (which also relies on
non-thermalized N , but with CP-violation given by N
oscillations) in the ⌫MSM scenario considered in [20, 21].
In this scenario, a mass degeneracy between 2 RH neu-
trinos of about �m0

N/mN ' 10�11 is needed to generate
both the observed asymmetry (e.g. at T � Tsph) via
the ARS mechanism and the dark matter relic density
at T ⇠ 100MeV, via N freezeout or decay. The ap-
proximate form of the asymmetry at Tsph generated by
the ARS mechanism in this regime can be found in [20].
Fig. 5a shows that, assuming maximal CP-phases for
both mechanisms, the asymmetry at Tsph generated for
�m0

N/mN ' 10�11 is about 7 (12) times larger than the
ARS one, for mN = 2 (10)GeV (or larger if the reheating
temperature is larger than Tsph but smaller than the typ-
ical T � Tsph ARS asymmetry production temperature).
Note that such a dominance of the asymmetry produced
by H decays slightly before the sphalerons decouple does
not hold for all the available parameter space [11]. No-
tice also that, although the L-violating e↵ects inducing
the baryon asymmetry here can in principle be captured
by the density-matrix formalism used to study the ARS
mechanism (see e.g. [21] and [11]), these have been so far
thought to be negligible and hence disregarded.

A remarkable feature of the framework considered in
this letter is that, along it, leptogenesis is testable! This
is shown in all figures 3-5, which give the actual excluded
mN -em regions from various experiments, together with
future expected sensitivities for N production at SHiP



          Two important comparisons to do

    for                    : well-known baryogenesis mechanism in seesaw model:mN ⇠ GeV
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          Density matrix formalism
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    evolution of density matrix:
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pare the results obtained in both formalisms in the sin-
gle lepton-flavour case, where the ARS mechanism is not
operative. We will find below a good agreement between
the results of both approaches showing that, also in the
density-matrix formalism, the L-violating contribution is
fully relevant. Moreover, as will be discussed in detail
below, for large Yukawa couplings, the density-matrix
formalism gives even a larger asymmetry, because the ac-
tual washout for the total lepton number is actually much
smaller than the total one, considered in [14]. The second
purpose is to compare, within the same formalism, which
of the L-violating (LV) and L-conserving (LC) contribu-
tions dominates the production of the baryon asymmetry
as a function of the parameters. In fact, evolution equa-
tions including the L-violating contribution have been
derived long ago in the density-matrix formalism [3, 7],
and also very recently [15, 16], but this was considered
as numerically irrelevant for the generation of the baryon
asymmetry. This stems from the fact that L-violating
processes have been thought to lead to a negligible con-
tribution due to the m2

N/T 2 suppression factor discussed
above (and thus approximated as zero in the solution
of the evolution equations for baryogenesis [7]) or, very
recently, because the corresponding obtained rates were
considered as numerically “not significant” [15]. Numeri-
cally we will find below that the L-violating contribution
is clearly significant, as it dominates over the flavour vi-
olating piece in large portions of the parameter space,
which we determine.

We will do all that considering only the contribu-
tion of the Higgs doublet decay/inverse decay process.
Other processes, such as the top-quark and gauge scat-
tering [15, 17, 18] and the infrared-enhanced gauge cor-
rections to Higgs decay [19], are also expected to be fully
relevant. But they are expected to lead to an asymmetry
in a similar way to the Higgs-doublet decay because they
involve as a subprocess the same Higgs-doublet transition
into a RH neutrino and a SM lepton. Thus we anticipate
that the relative importance of the two contributions in
the various regions of parameter space is well captured by
the analysis presented in this paper at the level of this de-
cay basic building block. A fully quantitative calculation
of the asymmetry produced, including these processes,
is left for a further work. All the numerical results be-
low will be obtained considering 2 RH neutrinos, which
simplifies the discussion.

II. DENSITY-MATRIX EQUATIONS
INCLUDING LEPTON-NUMBER VIOLATION

We start by deriving in this Section the density-matrix
equations which allow to determine the evolution of the
number density of the RH neutrinos N↵ (which have +
helicity), of the conjugated states N̄↵ (which have - helic-
ity) and of the lepton asymmetries for the various lepton
flavours. The Lagrangian that we consider is the one of
the usual type-I seesaw neutrino mass model, with noth-

ing else,

Lint 3 �hl↵L̄l
eHPRN↵ � 1

2
mN

↵

N̄↵N
c
↵ + h.c. , (1)

where eH ⌘ i�2H with H = (H+, H0)T and Ll =
(⌫l

L

, l�L )
T . In the same way as in Ref. [14], we will make

the approximation that the 4 scalar states in the doublet
remain on the same footing at all relevant temperatures,
meaning in particular that they have same masses at all
relevant temperatures.
The matrix number densities for the two helicities of

the RH neutrinos are

nN
↵�(k) ⌘

1

V
ha†�,+(k)a↵,+(k)i , (2)

n̄N
↵�(k) ⌘

1

V
ha†�,�(k)a↵,�(k)i , (3)

and analogously for nL
l ⌘ nL

ll , n̄
L
l ⌘ n̄L

ll (having neglected
flavour coherences between the SM leptons) and nH ⇡
n̄H ⇡ nH

eq (having neglected the asymmetry stored in all
the SM species but the lepton doublets).
We start from the Markovian master equation [20]

(see [21] for a detailed derivation):

d

dt
nN
↵�(k, t) = i h[HN

0 , nN
↵�(k, t)]i

� 1

2

Z 1

�1
dt0h

⇥
Hint(t

0), [Hint(t), n
N
↵�(k, t)]

⇤
it , (4)

where HN
0 is the free Hamiltonian for the RH neutrinos

and where the dispersive terms, giving rise to thermal
corrections to the masses, are not written explicitly. Pro-
ceeding by a set of standard manipulations, we obtain

d

dt
nN
↵�(k) = �i

⇥
EN , nN (k)

⇤
↵�

� 1

2EN

✓
1

2

�
�>(k), nN (k)

 
� 1

2

�
�<(k), I�nN (k)
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↵�

,

(5)

where EN ⌘ EN (k). We have left the t-dependence im-
plicit and the production and absorption rates �7 are
given by

�7
↵�(k) = � i tr

�
PRu+(k)ū+(k)PL ⌃

7
↵�(k)

 

+ i tr
�
PRv+(k)v̄+(k)PL ⌃

7
�↵(�k)

 
, (6)

with k ⌘ (EN ,k). The self-energy functions ⌃7
↵�(k) can

be expressed as

�i⌃7
↵�(k) =

Z
d4p

(2⇡)4

Z
d4q

(2⇡)4
(2⇡)4�(4)(q � k � p)

iS7
l (�p) i�?(�q)h⇤

l↵hl� , (7)

where iS7 and i�? denote, respectively, the SM-lepton
and Higgs-doublet absolutely-ordered Wightman propa-
gators, with the Higgs-doublet one approximated to be
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the results of both approaches showing that, also in the
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below, for large Yukawa couplings, the density-matrix
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above (and thus approximated as zero in the solution
of the evolution equations for baryogenesis [7]) or, very
recently, because the corresponding obtained rates were
considered as numerically “not significant” [15]. Numeri-
cally we will find below that the L-violating contribution
is clearly significant, as it dominates over the flavour vi-
olating piece in large portions of the parameter space,
which we determine.

We will do all that considering only the contribu-
tion of the Higgs doublet decay/inverse decay process.
Other processes, such as the top-quark and gauge scat-
tering [15, 17, 18] and the infrared-enhanced gauge cor-
rections to Higgs decay [19], are also expected to be fully
relevant. But they are expected to lead to an asymmetry
in a similar way to the Higgs-doublet decay because they
involve as a subprocess the same Higgs-doublet transition
into a RH neutrino and a SM lepton. Thus we anticipate
that the relative importance of the two contributions in
the various regions of parameter space is well captured by
the analysis presented in this paper at the level of this de-
cay basic building block. A fully quantitative calculation
of the asymmetry produced, including these processes,
is left for a further work. All the numerical results be-
low will be obtained considering 2 RH neutrinos, which
simplifies the discussion.

II. DENSITY-MATRIX EQUATIONS
INCLUDING LEPTON-NUMBER VIOLATION

We start by deriving in this Section the density-matrix
equations which allow to determine the evolution of the
number density of the RH neutrinos N↵ (which have +
helicity), of the conjugated states N̄↵ (which have - helic-
ity) and of the lepton asymmetries for the various lepton
flavours. The Lagrangian that we consider is the one of
the usual type-I seesaw neutrino mass model, with noth-
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gle lepton-flavour case, where the ARS mechanism is not
operative. We will find below a good agreement between
the results of both approaches showing that, also in the
density-matrix formalism, the L-violating contribution is
fully relevant. Moreover, as will be discussed in detail
below, for large Yukawa couplings, the density-matrix
formalism gives even a larger asymmetry, because the ac-
tual washout for the total lepton number is actually much
smaller than the total one, considered in [14]. The second
purpose is to compare, within the same formalism, which
of the L-violating (LV) and L-conserving (LC) contribu-
tions dominates the production of the baryon asymmetry
as a function of the parameters. In fact, evolution equa-
tions including the L-violating contribution have been
derived long ago in the density-matrix formalism [3, 7],
and also very recently [15, 16], but this was considered
as numerically irrelevant for the generation of the baryon
asymmetry. This stems from the fact that L-violating
processes have been thought to lead to a negligible con-
tribution due to the m2

N/T 2 suppression factor discussed
above (and thus approximated as zero in the solution
of the evolution equations for baryogenesis [7]) or, very
recently, because the corresponding obtained rates were
considered as numerically “not significant” [15]. Numeri-
cally we will find below that the L-violating contribution
is clearly significant, as it dominates over the flavour vi-
olating piece in large portions of the parameter space,
which we determine.
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tion of the Higgs doublet decay/inverse decay process.
Other processes, such as the top-quark and gauge scat-
tering [15, 17, 18] and the infrared-enhanced gauge cor-
rections to Higgs decay [19], are also expected to be fully
relevant. But they are expected to lead to an asymmetry
in a similar way to the Higgs-doublet decay because they
involve as a subprocess the same Higgs-doublet transition
into a RH neutrino and a SM lepton. Thus we anticipate
that the relative importance of the two contributions in
the various regions of parameter space is well captured by
the analysis presented in this paper at the level of this de-
cay basic building block. A fully quantitative calculation
of the asymmetry produced, including these processes,
is left for a further work. All the numerical results be-
low will be obtained considering 2 RH neutrinos, which
simplifies the discussion.
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where EN ⌘ EN (k). We have left the t-dependence im-
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given by
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pare the results obtained in both formalisms in the sin-
gle lepton-flavour case, where the ARS mechanism is not
operative. We will find below a good agreement between
the results of both approaches showing that, also in the
density-matrix formalism, the L-violating contribution is
fully relevant. Moreover, as will be discussed in detail
below, for large Yukawa couplings, the density-matrix
formalism gives even a larger asymmetry, because the ac-
tual washout for the total lepton number is actually much
smaller than the total one, considered in [14]. The second
purpose is to compare, within the same formalism, which
of the L-violating (LV) and L-conserving (LC) contribu-
tions dominates the production of the baryon asymmetry
as a function of the parameters. In fact, evolution equa-
tions including the L-violating contribution have been
derived long ago in the density-matrix formalism [3, 7],
and also very recently [15, 16], but this was considered
as numerically irrelevant for the generation of the baryon
asymmetry. This stems from the fact that L-violating
processes have been thought to lead to a negligible con-
tribution due to the m2

N/T 2 suppression factor discussed
above (and thus approximated as zero in the solution
of the evolution equations for baryogenesis [7]) or, very
recently, because the corresponding obtained rates were
considered as numerically “not significant” [15]. Numeri-
cally we will find below that the L-violating contribution
is clearly significant, as it dominates over the flavour vi-
olating piece in large portions of the parameter space,
which we determine.
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tion of the Higgs doublet decay/inverse decay process.
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tering [15, 17, 18] and the infrared-enhanced gauge cor-
rections to Higgs decay [19], are also expected to be fully
relevant. But they are expected to lead to an asymmetry
in a similar way to the Higgs-doublet decay because they
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into a RH neutrino and a SM lepton. Thus we anticipate
that the relative importance of the two contributions in
the various regions of parameter space is well captured by
the analysis presented in this paper at the level of this de-
cay basic building block. A fully quantitative calculation
of the asymmetry produced, including these processes,
is left for a further work. All the numerical results be-
low will be obtained considering 2 RH neutrinos, which
simplifies the discussion.

