Non-Local Field Theory: From Gravity to Higgs

Anupam Mazumdar

 How to Resolve 1/r- Singularity?

Locality in space \& time : From Blackhole to Cosmological Singularity

Graviton or Photon (mediator is massless)

330 years \& Gravity is Still Mysterious

Stodolna, et.al, (FOM Institute for Atomic and Molecular Physics), PRL 110:213001, 2013

Hydrogen atom $\sim 10^{-10} \mathrm{~m}$
$V(r)=-G \frac{m_{1} m_{2}}{r}[1+\alpha \exp (-r / \lambda)]$

Beyond micro-meter Gravitational Interactions are not known!

$$
\text { or, } M \sim 10^{-2} \mathrm{eV}
$$

There ought to be a New Scale of Gravity which can ameliorate 1/r Singularity

Energy Ladder

New Scales in Gravity \& Higgs Sectors

How to ameliorate the UV behaviour?

Maxwell's Theory

Gravity

Abelian-Higgs

Maxwell's Electromagnetism

Self energy of an electron is infinite in Maxwell's theory

1/r-fall of Coulomb's Potential

Electrodynamics
(QED)

Classical approach: Born-Infeld

Born-Infeld resolves $1 / r$ singularity in Coulomb Potential

$$
\mathcal{L}_{\text {Born-Infeld }}=b^{2}\left[1-\sqrt{1-\left(\boldsymbol{E}^{2}-\boldsymbol{B}^{2}\right) / b^{2}-(\boldsymbol{E} \cdot \boldsymbol{B})^{2} / b^{4}}\right]
$$

$$
b \rightarrow \infty \quad \mathcal{L}_{\text {Born-Infeld }} \rightarrow \mathcal{L}_{\text {Maxwell }}
$$

Maxwell

$$
E_{\mathrm{tot}}=\frac{1}{2} \int(E . D+B . H) d^{3} r
$$

$$
D=e \hat{r} / 4 \pi r^{2}, \quad E=e \hat{r} / 4 \pi \epsilon r^{2}, \quad B=H=0
$$

$E_{\text {tot }}=\frac{1}{32 \pi^{2}} \int_{0}^{\infty} \frac{e^{2}}{r^{4}} 4 \pi r^{2} d r=\infty$

Born-Infeld

$$
\begin{aligned}
\boldsymbol{\nabla} \cdot D & =e \delta^{(3)}(\boldsymbol{r}) \quad \boldsymbol{B}=0 \\
\boldsymbol{D} & =\frac{e \boldsymbol{r}}{4 \pi|\boldsymbol{r}|^{3}} \quad \