II. DENSITY-MATRIX EQUATIONS
INCLUDING LEPTON-NUMBER VIOLATION

We start by deriving in this Section the density-matrix
equations which allow to determine the evolution of the
number density of the RH neutrinos N↵ (which have +
helicity), of the conjugated states N̄↵ (which have - helic-
ity) and of the lepton asymmetries for the various lepton
flavours. The Lagrangian that we consider is the one of
the usual type-I seesaw neutrino mass model, with noth-

ing else,

Lint 3 �hl↵L̄l
eHPRN↵ � 1

2
mN

↵

N̄↵N
c
↵ + h.c. , (1)

where eH ⌘ i�2H with H = (H+, H0)T and Ll =
(⌫l

L

, l�L )
T . In the same way as in Ref. [14], we will make

the approximation that the 4 scalar states in the doublet
remain on the same footing at all relevant temperatures,
meaning in particular that they have same masses at all
relevant temperatures.
The matrix number densities for the two helicities of

the RH neutrinos are

nN
↵�(k) ⌘

1

V
ha†�,+(k)a↵,+(k)i , (2)

n̄N
↵�(k) ⌘

1

V
ha†�,�(k)a↵,�(k)i , (3)

and analogously for nL
l ⌘ nL

ll , n̄
L
l ⌘ n̄L

ll (having neglected
flavour coherences between the SM leptons) and nH ⇡
n̄H ⇡ nH

eq (having neglected the asymmetry stored in all
the SM species but the lepton doublets).
We start from the Markovian master equation [20]

(see [21] for a detailed derivation):

d

dt
nN
↵�(k, t) = i h[HN

0 , nN
↵�(k, t)]i

� 1

2

Z 1

�1
dt0h

⇥
Hint(t

0), [Hint(t), n
N
↵�(k, t)]

⇤
it , (4)

where HN
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where EN ⌘ EN (k). We have left the t-dependence im-
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and Higgs-doublet absolutely-ordered Wightman propa-
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pare the results obtained in both formalisms in the sin-
gle lepton-flavour case, where the ARS mechanism is not
operative. We will find below a good agreement between
the results of both approaches showing that, also in the
density-matrix formalism, the L-violating contribution is
fully relevant. Moreover, as will be discussed in detail
below, for large Yukawa couplings, the density-matrix
formalism gives even a larger asymmetry, because the ac-
tual washout for the total lepton number is actually much
smaller than the total one, considered in [14]. The second
purpose is to compare, within the same formalism, which
of the L-violating (LV) and L-conserving (LC) contribu-
tions dominates the production of the baryon asymmetry
as a function of the parameters. In fact, evolution equa-
tions including the L-violating contribution have been
derived long ago in the density-matrix formalism [3, 7],
and also very recently [15, 16], but this was considered
as numerically irrelevant for the generation of the baryon
asymmetry. This stems from the fact that L-violating
processes have been thought to lead to a negligible con-
tribution due to the m2

N/T 2 suppression factor discussed
above (and thus approximated as zero in the solution
of the evolution equations for baryogenesis [7]) or, very
recently, because the corresponding obtained rates were
considered as numerically “not significant” [15]. Numeri-
cally we will find below that the L-violating contribution
is clearly significant, as it dominates over the flavour vi-
olating piece in large portions of the parameter space,
which we determine.

We will do all that considering only the contribu-
tion of the Higgs doublet decay/inverse decay process.
Other processes, such as the top-quark and gauge scat-
tering [15, 17, 18] and the infrared-enhanced gauge cor-
rections to Higgs decay [19], are also expected to be fully
relevant. But they are expected to lead to an asymmetry
in a similar way to the Higgs-doublet decay because they
involve as a subprocess the same Higgs-doublet transition
into a RH neutrino and a SM lepton. Thus we anticipate
that the relative importance of the two contributions in
the various regions of parameter space is well captured by
the analysis presented in this paper at the level of this de-
cay basic building block. A fully quantitative calculation
of the asymmetry produced, including these processes,
is left for a further work. All the numerical results be-
low will be obtained considering 2 RH neutrinos, which
simplifies the discussion.
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where EN ⌘ EN (k). We have left the t-dependence im-
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where iS7 and i�? denote, respectively, the SM-lepton
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gators, with the Higgs-doublet one approximated to be
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pare the results obtained in both formalisms in the sin-
gle lepton-flavour case, where the ARS mechanism is not
operative. We will find below a good agreement between
the results of both approaches showing that, also in the
density-matrix formalism, the L-violating contribution is
fully relevant. Moreover, as will be discussed in detail
below, for large Yukawa couplings, the density-matrix
formalism gives even a larger asymmetry, because the ac-
tual washout for the total lepton number is actually much
smaller than the total one, considered in [14]. The second
purpose is to compare, within the same formalism, which
of the L-violating (LV) and L-conserving (LC) contribu-
tions dominates the production of the baryon asymmetry
as a function of the parameters. In fact, evolution equa-
tions including the L-violating contribution have been
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processes have been thought to lead to a negligible con-
tribution due to the m2

N/T 2 suppression factor discussed
above (and thus approximated as zero in the solution
of the evolution equations for baryogenesis [7]) or, very
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is left for a further work. All the numerical results be-
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simplifies the discussion.
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in thermal equilibrium. Their explicit form is well-known
and can be found, for instance, in [22]. Alternatively,
the transport equation (5) can be obtained directly from
the field-theoretic Kadano↵-Baym formalism [12, 23, 24],
once the so-called quasi-particle approximation is per-
formed, and generalized to other processes by taking into
account the appropriate self-energies.

By assuming kinetic equilibrium for all relevant
species, we find the rate equation for the (momentum-
integrated) number-density matrix nN

↵� :
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where the thermally-averaged energy matrix is given by
EN = diag{EN,↵}, with

EN,↵ ⌘ 1
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nN
eq(k)EN,↵(k) . (9)

The equilibration reaction densities are
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As for the washout reaction densities, they are
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The “Q” label refers to terms which are present only
due to the quantum character of the particle statistics,

unlike the “C” labelled terms which are also present for
“classical” Maxwell-Boltzmann statistics.

The equation for n̄N can be obtained easily from (5)
and (6) by replacing the helicity-plus spinors with the
minus ones in the traces, and by making use of the iden-
tities
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The equation for the asymmetry �nL
l can be obtained

by noticing that the combinations
P
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respectively, by LC and LV processes. Therefore
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where the l index is not summed. The reaction densities
�LC
l and �LV

l are defined as in (10) and (11), taking in
them only the term with l indexed Yukawa couplings.
The general structure of the evolution equations (8),

(19) and (20) agrees with the ones presented for the LC
part in [7, 12, 13, 15] and for the LV part in [7, 15], within
the various approximations performed. More precisely,
for the LC part these equations agree with [13], and also
with [7, 12], up to the fact that we do not make the extra
approximation to take all washout terms as given by a
same term whose form is similar to the source term, and
up to the fact that [7] involves an extra 1�2nN

eq(k) factor
in the equilibration rates of Eqs. (10) and (11) above.
For the LV part we also agree with [7] up to the same
1� 2nN

eq(k) factor di↵erence. Finally with respect to the
very recent Ref. [15], the approximations made for both
the LC and LV parts are not exactly the same, resulting
in di↵erent equations, but the e↵ect of these di↵erent
approximations is expected to be small.
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III. REACTION DENSITIES

Next in this Section we compute the “�” reaction den-
sities entering in the density-matrix evolution equations
above. In the ultra-relativistic regime, i.e. for mN ⌧ |k|,
EN (k) ' |k|+m2

N/(2|k|) and from (9) we have

EN,↵ ' h|k|i +
m2

N,a

2T

⌧
T

|k|

�
⇠

m2
N,a

2T

⌧
T

|k|

�
, (21)

where in the last equality we have dropped the flavour
independent first term because it drops in the commu-
tators in the evolution equations. The thermal averaged
hT/|k|i is equal to ' 0.46 for the Fermi-Dirac statistics.
The spinor traces appearing in the lepton-number con-
serving and violating reaction densities are found to be
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�
PRu+(k)ū+(k)PL /p

 
= (EN + |k|)(p0 � |p| cos ✓)
' 2|k|(p0 � |p| cos ✓) , (22)
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' m2
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2|k| (p
0 + |p| cos ✓) , (23)

where ✓ is the angle between k and p. One recognizes
that for negative helicity, i.e. for LV transitions, a m2

N
factor appears, as it should be, since LV requires a Majo-
rana mass insertion. For the washout reaction densities,
denoting by a tilde their value once the Yukawa couplings
have been factorized out, e.g. �LC

l,↵� ⌘ e�LCh⇤
l↵hl� , we find
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where (neglecting mN compared to the other masses)

E⇤ ⌘ kM2
L

M2
H �M2

H

+
M2

H �M2
L

4 k
, (30)

and we have included giso = 2 to account for the two
isospins of the processes (e.g. H0 ! N ⌫̄ and H+ !
Ne+). For the thermal masses of H and L we have used
the high-temperature asymptotic masses (i.e. the ones in
the large 3-momentum limit)

M2
H =

T 2

16
(3g2 + g02 + 4h2

t + 8�) , (31)

M2
L =

T 2

16
(3g2 + g02) . (32)

IV. ANALYTIC SOLUTIONS IN THE
WEAK-WASHOUT AND MANY-OSCILLATIONS

REGIME

Before presenting the numerical results obtained by in-
tegrating the density-matrix evolution equations, it is in-
structive to compare the LC and LV analytic solutions
which can be obtained in the weak-washout regime for
the case of many oscillations taking place, i.e. when os-
cillations start long before sphaleron decoupling. The
derivation of these analytic solutions is given in Ap-
pendix A. They are determined at first non-vanishing
order in powers of the Yukawa couplings. We give them
for the lepton asymmetry yield for each flavour l, defined
as the lepton asymmetry obtained for this flavour over
the entropy density, i.e. Yl ⌘ nL

l /s. Notice that in the
weak-washout regime considered in this section the to-
tal asymmetry is simply given by the sum of the ARS
and the LV H-decay one. For the LC contribution, sum-
ming over the lepton flavour, Y ⌘

P
l Yl, at the sphaleron

decoupling temperature, T = Ts ' 131.7 GeV where the
baryon asymmetry freezes, we get the following total lep-
ton asymmetry, which involves 6 powers of the Yukawa
couplings,

YLC ' � 18.5⇥ (↵LC)2 ↵LC
W

M7/3
0

Tc(�m2
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X

l
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Before presenting the numerical results obtained by in-
tegrating the density-matrix evolution equations, it is in-
structive to compare the LC and LV analytic solutions
which can be obtained in the weak-washout regime for
the case of many oscillations taking place, i.e. when os-
cillations start long before sphaleron decoupling. The
derivation of these analytic solutions is given in Ap-
pendix A. They are determined at first non-vanishing
order in powers of the Yukawa couplings. We give them
for the lepton asymmetry yield for each flavour l, defined
as the lepton asymmetry obtained for this flavour over
the entropy density, i.e. Yl ⌘ nL

l /s. Notice that in the
weak-washout regime considered in this section the to-
tal asymmetry is simply given by the sum of the ARS
and the LV H-decay one. For the LC contribution, sum-
ming over the lepton flavour, Y ⌘

P
l Yl, at the sphaleron

decoupling temperature, T = Ts ' 131.7 GeV where the
baryon asymmetry freezes, we get the following total lep-
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where in the last equality we have dropped the flavour
independent first term because it drops in the commu-
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independent first term because it drops in the commu-
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structive to compare the LC and LV analytic solutions
which can be obtained in the weak-washout regime for
the case of many oscillations taking place, i.e. when os-
cillations start long before sphaleron decoupling. The
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where in the last equality we have dropped the flavour
independent first term because it drops in the commu-
tators in the evolution equations. The thermal averaged
hT/|k|i is equal to ' 0.46 for the Fermi-Dirac statistics.
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the high-temperature asymptotic masses (i.e. the ones in
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where in the last equality we have dropped the flavour
independent first term because it drops in the commu-
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Next in this Section we compute the “�” reaction den-
sities entering in the density-matrix evolution equations
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where in the last equality we have dropped the flavour
independent first term because it drops in the commu-
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The spinor traces appearing in the lepton-number con-
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the large 3-momentum limit)

M2
H =

T 2

16
(3g2 + g02 + 4h2

t + 8�) , (31)

M2
L =

T 2

16
(3g2 + g02) . (32)

IV. ANALYTIC SOLUTIONS IN THE
WEAK-WASHOUT AND MANY-OSCILLATIONS

REGIME
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cillations start long before sphaleron decoupling. The
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which can be obtained in the weak-washout regime for
the case of many oscillations taking place, i.e. when os-
cillations start long before sphaleron decoupling. The
derivation of these analytic solutions is given in Ap-
pendix A. They are determined at first non-vanishing
order in powers of the Yukawa couplings. We give them
for the lepton asymmetry yield for each flavour l, defined
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l /s. Notice that in the
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and the LV H-decay one. For the LC contribution, sum-
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Next in this Section we compute the “�” reaction den-
sities entering in the density-matrix evolution equations
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where in the last equality we have dropped the flavour
independent first term because it drops in the commu-
tators in the evolution equations. The thermal averaged
hT/|k|i is equal to ' 0.46 for the Fermi-Dirac statistics.
The spinor traces appearing in the lepton-number con-
serving and violating reaction densities are found to be
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where ✓ is the angle between k and p. One recognizes
that for negative helicity, i.e. for LV transitions, a m2
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factor appears, as it should be, since LV requires a Majo-
rana mass insertion. For the washout reaction densities,
denoting by a tilde their value once the Yukawa couplings
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and we have included giso = 2 to account for the two
isospins of the processes (e.g. H0 ! N ⌫̄ and H+ !
Ne+). For the thermal masses of H and L we have used
the high-temperature asymptotic masses (i.e. the ones in
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Before presenting the numerical results obtained by in-
tegrating the density-matrix evolution equations, it is in-
structive to compare the LC and LV analytic solutions
which can be obtained in the weak-washout regime for
the case of many oscillations taking place, i.e. when os-
cillations start long before sphaleron decoupling. The
derivation of these analytic solutions is given in Ap-
pendix A. They are determined at first non-vanishing
order in powers of the Yukawa couplings. We give them
for the lepton asymmetry yield for each flavour l, defined
as the lepton asymmetry obtained for this flavour over
the entropy density, i.e. Yl ⌘ nL

l /s. Notice that in the
weak-washout regime considered in this section the to-
tal asymmetry is simply given by the sum of the ARS
and the LV H-decay one. For the LC contribution, sum-
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where in the last equality we have dropped the flavour
independent first term because it drops in the commu-
tators in the evolution equations. The thermal averaged
hT/|k|i is equal to ' 0.46 for the Fermi-Dirac statistics.
The spinor traces appearing in the lepton-number con-
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isospins of the processes (e.g. H0 ! N ⌫̄ and H+ !
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Before presenting the numerical results obtained by in-
tegrating the density-matrix evolution equations, it is in-
structive to compare the LC and LV analytic solutions
which can be obtained in the weak-washout regime for
the case of many oscillations taking place, i.e. when os-
cillations start long before sphaleron decoupling. The
derivation of these analytic solutions is given in Ap-
pendix A. They are determined at first non-vanishing
order in powers of the Yukawa couplings. We give them
for the lepton asymmetry yield for each flavour l, defined
as the lepton asymmetry obtained for this flavour over
the entropy density, i.e. Yl ⌘ nL

l /s. Notice that in the
weak-washout regime considered in this section the to-
tal asymmetry is simply given by the sum of the ARS
and the LV H-decay one. For the LC contribution, sum-
ming over the lepton flavour, Y ⌘

P
l Yl, at the sphaleron

decoupling temperature, T = Ts ' 131.7 GeV where the
baryon asymmetry freezes, we get the following total lep-
ton asymmetry, which involves 6 powers of the Yukawa
couplings,

YLC ' � 18.5⇥ (↵LC)2 ↵LC
W

M7/3
0

Tc(�m2
N )2/3

⇥ (h†h)11(h
†h)22

X

l

�LC
l (hh†)ll , (33)

          first non-vanishing term in 
            Yukawa coupling expansion 11

number conserving CP violating Yukawa coupling com-
bination

�LC
l =

Im
⇥
h⇤
l1hl2(h†h)21

⇤

(h†h)11(h†h)22
(A4)

In the regime �m2
N � µ2

osc, Imf(z) performs many os-
cillations (of increasing frequency) before the sphalerons
decouple, and its integral in (A2) saturates at early times
to the value

Im

Z z

0
f(z0)dz0 ⇡ 1.4⇥

✓
µ2
osc

�m2
N

◆ 2
3

. (A5)

Therefore, at O(h4), after the first few oscillations (at
z ⇡ zosc ⌘ Tc/(M0�m2

N )1/3) one obtains

Yl(z) ' 4⇥1.4 (LC)2⇢eq (h
†h)11(h

†h)22 �
LC
l

✓
µ2
osc

�m2
N

◆ 2
3

.

(A6)
Notice that, since

P
l �

LC
l = 0, the total SM-lepton asym-

metry vanishes at O(h4),

X

l

Yl = 0 at O(h4) . (A7)

In order to obtain a non-vanishing total asymmetry one
has to perform one iteration more in the solution of the
Boltzmann equations, in particular taking into account at
leading order the e↵ect of a flavour-asymmetric washout.
By exploiting the fact that, neglecting lepton-number vi-
olating processes, YLC ⌘

P
l Yl = tr(⇢ � ⇢̄), one finds at

O(h6):

YLC(z = 1) '

� 2⇥ 1.4 (LC)2 LC
W ⇢eq

✓
µ2
osc

�m2
N

◆ 2
3

(h†h)11(h
†h)22

⇥
X

l

�LC
l (hh†)ll (A8)

which gives approximately Eq. (33).

2. L-violating Higgs-decay contribution

In the same regime as before we can now calculate ana-
lytically the contribution of the lepton-number violating
processes. Proceeding iteratively, there are two contri-
butions: the first one comes from �LV in the equations
for ⇢ and ⇢̄ and �LC in the equation for Yl. We find this
contribution to be

YLV (z) � 4LCLV m2
N

T 2
c

⇢eq (h
†h)11(h

†h)22 �
LV

⇥
Z z

0
Im g(z0) dz0 , (A9)

with

g(z) ⌘
Z z

0
dz0 z02 e

i
�m

2
N

3µ2
osc

(z3�z03)
, (A10)

and where �LV
l is the total lepton-number violating and

CP-violating combination of the Yukawa couplings

�LV
l =

Im
⇥
h⇤
l1hl2(h†h)12

⇤

(h†h)11(h†h)22
. (A11)

Notice that we have already summed over SM-lepton
flavours, since �LV ⌘

P
l �

LV
l 6= 0, i.e. the LV Higgs-

decay mechanism gives rise to an unflavoured asymmetry
already at O(h4), di↵erently from the ARS one. In the
regime �m2

N � µ2
osc the integral of Im g(z0) approaches

the behaviour

Im

Z z

0
g(z0) dz0 ⇡ z

µ2
osc

�m2
N

. (A12)

up to a residual oscillating term (which we neglect) whose
frequency increases and amplitude decreases with time.
Thus,

YLV (z = 1) � 4LCLV m2
N

T 2
c

⇢eq (h
†h)11(h

†h)22 �
LV

⇥ µ2
osc

�m2
N

, (A13)

The second contribution comes from the iteration with
�LC in the equations for ⇢ and ⇢̄ and �LV in the equation
for µ. This is given by

YLV (z) � 4LCLV m2
N

T 2
c

⇢eq (h
†h)11(h

†h)22 �
LV

⇥
Z z

0
z02 Im f(z0) dz0 , (A14)

The integral is again found to approach the behaviour

Im

Z z

0
z02 f(z0)dz0 ⇡ z

µ2
osc

�m2
N

, (A15)

up to an oscillating term which with time increases its
frequency but does not change its amplitude (equal to
(µ2

osc/�m2
N )4/3). Neglecting this term we find that this

second contribution is the same as the first one (A13).
The sum of both terms leads to Eq. (35).
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pare the results obtained in both formalisms in the sin-
gle lepton-flavour case, where the ARS mechanism is not
operative. We will find below a good agreement between
the results of both approaches showing that, also in the
density-matrix formalism, the L-violating contribution is
fully relevant. Moreover, as will be discussed in detail
below, for large Yukawa couplings, the density-matrix
formalism gives even a larger asymmetry, because the ac-
tual washout for the total lepton number is actually much
smaller than the total one, considered in [14]. The second
purpose is to compare, within the same formalism, which
of the L-violating (LV) and L-conserving (LC) contribu-
tions dominates the production of the baryon asymmetry
as a function of the parameters. In fact, evolution equa-
tions including the L-violating contribution have been
derived long ago in the density-matrix formalism [3, 7],
and also very recently [15, 16], but this was considered
as numerically irrelevant for the generation of the baryon
asymmetry. This stems from the fact that L-violating
processes have been thought to lead to a negligible con-
tribution due to the m2

N/T 2 suppression factor discussed
above (and thus approximated as zero in the solution
of the evolution equations for baryogenesis [7]) or, very
recently, because the corresponding obtained rates were
considered as numerically “not significant” [15]. Numeri-
cally we will find below that the L-violating contribution
is clearly significant, as it dominates over the flavour vi-
olating piece in large portions of the parameter space,
which we determine.

We will do all that considering only the contribu-
tion of the Higgs doublet decay/inverse decay process.
Other processes, such as the top-quark and gauge scat-
tering [15, 17, 18] and the infrared-enhanced gauge cor-
rections to Higgs decay [19], are also expected to be fully
relevant. But they are expected to lead to an asymmetry
in a similar way to the Higgs-doublet decay because they
involve as a subprocess the same Higgs-doublet transition
into a RH neutrino and a SM lepton. Thus we anticipate
that the relative importance of the two contributions in
the various regions of parameter space is well captured by
the analysis presented in this paper at the level of this de-
cay basic building block. A fully quantitative calculation
of the asymmetry produced, including these processes,
is left for a further work. All the numerical results be-
low will be obtained considering 2 RH neutrinos, which
simplifies the discussion.

II. DENSITY-MATRIX EQUATIONS
INCLUDING LEPTON-NUMBER VIOLATION

We start by deriving in this Section the density-matrix
equations which allow to determine the evolution of the
number density of the RH neutrinos N↵ (which have +
helicity), of the conjugated states N̄↵ (which have - helic-
ity) and of the lepton asymmetries for the various lepton
flavours. The Lagrangian that we consider is the one of
the usual type-I seesaw neutrino mass model, with noth-

ing else,

Lint 3 �hl↵L̄l
eHPRN↵ � 1

2
mN

↵

N̄↵N
c
↵ + h.c. , (1)

where eH ⌘ i�2H with H = (H+, H0)T and Ll =
(⌫l

L

, l�L )
T . In the same way as in Ref. [14], we will make

the approximation that the 4 scalar states in the doublet
remain on the same footing at all relevant temperatures,
meaning in particular that they have same masses at all
relevant temperatures.
The matrix number densities for the two helicities of

the RH neutrinos are

nN
↵�(k) ⌘

1

V
ha†�,+(k)a↵,+(k)i , (2)

n̄N
↵�(k) ⌘

1

V
ha†�,�(k)a↵,�(k)i , (3)

and analogously for nL
l ⌘ nL

ll , n̄
L
l ⌘ n̄L

ll (having neglected
flavour coherences between the SM leptons) and nH ⇡
n̄H ⇡ nH

eq (having neglected the asymmetry stored in all
the SM species but the lepton doublets).
We start from the Markovian master equation [20]

(see [21] for a detailed derivation):

d

dt
nN
↵�(k, t) = i h[HN

0 , nN
↵�(k, t)]i

� 1

2

Z 1

�1
dt0h

⇥
Hint(t

0), [Hint(t), n
N
↵�(k, t)]

⇤
it , (4)

where HN
0 is the free Hamiltonian for the RH neutrinos

and where the dispersive terms, giving rise to thermal
corrections to the masses, are not written explicitly. Pro-
ceeding by a set of standard manipulations, we obtain

d

dt
nN
↵�(k) = �i

⇥
EN , nN (k)

⇤
↵�

� 1

2EN

✓
1

2

�
�>(k), nN (k)

 
� 1

2

�
�<(k), I�nN (k)

 ◆

↵�

,

(5)

where EN ⌘ EN (k). We have left the t-dependence im-
plicit and the production and absorption rates �7 are
given by

�7
↵�(k) = � i tr

�
PRu+(k)ū+(k)PL ⌃

7
↵�(k)

 

+ i tr
�
PRv+(k)v̄+(k)PL ⌃

7
�↵(�k)

 
, (6)

with k ⌘ (EN ,k). The self-energy functions ⌃7
↵�(k) can

be expressed as

�i⌃7
↵�(k) =

Z
d4p

(2⇡)4

Z
d4q

(2⇡)4
(2⇡)4�(4)(q � k � p)

iS7
l (�p) i�?(�q)h⇤

l↵hl� , (7)

where iS7 and i�? denote, respectively, the SM-lepton
and Higgs-doublet absolutely-ordered Wightman propa-
gators, with the Higgs-doublet one approximated to be
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3

in thermal equilibrium. Their explicit form is well-known
and can be found, for instance, in [22]. Alternatively,
the transport equation (5) can be obtained directly from
the field-theoretic Kadano↵-Baym formalism [12, 23, 24],
once the so-called quasi-particle approximation is per-
formed, and generalized to other processes by taking into
account the appropriate self-energies.

By assuming kinetic equilibrium for all relevant
species, we find the rate equation for the (momentum-
integrated) number-density matrix nN

↵� :

dnN
↵�

dt
= �i

⇥
EN , nN (k)

⇤
↵�

� 1

2

⇢
�LC+�LV ,

nN

nN
eq

�I

�

↵�

+
�nL

l

2nL
eq

✓�
�LC
WQ,l��LV

WQ,l

�
+

1

2

⇢
�LC
WC,l��LV

WC,l,
nN

nN
eq

�◆

↵�

,

(8)

where the thermally-averaged energy matrix is given by
EN = diag{EN,↵}, with

EN,↵ ⌘ 1

nN
eq

Z
d3k

(2⇡)3
nN
eq(k)EN,↵(k) . (9)

The equilibration reaction densities are

�LC
↵� ⌘

Z
d⇧PS n

N
eq(k)

�
nL
eq(p) + nH

eq(q)
�

⇥ tr
�
PRu+(k)ū+(k)PL /p

 
h⇤
l↵hl� , (10)

�LV
↵� ⌘

Z
d⇧PS n

N
eq(k)

�
nL
eq(p) + nH

eq(q)
�

⇥ tr
�
PRv+(k)v̄+(k)PL /p

 
hl↵h

⇤
l� , (11)

where the phase-space integral is
Z
d⇧PS ⌘

Z
d3k

(2⇡)3
1

2EN (k)

Z
d3p

(2⇡)3
1

2EL(p)

⇥
Z

d3q

(2⇡)3
1

2EH(q)
(2⇡)4�(4)(q � p� k) . (12)

As for the washout reaction densities, they are

�LC
WQ,l,↵� ⌘

Z
d⇧PS n

H
eq(q)n

L
eq(p)

⇥ tr
�
PRu+(k)ū+(k)PL /p

 
h⇤
l↵hl� , (13)

�LV
WQ,l,↵� ⌘

Z
d⇧PS n

H
eq(q)n

L
eq(p)

⇥ tr
�
PRv+(k)v̄+(k)PL /p

 
hl↵h

⇤
l� , (14)

�LC
WC,l,↵� ⌘

Z
d⇧PS n

N
eq(k)n

L
eq(p)

⇥ tr
�
PRu+(k)ū+(k)PL /p

 
h⇤
l↵hl� , (15)

�LV
WC,l,↵� ⌘

Z
d⇧PS n

N
eq(k)n

L
eq(p)

⇥ tr
�
PRv+(k)v̄+(k)PL /p

 
hl↵h

⇤
l� . (16)

The “Q” label refers to terms which are present only
due to the quantum character of the particle statistics,

unlike the “C” labelled terms which are also present for
“classical” Maxwell-Boltzmann statistics.

The equation for n̄N can be obtained easily from (5)
and (6) by replacing the helicity-plus spinors with the
minus ones in the traces, and by making use of the iden-
tities

tr
�
PRu+(k)ū+(k)PL /p

 
= tr

�
PRv�(k)v̄�(k)PL /p

 
,

(17)

tr
�
PRv+(k)v̄+(k)PL /p

 
= tr

�
PRu�(k)ū�(k)PL /p

 
,

(18)

leading to

d n̄N
↵�

dt
= �i

⇥
EN , n̄N (k)

⇤
↵�

� 1

2

⇢
�LC ⇤ + �LV ⇤,

n̄N

nN
eq

� I

�

↵�

� �nL
l

2nL
eq

✓�
�LC ⇤
WQ,l��LV ⇤

WQ,l

�
+

1

2

⇢
�LC ⇤
WC,l � �LV ⇤

WC,l,
n̄N

nN
eq

�◆

↵�

,

(19)

The equation for the asymmetry �nL
l can be obtained

by noticing that the combinations
P

l �n
L
l +

P
↵(n

N
↵↵ �

n̄N
↵↵) and

P
l �n

L
l �

P
↵(n

N
↵↵ � n̄N

↵↵) are not changed,
respectively, by LC and LV processes. Therefore

d �nL
l

dt
=

1

nN
eq

tr
��

�LC
l � �LV

l

�
nN

 

� 1

nN
eq

tr
��

�LC ⇤
l � �LV ⇤

l

�
n̄N

 

� �nL
l

nL
eq

tr
�
�LC
WQ,l + �LV

WQ,l

 

� �nL
l

2nL
eq

1

nN
eq

tr
�
nN (�LC

WC,l + �LV
WC,l)

 

� �nL
l

2nL
eq

1

nN
eq

tr
�
n̄N (�LC ⇤

WC,l + �LV ⇤
WC,l)

 
, (20)

where the l index is not summed. The reaction densities
�LC
l and �LV

l are defined as in (10) and (11), taking in
them only the term with l indexed Yukawa couplings.
The general structure of the evolution equations (8),

(19) and (20) agrees with the ones presented for the LC
part in [7, 12, 13, 15] and for the LV part in [7, 15], within
the various approximations performed. More precisely,
for the LC part these equations agree with [13], and also
with [7, 12], up to the fact that we do not make the extra
approximation to take all washout terms as given by a
same term whose form is similar to the source term, and
up to the fact that [7] involves an extra 1�2nN

eq(k) factor
in the equilibration rates of Eqs. (10) and (11) above.
For the LV part we also agree with [7] up to the same
1� 2nN

eq(k) factor di↵erence. Finally with respect to the
very recent Ref. [15], the approximations made for both
the LC and LV parts are not exactly the same, resulting
in di↵erent equations, but the e↵ect of these di↵erent
approximations is expected to be small.

3

in thermal equilibrium. Their explicit form is well-known
and can be found, for instance, in [22]. Alternatively,
the transport equation (5) can be obtained directly from
the field-theoretic Kadano↵-Baym formalism [12, 23, 24],
once the so-called quasi-particle approximation is per-
formed, and generalized to other processes by taking into
account the appropriate self-energies.

By assuming kinetic equilibrium for all relevant
species, we find the rate equation for the (momentum-
integrated) number-density matrix nN

↵� :

dnN
↵�

dt
= �i

⇥
EN , nN (k)

⇤
↵�

� 1

2

⇢
�LC+�LV ,

nN

nN
eq

�I

�

↵�

+
�nL

l

2nL
eq

✓�
�LC
WQ,l��LV

WQ,l

�
+

1

2

⇢
�LC
WC,l��LV

WC,l,
nN

nN
eq

�◆

↵�

,

(8)

where the thermally-averaged energy matrix is given by
EN = diag{EN,↵}, with

EN,↵ ⌘ 1

nN
eq

Z
d3k

(2⇡)3
nN
eq(k)EN,↵(k) . (9)

The equilibration reaction densities are

�LC
↵� ⌘

Z
d⇧PS n

N
eq(k)

�
nL
eq(p) + nH

eq(q)
�

⇥ tr
�
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As for the washout reaction densities, they are
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The “Q” label refers to terms which are present only
due to the quantum character of the particle statistics,

unlike the “C” labelled terms which are also present for
“classical” Maxwell-Boltzmann statistics.

The equation for n̄N can be obtained easily from (5)
and (6) by replacing the helicity-plus spinors with the
minus ones in the traces, and by making use of the iden-
tities
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The equation for the asymmetry �nL
l can be obtained

by noticing that the combinations
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respectively, by LC and LV processes. Therefore
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where the l index is not summed. The reaction densities
�LC
l and �LV

l are defined as in (10) and (11), taking in
them only the term with l indexed Yukawa couplings.
The general structure of the evolution equations (8),

(19) and (20) agrees with the ones presented for the LC
part in [7, 12, 13, 15] and for the LV part in [7, 15], within
the various approximations performed. More precisely,
for the LC part these equations agree with [13], and also
with [7, 12], up to the fact that we do not make the extra
approximation to take all washout terms as given by a
same term whose form is similar to the source term, and
up to the fact that [7] involves an extra 1�2nN

eq(k) factor
in the equilibration rates of Eqs. (10) and (11) above.
For the LV part we also agree with [7] up to the same
1� 2nN

eq(k) factor di↵erence. Finally with respect to the
very recent Ref. [15], the approximations made for both
the LC and LV parts are not exactly the same, resulting
in di↵erent equations, but the e↵ect of these di↵erent
approximations is expected to be small.
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The “Q” label refers to terms which are present only
due to the quantum character of the particle statistics,

unlike the “C” labelled terms which are also present for
“classical” Maxwell-Boltzmann statistics.

The equation for n̄N can be obtained easily from (5)
and (6) by replacing the helicity-plus spinors with the
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where the l index is not summed. The reaction densities
�LC
l and �LV

l are defined as in (10) and (11), taking in
them only the term with l indexed Yukawa couplings.
The general structure of the evolution equations (8),

(19) and (20) agrees with the ones presented for the LC
part in [7, 12, 13, 15] and for the LV part in [7, 15], within
the various approximations performed. More precisely,
for the LC part these equations agree with [13], and also
with [7, 12], up to the fact that we do not make the extra
approximation to take all washout terms as given by a
same term whose form is similar to the source term, and
up to the fact that [7] involves an extra 1�2nN

eq(k) factor
in the equilibration rates of Eqs. (10) and (11) above.
For the LV part we also agree with [7] up to the same
1� 2nN

eq(k) factor di↵erence. Finally with respect to the
very recent Ref. [15], the approximations made for both
the LC and LV parts are not exactly the same, resulting
in di↵erent equations, but the e↵ect of these di↵erent
approximations is expected to be small.

4

III. REACTION DENSITIES

Next in this Section we compute the “�” reaction den-
sities entering in the density-matrix evolution equations
above. In the ultra-relativistic regime, i.e. for mN ⌧ |k|,
EN (k) ' |k|+m2

N/(2|k|) and from (9) we have
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⌧
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|k|

�
, (21)

where in the last equality we have dropped the flavour
independent first term because it drops in the commu-
tators in the evolution equations. The thermal averaged
hT/|k|i is equal to ' 0.46 for the Fermi-Dirac statistics.
The spinor traces appearing in the lepton-number con-
serving and violating reaction densities are found to be
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where ✓ is the angle between k and p. One recognizes
that for negative helicity, i.e. for LV transitions, a m2

N
factor appears, as it should be, since LV requires a Majo-
rana mass insertion. For the washout reaction densities,
denoting by a tilde their value once the Yukawa couplings
have been factorized out, e.g. �LC

l,↵� ⌘ e�LCh⇤
l↵hl� , we find
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where (neglecting mN compared to the other masses)

E⇤ ⌘ kM2
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H �M2
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4 k
, (30)

and we have included giso = 2 to account for the two
isospins of the processes (e.g. H0 ! N ⌫̄ and H+ !
Ne+). For the thermal masses of H and L we have used
the high-temperature asymptotic masses (i.e. the ones in
the large 3-momentum limit)

M2
H =

T 2

16
(3g2 + g02 + 4h2

t + 8�) , (31)

M2
L =

T 2

16
(3g2 + g02) . (32)

IV. ANALYTIC SOLUTIONS IN THE
WEAK-WASHOUT AND MANY-OSCILLATIONS

REGIME

Before presenting the numerical results obtained by in-
tegrating the density-matrix evolution equations, it is in-
structive to compare the LC and LV analytic solutions
which can be obtained in the weak-washout regime for
the case of many oscillations taking place, i.e. when os-
cillations start long before sphaleron decoupling. The
derivation of these analytic solutions is given in Ap-
pendix A. They are determined at first non-vanishing
order in powers of the Yukawa couplings. We give them
for the lepton asymmetry yield for each flavour l, defined
as the lepton asymmetry obtained for this flavour over
the entropy density, i.e. Yl ⌘ nL

l /s. Notice that in the
weak-washout regime considered in this section the to-
tal asymmetry is simply given by the sum of the ARS
and the LV H-decay one. For the LC contribution, sum-
ming over the lepton flavour, Y ⌘

P
l Yl, at the sphaleron

decoupling temperature, T = Ts ' 131.7 GeV where the
baryon asymmetry freezes, we get the following total lep-
ton asymmetry, which involves 6 powers of the Yukawa
couplings,

YLC ' � 18.5⇥ (↵LC)2 ↵LC
W

M7/3
0

Tc(�m2
N )2/3

⇥ (h†h)11(h
†h)22

X

l

�LC
l (hh†)ll , (33)
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where in the last equality we have dropped the flavour
independent first term because it drops in the commu-
tators in the evolution equations. The thermal averaged
hT/|k|i is equal to ' 0.46 for the Fermi-Dirac statistics.
The spinor traces appearing in the lepton-number con-
serving and violating reaction densities are found to be
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pendix A. They are determined at first non-vanishing
order in powers of the Yukawa couplings. We give them
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as the lepton asymmetry obtained for this flavour over
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where in the last equality we have dropped the flavour
independent first term because it drops in the commu-
tators in the evolution equations. The thermal averaged
hT/|k|i is equal to ' 0.46 for the Fermi-Dirac statistics.
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where ✓ is the angle between k and p. One recognizes
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and we have included giso = 2 to account for the two
isospins of the processes (e.g. H0 ! N ⌫̄ and H+ !
Ne+). For the thermal masses of H and L we have used
the high-temperature asymptotic masses (i.e. the ones in
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IV. ANALYTIC SOLUTIONS IN THE
WEAK-WASHOUT AND MANY-OSCILLATIONS

REGIME

Before presenting the numerical results obtained by in-
tegrating the density-matrix evolution equations, it is in-
structive to compare the LC and LV analytic solutions
which can be obtained in the weak-washout regime for
the case of many oscillations taking place, i.e. when os-
cillations start long before sphaleron decoupling. The
derivation of these analytic solutions is given in Ap-
pendix A. They are determined at first non-vanishing
order in powers of the Yukawa couplings. We give them
for the lepton asymmetry yield for each flavour l, defined
as the lepton asymmetry obtained for this flavour over
the entropy density, i.e. Yl ⌘ nL

l /s. Notice that in the
weak-washout regime considered in this section the to-
tal asymmetry is simply given by the sum of the ARS
and the LV H-decay one. For the LC contribution, sum-
ming over the lepton flavour, Y ⌘

P
l Yl, at the sphaleron

decoupling temperature, T = Ts ' 131.7 GeV where the
baryon asymmetry freezes, we get the following total lep-
ton asymmetry, which involves 6 powers of the Yukawa
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which can be obtained in the weak-washout regime for
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cillations start long before sphaleron decoupling. The
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where in the last equality we have dropped the flavour
independent first term because it drops in the commu-
tators in the evolution equations. The thermal averaged
hT/|k|i is equal to ' 0.46 for the Fermi-Dirac statistics.
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independent first term because it drops in the commu-
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that for negative helicity, i.e. for LV transitions, a m2

N
factor appears, as it should be, since LV requires a Majo-
rana mass insertion. For the washout reaction densities,
denoting by a tilde their value once the Yukawa couplings
have been factorized out, e.g. �LC

l,↵� ⌘ e�LCh⇤
l↵hl� , we find

e�LC =
giso
4⇡2

Z 1

0
dk

k

ek/T + 1

M2
H �M2

L

8⇡k

⇥
Z 1

E⇤
dE

✓
1

e
E

T + 1
+

1

e
E+k

T � 1

◆

' 3.26⇥ 10�4 T 4 ⌘ ↵LC T 4 , (24)

e�LV =
giso
4⇡2

Z 1

0
dk

k

ek/T + 1

m2
N

32⇡k3

⇥
Z 1

E⇤
dE (4Ek +M2

L �M2
H)

✓
1

e
E

T + 1
+

1

e
E+k

T � 1

◆

' 3.35⇥ 10�3 m2
N T 2 ⌘ ↵LV m2

N T 2 , (25)

e�LC
WQ =

giso
4⇡2

Z 1

0
dk k

M2
H �M2

L

8⇡k

⇥
Z 1

E⇤
dE

1

e
E

T + 1

1

e
E+k

T � 1

' 1.05⇥ 10�4 T 4 ⌘ ↵LC
W T 4 , (26)

e�LV
WQ =

giso
4⇡2

Z 1

0
dk k

m2
N

32⇡k3

⇥
Z 1

E⇤
dE (4Ek +M2

L �M2
H)

✓
1

e
E

T + 1
+

1

e
E+k

T � 1

◆

' 5.49⇥ 10�4 m2
N T 2 , (27)

e�LC
WC =

giso
4⇡2

Z 1

0
dk

k

ek/T + 1

M2
H �M2

L

8⇡k

Z 1

E⇤
dE

1

e
E

T + 1

' 1.86⇥ 10�4 T 4 , (28)

e�LV
WC =

giso
4⇡2

Z 1

0
dk

k

ek/T + 1

m2
N

32⇡k3

⇥
Z 1

E⇤
dE (4Ek +M2

L �M2
H)

1

e
E

T + 1

' 1.79⇥ 10�3 m2
N T 2 , (29)

where (neglecting mN compared to the other masses)
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and we have included giso = 2 to account for the two
isospins of the processes (e.g. H0 ! N ⌫̄ and H+ !
Ne+). For the thermal masses of H and L we have used
the high-temperature asymptotic masses (i.e. the ones in
the large 3-momentum limit)
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IV. ANALYTIC SOLUTIONS IN THE
WEAK-WASHOUT AND MANY-OSCILLATIONS

REGIME

Before presenting the numerical results obtained by in-
tegrating the density-matrix evolution equations, it is in-
structive to compare the LC and LV analytic solutions
which can be obtained in the weak-washout regime for
the case of many oscillations taking place, i.e. when os-
cillations start long before sphaleron decoupling. The
derivation of these analytic solutions is given in Ap-
pendix A. They are determined at first non-vanishing
order in powers of the Yukawa couplings. We give them
for the lepton asymmetry yield for each flavour l, defined
as the lepton asymmetry obtained for this flavour over
the entropy density, i.e. Yl ⌘ nL

l /s. Notice that in the
weak-washout regime considered in this section the to-
tal asymmetry is simply given by the sum of the ARS
and the LV H-decay one. For the LC contribution, sum-
ming over the lepton flavour, Y ⌘

P
l Yl, at the sphaleron

decoupling temperature, T = Ts ' 131.7 GeV where the
baryon asymmetry freezes, we get the following total lep-
ton asymmetry, which involves 6 powers of the Yukawa
couplings,

YLC ' � 18.5⇥ (↵LC)2 ↵LC
W

M7/3
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⇥ (h†h)11(h
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III. REACTION DENSITIES

Next in this Section we compute the “�” reaction den-
sities entering in the density-matrix evolution equations
above. In the ultra-relativistic regime, i.e. for mN ⌧ |k|,
EN (k) ' |k|+m2

N/(2|k|) and from (9) we have
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where in the last equality we have dropped the flavour
independent first term because it drops in the commu-
tators in the evolution equations. The thermal averaged
hT/|k|i is equal to ' 0.46 for the Fermi-Dirac statistics.
The spinor traces appearing in the lepton-number con-
serving and violating reaction densities are found to be
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where ✓ is the angle between k and p. One recognizes
that for negative helicity, i.e. for LV transitions, a m2

N
factor appears, as it should be, since LV requires a Majo-
rana mass insertion. For the washout reaction densities,
denoting by a tilde their value once the Yukawa couplings
have been factorized out, e.g. �LC
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l↵hl� , we find
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and we have included giso = 2 to account for the two
isospins of the processes (e.g. H0 ! N ⌫̄ and H+ !
Ne+). For the thermal masses of H and L we have used
the high-temperature asymptotic masses (i.e. the ones in
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structive to compare the LC and LV analytic solutions
which can be obtained in the weak-washout regime for
the case of many oscillations taking place, i.e. when os-
cillations start long before sphaleron decoupling. The
derivation of these analytic solutions is given in Ap-
pendix A. They are determined at first non-vanishing
order in powers of the Yukawa couplings. We give them
for the lepton asymmetry yield for each flavour l, defined
as the lepton asymmetry obtained for this flavour over
the entropy density, i.e. Yl ⌘ nL

l /s. Notice that in the
weak-washout regime considered in this section the to-
tal asymmetry is simply given by the sum of the ARS
and the LV H-decay one. For the LC contribution, sum-
ming over the lepton flavour, Y ⌘

P
l Yl, at the sphaleron

decoupling temperature, T = Ts ' 131.7 GeV where the
baryon asymmetry freezes, we get the following total lep-
ton asymmetry, which involves 6 powers of the Yukawa
couplings,

YLC ' � 18.5⇥ (↵LC)2 ↵LC
W

M7/3
0

Tc(�m2
N )2/3

⇥ (h†h)11(h
†h)22

X

l

�LC
l (hh†)ll , (33)

4

III. REACTION DENSITIES

Next in this Section we compute the “�” reaction den-
sities entering in the density-matrix evolution equations
above. In the ultra-relativistic regime, i.e. for mN ⌧ |k|,
EN (k) ' |k|+m2

N/(2|k|) and from (9) we have

EN,↵ ' h|k|i +
m2

N,a

2T

⌧
T

|k|

�
⇠

m2
N,a

2T

⌧
T

|k|

�
, (21)

where in the last equality we have dropped the flavour
independent first term because it drops in the commu-
tators in the evolution equations. The thermal averaged
hT/|k|i is equal to ' 0.46 for the Fermi-Dirac statistics.
The spinor traces appearing in the lepton-number con-
serving and violating reaction densities are found to be

tr
�
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IV. ANALYTIC SOLUTIONS IN THE
WEAK-WASHOUT AND MANY-OSCILLATIONS

REGIME

Before presenting the numerical results obtained by in-
tegrating the density-matrix evolution equations, it is in-
structive to compare the LC and LV analytic solutions
which can be obtained in the weak-washout regime for
the case of many oscillations taking place, i.e. when os-
cillations start long before sphaleron decoupling. The
derivation of these analytic solutions is given in Ap-
pendix A. They are determined at first non-vanishing
order in powers of the Yukawa couplings. We give them
for the lepton asymmetry yield for each flavour l, defined
as the lepton asymmetry obtained for this flavour over
the entropy density, i.e. Yl ⌘ nL

l /s. Notice that in the
weak-washout regime considered in this section the to-
tal asymmetry is simply given by the sum of the ARS
and the LV H-decay one. For the LC contribution, sum-
ming over the lepton flavour, Y ⌘

P
l Yl, at the sphaleron

decoupling temperature, T = Ts ' 131.7 GeV where the
baryon asymmetry freezes, we get the following total lep-
ton asymmetry, which involves 6 powers of the Yukawa
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          Analytical solution for the LV contribution for weak washout
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with

�LC
l =

Im
⇥
h⇤
l1hl2(h†h)21

⇤

(h†h)11(h†h)22
, (34)

and M0 ' MPL/(1.66 g
1/2
⇤ ) ' 7⇥ 1017 GeV. This result

involves three rates whose value are given in the previ-
ous Section. For the LV contribution, instead, one gets
an asymmetry which involves 4 powers of the Yukawa
couplings and 2 rates

YLV ' 7.9⇥ ↵LC ↵LV M0

Tc

m2
N

�m2
N

(h†h)11(h
†h)22 �

LV ,

(35)

with

�LV
l =

Im
⇥
h⇤
l1hl2(h†h)12

⇤

(h†h)11(h†h)22
, (36)

and �LV ⌘
P

l �
LV
l .

Comparing Eqs. (35) and (33) one observes a series of
di↵erences. First of all, both contributions involve dif-
ferent combinations of the Yukawa coupling, �LV versusP

l �
LC
l (hh†)ll for the LV and LC contributions respec-

tively. As already mentioned in the Introduction, the LC
combination vanishes in the case of a single flavour, un-
like the LV one. Generically, the combination of Yukawa
couplings in the LV case is much larger because it involves
2 Yukawa couplings less. Moreover, unless one chooses
precisely specific phases in the Yukawa entries, the ra-
tio of

P
l �

LC
l (hh†)ll to �LV turns out to be smaller than

the naive estimate m⌫mN/v2 by one order of magnitude
or more. Next, these 2 contributions display di↵erent
powers of the Majorana mass scale, of the mass splitting
and of the e↵ective Planck scale, M0m2

N/�m2
N versus

M7/3
0 /(�m2

N )2/3. As discussed above, the m2
N factor

results from the Majorana-mass insertion necessary for
the LV contribution. The di↵erent powers of the mass
splitting result from the di↵erent T -dependence of the
LC and LV rates, and in particular from the relative size
of the commutator term and the “�” rates as functions
of the temperature. As for the di↵erent powers in the
e↵ective Planck mass M0, they result from the integra-
tion over t of the di↵erent temperature dependence of
the contributions. Such a scale ratio is clearly in favour
of the LC contribution, especially for small mN and
large mass splittings. For instance, with mN = 10 GeV
and �mN/mN = 10�10 or with mN = 1 GeV and
�mN/mN = 10�5 one gets a relative factor equal to
5.9⇥ 10�20 and 5.9⇥ 10�23 respectively. Finally, beside
a di↵erent numerical factor in favour of the LC contri-
bution, -18.5 versus 7.9, the rate factors are very dif-
ferent, ↵LC ↵LV versus (↵LC)2 ↵LC

W . As said above, the
LV piece involves 2 rates whereas the LC piece involves
3 of them, as a result of the fact that it requires the
asymmetric washout to play a role. Hence, the rate fac-
tor is much larger for the LV contribution. Numerically,

from Eqs. (24)-(26), the rate ratio of both contribution
is ↵LC ↵LV /[(↵LC)2 ↵LC

W ] = 0.97⇥ 105.
All in all the various factors compete in such a way

that, depending on the input parameters, one contribu-
tion or the other can be dominant in large portions of
the parameter space. Such a comparison will be made
in detail in Section VB by solving the transport equa-
tions numerically. In the meanwhile one could just give
two examples at the level of the approximate solutions,
valid in the small-washout regime. For mN = 10 GeV
and �mN/mN = 10�10 or with mN = 1 GeV and
�mN/mN = 10�5, the ratio of the LV to LF asymmetries
obtained in Eqs. (35) and (33) is c · (�LV /

P
l �

LC
l (hh†)ll)

with c = �2.4 ⇥ 10�15 and c = �2.4 ⇥ 10�18, respec-
tively. For Yukawa couplings of order (

p
m⌫mN/v2)1/2,

i.e. (�LV /
P

l �
LC
l (hh†)ll) & 1015, 1016, this gives the LV

and LC contributions dominant respectively.

V. PHENOMENOLOGY

A. Results with a single lepton flavour: comparison
of density-matrix and CP-violating decay formalisms

To compare the results obtained above for the LV con-
tribution in the density-matrix formalism with the ones
obtained in the CP-violating decay formalism [14], it is
convenient to consider only one lepton flavour and 2 RH
neutrinos. Considering only one flavour makes sense be-
cause in this case the LC ARS contribution identically
vanishes and does not interplay with the LV contribu-
tion in a non-linear way (as it does, instead, in the strong
washout regime with several flavours).
With one lepton flavour and 2 RH neutrinos there is

only a very limited number of parameters, the RH neu-
trino scale mN , the mass splitting between the two RH
neutrinos, �mN , the Yukawa coupling of N1 which can
be taken to be real, h1, and the Yukawa coupling of N2

which then has a phase, h2 = |h2|ei✓. The last 3 param-
eters can be traded for the e↵ective mass m̃ ⌘ v2h2

1/mN ,
which parametrizes the speed of the decay of N1, for the
ratio of decay widths �22/�11 and for the CP-violating
parameter I1 = �LV .
Starting from a situation where there is no RH neutri-

nos at T >>> Ts, in Figs. 2 and 3 we plot the results for
the baryon asymmetry obtained by integrating numeri-
cally Eqs. (8), (19) and (20). This is shown as a function
of mN and m̃ for the same value of the other parameters
as considered in [14]. Also shown on these figures are the
results obtained from the CP-violating decay formalism
in [14]. These figures nicely show a same qualitative pat-
tern. Quantitatively, for not too small mN , �mN/mN

and not too large Yukawa couplings, the asymmetries ob-
tained are in general of the same order of magnitude. For
small mN and �mN/mN the di↵erence is due to the sim-
plified treatment of RH-neutrino thermal masses in the
density-matrix equations above, which would necessitate
a T -dependent diagonalization of the N mass matrix, not
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washout regime with several flavours).
With one lepton flavour and 2 RH neutrinos there is

only a very limited number of parameters, the RH neu-
trino scale mN , the mass splitting between the two RH
neutrinos, �mN , the Yukawa coupling of N1 which can
be taken to be real, h1, and the Yukawa coupling of N2

which then has a phase, h2 = |h2|ei✓. The last 3 param-
eters can be traded for the e↵ective mass m̃ ⌘ v2h2

1/mN ,
which parametrizes the speed of the decay of N1, for the
ratio of decay widths �22/�11 and for the CP-violating
parameter I1 = �LV .
Starting from a situation where there is no RH neutri-

nos at T >>> Ts, in Figs. 2 and 3 we plot the results for
the baryon asymmetry obtained by integrating numeri-
cally Eqs. (8), (19) and (20). This is shown as a function
of mN and m̃ for the same value of the other parameters
as considered in [14]. Also shown on these figures are the
results obtained from the CP-violating decay formalism
in [14]. These figures nicely show a same qualitative pat-
tern. Quantitatively, for not too small mN , �mN/mN

and not too large Yukawa couplings, the asymmetries ob-
tained are in general of the same order of magnitude. For
small mN and �mN/mN the di↵erence is due to the sim-
plified treatment of RH-neutrino thermal masses in the
density-matrix equations above, which would necessitate
a T -dependent diagonalization of the N mass matrix, not
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which breaks total lepton number
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with

�LC
l =

Im
⇥
h⇤
l1hl2(h†h)21

⇤

(h†h)11(h†h)22
, (34)

and M0 ' MPL/(1.66 g
1/2
⇤ ) ' 7⇥ 1017 GeV. This result

involves three rates whose value are given in the previ-
ous Section. For the LV contribution, instead, one gets
an asymmetry which involves 4 powers of the Yukawa
couplings and 2 rates

YLV ' 7.9⇥ ↵LC ↵LV M0

Tc

m2
N

�m2
N

(h†h)11(h
†h)22 �

LV ,

(35)

with

�LV
l =

Im
⇥
h⇤
l1hl2(h†h)12

⇤

(h†h)11(h†h)22
, (36)

and �LV ⌘
P

l �
LV
l .

Comparing Eqs. (35) and (33) one observes a series of
di↵erences. First of all, both contributions involve dif-
ferent combinations of the Yukawa coupling, �LV versusP

l �
LC
l (hh†)ll for the LV and LC contributions respec-

tively. As already mentioned in the Introduction, the LC
combination vanishes in the case of a single flavour, un-
like the LV one. Generically, the combination of Yukawa
couplings in the LV case is much larger because it involves
2 Yukawa couplings less. Moreover, unless one chooses
precisely specific phases in the Yukawa entries, the ra-
tio of

P
l �

LC
l (hh†)ll to �LV turns out to be smaller than

the naive estimate m⌫mN/v2 by one order of magnitude
or more. Next, these 2 contributions display di↵erent
powers of the Majorana mass scale, of the mass splitting
and of the e↵ective Planck scale, M0m2

N/�m2
N versus

M7/3
0 /(�m2

N )2/3. As discussed above, the m2
N factor

results from the Majorana-mass insertion necessary for
the LV contribution. The di↵erent powers of the mass
splitting result from the di↵erent T -dependence of the
LC and LV rates, and in particular from the relative size
of the commutator term and the “�” rates as functions
of the temperature. As for the di↵erent powers in the
e↵ective Planck mass M0, they result from the integra-
tion over t of the di↵erent temperature dependence of
the contributions. Such a scale ratio is clearly in favour
of the LC contribution, especially for small mN and
large mass splittings. For instance, with mN = 10 GeV
and �mN/mN = 10�10 or with mN = 1 GeV and
�mN/mN = 10�5 one gets a relative factor equal to
5.9⇥ 10�20 and 5.9⇥ 10�23 respectively. Finally, beside
a di↵erent numerical factor in favour of the LC contri-
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W . As said above, the
LV piece involves 2 rates whereas the LC piece involves
3 of them, as a result of the fact that it requires the
asymmetric washout to play a role. Hence, the rate fac-
tor is much larger for the LV contribution. Numerically,

from Eqs. (24)-(26), the rate ratio of both contribution
is ↵LC ↵LV /[(↵LC)2 ↵LC

W ] = 0.97⇥ 105.
All in all the various factors compete in such a way

that, depending on the input parameters, one contribu-
tion or the other can be dominant in large portions of
the parameter space. Such a comparison will be made
in detail in Section VB by solving the transport equa-
tions numerically. In the meanwhile one could just give
two examples at the level of the approximate solutions,
valid in the small-washout regime. For mN = 10 GeV
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P
l �
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l (hh†)ll)
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tively. For Yukawa couplings of order (

p
m⌫mN/v2)1/2,

i.e. (�LV /
P

l �
LC
l (hh†)ll) & 1015, 1016, this gives the LV

and LC contributions dominant respectively.

V. PHENOMENOLOGY

A. Results with a single lepton flavour: comparison
of density-matrix and CP-violating decay formalisms
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convenient to consider only one lepton flavour and 2 RH
neutrinos. Considering only one flavour makes sense be-
cause in this case the LC ARS contribution identically
vanishes and does not interplay with the LV contribu-
tion in a non-linear way (as it does, instead, in the strong
washout regime with several flavours).
With one lepton flavour and 2 RH neutrinos there is

only a very limited number of parameters, the RH neu-
trino scale mN , the mass splitting between the two RH
neutrinos, �mN , the Yukawa coupling of N1 which can
be taken to be real, h1, and the Yukawa coupling of N2

which then has a phase, h2 = |h2|ei✓. The last 3 param-
eters can be traded for the e↵ective mass m̃ ⌘ v2h2

1/mN ,
which parametrizes the speed of the decay of N1, for the
ratio of decay widths �22/�11 and for the CP-violating
parameter I1 = �LV .
Starting from a situation where there is no RH neutri-

nos at T >>> Ts, in Figs. 2 and 3 we plot the results for
the baryon asymmetry obtained by integrating numeri-
cally Eqs. (8), (19) and (20). This is shown as a function
of mN and m̃ for the same value of the other parameters
as considered in [14]. Also shown on these figures are the
results obtained from the CP-violating decay formalism
in [14]. These figures nicely show a same qualitative pat-
tern. Quantitatively, for not too small mN , �mN/mN

and not too large Yukawa couplings, the asymmetries ob-
tained are in general of the same order of magnitude. For
small mN and �mN/mN the di↵erence is due to the sim-
plified treatment of RH-neutrino thermal masses in the
density-matrix equations above, which would necessitate
a T -dependent diagonalization of the N mass matrix, not
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                   - suppressed by 2 rates instead of 3 rates for the LC contribution
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N

dominance of one or the other contribution depending on the parameters
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III. REACTION DENSITIES

Next in this Section we compute the “�” reaction den-
sities entering in the density-matrix evolution equations
above. In the ultra-relativistic regime, i.e. for mN ⌧ |k|,
EN (k) ' |k|+m2

N/(2|k|) and from (9) we have

EN,↵ ' h|k|i +
m2

N,a

2T

⌧
T

|k|

�
⇠

m2
N,a

2T

⌧
T

|k|

�
, (21)

where in the last equality we have dropped the flavour
independent first term because it drops in the commu-
tators in the evolution equations. The thermal averaged
hT/|k|i is equal to ' 0.46 for the Fermi-Dirac statistics.
The spinor traces appearing in the lepton-number con-
serving and violating reaction densities are found to be

tr
�
PRu+(k)ū+(k)PL /p

 
= (EN + |k|)(p0 � |p| cos ✓)
' 2|k|(p0 � |p| cos ✓) , (22)

tr
�
PRv+(k)v̄+(k)PL /p

 
= (EN � |k|)(p0 + |p| cos ✓)

' m2
N

2|k| (p
0 + |p| cos ✓) , (23)

where ✓ is the angle between k and p. One recognizes
that for negative helicity, i.e. for LV transitions, a m2

N
factor appears, as it should be, since LV requires a Majo-
rana mass insertion. For the washout reaction densities,
denoting by a tilde their value once the Yukawa couplings
have been factorized out, e.g. �LC

l,↵� ⌘ e�LCh⇤
l↵hl� , we find

e�LC =
giso
4⇡2

Z 1

0
dk

k

ek/T + 1

M2
H �M2

L

8⇡k

⇥
Z 1

E⇤
dE

✓
1

e
E

T + 1
+

1

e
E+k

T � 1

◆

' 3.26⇥ 10�4 T 4 ⌘ ↵LC T 4 , (24)

e�LV =
giso
4⇡2

Z 1

0
dk

k

ek/T + 1

m2
N

32⇡k3

⇥
Z 1

E⇤
dE (4Ek +M2

L �M2
H)

✓
1

e
E

T + 1
+

1

e
E+k

T � 1

◆

' 3.35⇥ 10�3 m2
N T 2 ⌘ ↵LV m2

N T 2 , (25)

e�LC
WQ =
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4⇡2

Z 1

0
dk k

M2
H �M2

L

8⇡k

⇥
Z 1

E⇤
dE

1

e
E

T + 1

1

e
E+k

T � 1

' 1.05⇥ 10�4 T 4 ⌘ ↵LC
W T 4 , (26)
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Z 1

0
dk k

m2
N

32⇡k3
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Z 1

E⇤
dE (4Ek +M2

L �M2
H)

✓
1

e
E

T + 1
+

1

e
E+k

T � 1
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' 5.49⇥ 10�4 m2
N T 2 , (27)
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0
dk

k
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L

8⇡k
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E⇤
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1

e
E

T + 1

' 1.86⇥ 10�4 T 4 , (28)
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dk
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N

32⇡k3

⇥
Z 1

E⇤
dE (4Ek +M2

L �M2
H)

1

e
E

T + 1

' 1.79⇥ 10�3 m2
N T 2 , (29)

where (neglecting mN compared to the other masses)

E⇤ ⌘ kM2
L

M2
H �M2

H

+
M2

H �M2
L

4 k
, (30)

and we have included giso = 2 to account for the two
isospins of the processes (e.g. H0 ! N ⌫̄ and H+ !
Ne+). For the thermal masses of H and L we have used
the high-temperature asymptotic masses (i.e. the ones in
the large 3-momentum limit)

M2
H =

T 2

16
(3g2 + g02 + 4h2

t + 8�) , (31)

M2
L =

T 2

16
(3g2 + g02) . (32)

IV. ANALYTIC SOLUTIONS IN THE
WEAK-WASHOUT AND MANY-OSCILLATIONS

REGIME

Before presenting the numerical results obtained by in-
tegrating the density-matrix evolution equations, it is in-
structive to compare the LC and LV analytic solutions
which can be obtained in the weak-washout regime for
the case of many oscillations taking place, i.e. when os-
cillations start long before sphaleron decoupling. The
derivation of these analytic solutions is given in Ap-
pendix A. They are determined at first non-vanishing
order in powers of the Yukawa couplings. We give them
for the lepton asymmetry yield for each flavour l, defined
as the lepton asymmetry obtained for this flavour over
the entropy density, i.e. Yl ⌘ nL

l /s. Notice that in the
weak-washout regime considered in this section the to-
tal asymmetry is simply given by the sum of the ARS
and the LV H-decay one. For the LC contribution, sum-
ming over the lepton flavour, Y ⌘

P
l Yl, at the sphaleron

decoupling temperature, T = Ts ' 131.7 GeV where the
baryon asymmetry freezes, we get the following total lep-
ton asymmetry, which involves 6 powers of the Yukawa
couplings,

YLC ' � 18.5⇥ (↵LC)2 ↵LC
W

M7/3
0

Tc(�m2
N )2/3

⇥ (h†h)11(h
†h)22

X

l

�LC
l (hh†)ll , (33)
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and the LV H-decay one. For the LC contribution, sum-
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decoupling temperature, T = Ts ' 131.7 GeV where the
baryon asymmetry freezes, we get the following total lep-
ton asymmetry, which involves 6 powers of the Yukawa
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number conserving CP violating Yukawa coupling com-
bination

�LC
l =

Im
⇥
h⇤
l1hl2(h†h)21

⇤

(h†h)11(h†h)22
(A4)

In the regime �m2
N � µ2

osc, Imf(z) performs many os-
cillations (of increasing frequency) before the sphalerons
decouple, and its integral in (A2) saturates at early times
to the value

Im

Z z

0
f(z0)dz0 ⇡ 1.4⇥

✓
µ2
osc

�m2
N

◆ 2
3

. (A5)

Therefore, at O(h4), after the first few oscillations (at
z ⇡ zosc ⌘ Tc/(M0�m2

N )1/3) one obtains

Yl(z) ' 4⇥1.4 (LC)2⇢eq (h
†h)11(h

†h)22 �
LC
l

✓
µ2
osc

�m2
N

◆ 2
3

.

(A6)
Notice that, since

P
l �

LC
l = 0, the total SM-lepton asym-

metry vanishes at O(h4),

X

l

Yl = 0 at O(h4) . (A7)

In order to obtain a non-vanishing total asymmetry one
has to perform one iteration more in the solution of the
Boltzmann equations, in particular taking into account at
leading order the e↵ect of a flavour-asymmetric washout.
By exploiting the fact that, neglecting lepton-number vi-
olating processes, YLC ⌘

P
l Yl = tr(⇢ � ⇢̄), one finds at

O(h6):

YLC(z = 1) '

� 2⇥ 1.4 (LC)2 LC
W ⇢eq

✓
µ2
osc

�m2
N

◆ 2
3

(h†h)11(h
†h)22

⇥
X

l

�LC
l (hh†)ll (A8)

which gives approximately Eq. (33).

2. L-violating Higgs-decay contribution

In the same regime as before we can now calculate ana-
lytically the contribution of the lepton-number violating
processes. Proceeding iteratively, there are two contri-
butions: the first one comes from �LV in the equations
for ⇢ and ⇢̄ and �LC in the equation for Yl. We find this
contribution to be

YLV (z) � 4LCLV m2
N

T 2
c

⇢eq (h
†h)11(h

†h)22 �
LV

⇥
Z z

0
Im g(z0) dz0 , (A9)

with

g(z) ⌘
Z z

0
dz0 z02 e

i
�m

2
N

3µ2
osc

(z3�z03)
, (A10)

and where �LV
l is the total lepton-number violating and

CP-violating combination of the Yukawa couplings

�LV
l =

Im
⇥
h⇤
l1hl2(h†h)12

⇤

(h†h)11(h†h)22
. (A11)

Notice that we have already summed over SM-lepton
flavours, since �LV ⌘

P
l �

LV
l 6= 0, i.e. the LV Higgs-

decay mechanism gives rise to an unflavoured asymmetry
already at O(h4), di↵erently from the ARS one. In the
regime �m2

N � µ2
osc the integral of Im g(z0) approaches

the behaviour

Im

Z z

0
g(z0) dz0 ⇡ z

µ2
osc

�m2
N

. (A12)

up to a residual oscillating term (which we neglect) whose
frequency increases and amplitude decreases with time.
Thus,

YLV (z = 1) � 4LCLV m2
N

T 2
c

⇢eq (h
†h)11(h

†h)22 �
LV

⇥ µ2
osc

�m2
N

, (A13)

The second contribution comes from the iteration with
�LC in the equations for ⇢ and ⇢̄ and �LV in the equation
for µ. This is given by

YLV (z) � 4LCLV m2
N

T 2
c

⇢eq (h
†h)11(h

†h)22 �
LV

⇥
Z z

0
z02 Im f(z0) dz0 , (A14)

The integral is again found to approach the behaviour

Im

Z z

0
z02 f(z0)dz0 ⇡ z

µ2
osc

�m2
N

, (A15)

up to an oscillating term which with time increases its
frequency but does not change its amplitude (equal to
(µ2

osc/�m2
N )4/3). Neglecting this term we find that this

second contribution is the same as the first one (A13).
The sum of both terms leads to Eq. (35).

          CP-violating  Yukawa combination which leaves 
the SM total lepton number unchanged

-         instead of          for the LC contribution

M0

~ Planck mass

all in all the various factors compensate each other more or less with
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FIG. 2. Baryon asymmetry n
B

/s obtained a a function of
m

N

and m̃ for �m
N

/m
N

= 10�11, I1 = 1 and �11/�22 =
m

sol

/m
atm

. Upper panel: from denstity matrix formalism,
Eqs. (8), (19) and (20). Lower panel: from CP-violating decay
formalism, as in Ref. [14]. The successful regions are the ones
inside the dashed line which corresponds to the observed value
n
B

/s = 0.86⇥ 10�10.

taken into account here for simplicity. For large m̃ the
fact that the produced asymmetry obtained can be much
larger in the density matrix formalism is not due to a
real discrepancy between both methods. This di↵erence
stems from the fact that in [14] the washout suppression
has been overestimated. As showed above, in the density-
matrix formalism one gets 2 di↵erent types of washout.
First there is the usual ARS washout term �LC

W / T 4,
Eq. (26), which violates SM lepton number but does not
violate total lepton number (as it does nothing more than
transferring the asymmetry between the SM-lepton and
RH-neutrino sectors). This piece washes out the ARS
LC asymmetry produced, but does not wash out the to-
tal lepton-number asymmetry produced. Second, there is
the �LV

W / m2
NT 2 washout part, Eq. (27), which violates

total lepton number but is not as e↵ective, because sup-
pressed by a factor of m2

N/T 2 with respect to the other
washout. In the CP-violating decay formalism of [14],
the fact that a lepton-number asymmetry can be stored
in the RH-neutrino sector is not taken into account (but
could, in principle, in a more involved decay formalism).
Thus, the part of the washout / T 4 incorrectly washes
out the final lepton lepton asymmetry too, resulting in
an overestimation of the washout suppression. In the
density-matrix formalism this is instead correctly taken
into account.
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FIG. 3. Same as Fig. 2, for �m
N

/m
N

= 10�8.5.

B. Results with 3 lepton flavours: comparison of
the LC results with the total LC + LV results

We now consider the realistic situation with 3 SM
lepton flavours, with seesaw parameters fulfilling all
neutrino-mass constraints (with, here too, 2 RH neutri-
nos for simplicity). This allows us to identify the regions
of parameter space where the LV Higgs-decay contribu-
tion is important as compared to the LC ARS one.
We fit the light-neutrino oscillation data by using the

so-called Casas-Ibarra parametrization [25]

h = �i

p
2

v
UPMNS ·

q
mdiag

⌫ ·R ·mdiag
N , (37)

where v = 246GeV, with mdiag
⌫ and mdiag

N denoting, in
the mass eigenbasis, the light and heavy neutrino mass
matrices, respectively. For the PMNS matrix we use the
standard parametrization of [26], fixing all parameters to
their best-fit values [26] and � = �⇡/2. The Majorana
phase ↵1 plays no role in what follows, unlike the ↵2

phase. Thus we will present our results for di↵erent val-
ues of ↵2. For definiteness we choose a normal hierarchy
of masses. In the 2 RH-neutrino case considered here,
the orthogonal matrix R can be expressed in terms of a
single complex angle ! = w + i�. We fix w to the value
which maximizes �LV , w = ⇡/4. For w fixed in this way
the Casas-Ibarra parameter � has a one-to-one relation
with the e↵ective neutrino mass em ⌘ v2(h†h)11/mN .
Starting here too from no RH neutrinos at T >>> Ts,

we have integrated numerically the evolution equations.
The final nB/n� baryon asymmetry obtained is plotted
as a function of mN and � in the left panels of Fig. 4–9,

�mN/mN = 10�10 �mN/mN = 10�8.5

                   density 
                   matrix

                   decay 
                    formalism

                   qualitative or even quantitative agreement: 
- except for small       : different thermal masses takenmN

- except for large    : washout suppression too big in decay formalism because
                                doesn’t take into account formation of           asymmetries 

m̃
N � N̄

                   with only one lepton flavour: no ARS, only LV contribution
T.H., Teresi 17’

YB =

nB

s
contour plot YB =

nB

s
contour plot

- in decay formalism the     is decaying “at rest” unlike in density matrix formalism H
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FIG. 4. Results for �m
N

/m
N

= 10�10, ↵2 = 0. In the left panel, we plot the logarithm base 10 of the n
B

/s asymmetry
obtained. The observed value, n

B

/s ' 0.86⇥ 10�10 is denoted by the dashed line. In the right panel, we plot the ratio of the
full LC + LV result to the LC ARS one.

FIG. 5. Results for �m
N

/m
N

= 10�10, ↵2 = ⇡/2. The dark green band signals a change of sign of the final asymmetry
obtained.

FIG. 6. Results for �m
N

/m
N

= 10�10, ↵2 = ⇡.

ratio of LV+LC over LC

YB =

nB

s
contour plot: full LC+LV result

�mN/mN = 10�10

                   dominance of LV= - for ``seesaw” expected Yukawa couplings
- for very large Yukawas: less washout for LV than for LC !

- the smaller                  the more LV dominates
- the larger       the more LV dominates

�mN/mN

mN

T.H., Teresi 17’

/ m2
NT 2 << / T 4
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FIG. 7. Results for �m
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/m
N

= 10�10, ↵2 = 3⇡/2.
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FIG. 9. Results for �m
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                   dominance of LV= - for ``seesaw” expected Yukawa couplings
- for very large Yukawas: less washout for LV than for LC !

- the smaller                  the more LV dominates
- the larger       the more LV dominates
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for various values of �mN/mN and ↵2
1. These plots

also show the relevant existing constraints and future
prospects of the proposed SHiP [27] and FCC-ee [28]
experiments. We have also calculated the ARS lepton-
number conserving contribution, obtained by setting to
zero the LV rates in the evolution equations, as done
previously in the existing literature. The results for the
ratio of the full (LV Higgs decay + LC ARS) result to the
ARS one are shown in the right panels of Fig. 4–9. The
regions left in very light grey on these plots are the ones
where this ratio lies between 0.8 and 1.2, i.e. the regions
where the incorporation of the LV part does not change
sizeably the final result.

Let us start with a mass splitting �mN/mN = 10�10.
Fig. 4–7 show the results for this mass splitting and
↵2 = 0,⇡/2,⇡, 3⇡/2. Although the precise quantitative
values (and sign) of the ratio between the full and ARS
results depend strongly on the phase ↵2, the overall pic-
ture is quite stable. For small �, i.e. for values of the
Yukawa couplings of order of the ones given by the basic
seesaw scaling, the two contributions have similar size,
with the LV part dominating in a large region. This
behaviour is already captured by the analytic solutions
given in Sec. IV, and has been argued already in [14].

In addition, for large values of �, the LV Higgs-
decay contribution becomes generically dominant, even
by many orders of magnitude2 with respect to the ARS
one. These large values of � (or equivalently em) can
be obtained generically if lepton number is a symme-
try which is approximately conserved. Such a symmetry
gives at the same time a quasi-degenerate spectrum for 2
RH neutrinos, as necessary here. This large-� region cov-
ers a large fraction of the region of parameters accessible
at SHiP and FCC-ee, i.e. where these experiments could
directly produce the RH neutrino(s). The origin of this
LV dominance is clear: for large � we are in the strong
washout regime. In this regime, as already explained at
the end of Section VA, the �LC

W washout part will ef-
fectively wash out the ARS LC part, whereas the �LV

W
washout part, which is suppressed by an extra m2

N/T 2

factor (see (26) and (27)), will wash out less the LV part
(and only at later times due to this factor), resulting in
a dominant LV part.

In Fig. 8 and 9 we plot the results for �mN/mN equal
to 10�8 and 10�6, respectively. As already emphasized
in Sec. IV, for the weak-washout regime em ⇡ m⌫ , the

1 As already mentioned in Section VA for simplicity we have not
included here the thermal masses for the RH neutrinos, whose
proper treatment in the density-matrix formalism requires a T -
dependent diagonalization of their mass matrix. However, their
e↵ect is expected to be important only for small mass splitting
with quite low values of m

N

.
2 In the plots showing the total to ARS result ratio (right pan-
els), we exhibit contours only up to 102 or 103 because for larger
values the numerical noise due to the smallness of the ARS one,
which appear in the denominator of the ratio, becomes impor-
tant.

YB-YB
ARS

Y
B

ARS

103104105

-13

-12

-11

-10

Tin [GeV]

lo
g 1
0
|Y
B
(T
s
)|

FIG. 10. The final n
B

/s asymmetry obtained as a function of
the initial temperature T

in

(where one assumes no RH neu-
trinos to start with) for the LV Higgs-decay and ARS LC
contributions. We have chosen: m

N

= 10GeV, � = 0.5,
�m

N

/m
N

= 10�7, ↵2 = 0.

larger is �mN/mN , the less is important the LV contri-
bution. However, the LV e↵ects are still important in the
strong-washout region and still dominate by many orders
of magnitude. Nevertheless, in this case the parameter
space leading to successful leptogenesis shrinks, and the
region of successful leptogenesis where the LV contribu-
tion dominates becomes smaller, even if still significant.
For �mN/mN = 10�6, from the right panel of Fig. 9
we see that the LV contribution is still largely dominant
for mN ⇡ 3GeV, � ⇡ 4 � 5. For larger mN this dom-
inance is expected to increase further but in this case
the numerical solution of the density-matrix equations
becomes computationally challenging and a more sophis-
ticated numerical code would be needed (especially for
even larger values of �mN/mN ).

We conclude this section by discussing the dependence
on the initial “reheating” temperature Tin, where one has
assumed that there are no RH neutrinos to start with. As
already argued in [14], the LV Higgs-decay mechanism is
a low-scale one, in the sense that the asymmetry is gen-
erated mainly at temperatures close to the sphaleron de-
coupling one. Thus, it does not rely on UV physics well
above the electroweak scale. The LC flavoured asym-
metries in the ARS scenario, instead, are mainly pro-
duced at T ⇡ Tosc = (M0�m2

N )1/3 (at least in the weak-
washout regime), which easily lies well above Ts. We
illustrate this in Fig. 10, where we plot the LC and LV
contributions as a function of the initial temperature Tin

in the weak-washout regime for �mN/mN = 10�7. The
former is obtained, again, by setting to zero the LV rates,
whereas the later is obtained as the total one minus the
LC one, since in the weak-washout regime the two con-
tributions are additive. For the parameters chosen in
Fig. 10, even though the LV contribution is subdominant
when Tin > Tosc, it becomes dominant, even by 2 orders

T.H., Teresi 17’

LV contribution produced at lower temperature than the ARS-LC
contribution due to the              relative factorm2

N/T 2



Need to incorporate other processes for a full quantitative asymmetry calculation

top quark scattering processes, gauge scattering processes, ...

have all a                 transition as building blockH ! LN
            same mechanism 

          expected to be 
  operative

Besak, Bodeker 12’      
            see also Ghiglieri, Laine 17’

Drewes, Garbrecht, Güter, Klaric, 16’
additional effect found to be small



Summary

 

Summary

  at electroweak scale temperatures: 

thanks to thermal effect leading to     self-energy thermal cut

from total L number violating CP asymmetries: no need for flavour interplay

                                                                with boosted production if no     to begin with

                                                                in a testable way (SHIP,...) for part of the parameter space

                                                              In usual leptogenesis decay formalism the L violating                 decay can easily lead to a B 
enough baryon asymmetry for 

T & TSphaler.

N

We have confirmed these results in density matrix formalism...

in type-I seesaw model with nothing else

N

                                                                both ARS-LC and LV contributions can dominate baryogenesis
depending on parameters

H ! NL

mN < mH
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FIG. 5: Values of ⌘L = nL/n� obtained starting from no N at T
in

= 10T
sph

, for �m0

N/mN = 10�11,�8.5,�6. We have taken
�
11

= (m
sol

/m
atm

)�
22

and f = I
1

= 1 for definiteness. The long-dashed line gives the minimum value needed ⌘obs

L = 2.47⇥10�8.

and FCC-ee, see e.g. [16, 17]. Also shown is the lower
bound on mN obtained from requiring that the decay of
N occurs before BBN. Clearly, for mN around GeV the
available parameter space will be largely probed, with
possibilities up to⇠ 50 GeV. Note also that, as Fig. 4 sug-
gests, if it was not for the BBN bound, leptogenesis from
H decays could be successful for values of mN smaller
than considered here [11]. For f ⇠ 1 we find that lepto-
genesis can be successful for mN as low as ⇠ 20 MeV.

To sum up, the leptogenesis from Higgs decay mecha-
nism proposed here is particularly e�cient at low scale,
based on the 3 following ingredients. First it is based

on the fact that, at low scale, thermal e↵ects induce L-
violating CP-violation in the decays of the SM scalar dou-
blet into a RH neutrino and a lepton. Second it satisfies
the out-of-equilibrium Sakharov condition from the fact
that the RH neutrinos in the decay product (rather than
the decaying particles) are out-of-equilibrium. Third, it
assumes that the N species has not thermalized before
producing the L asymmetry, which boosts the asymmetry
production. This mechanism is testable.
This work is supported by the FNRS-FRS, the FRIA,

the IISN, an ULB-ARC and the Belgian Science Policy,
IAP VI-11.
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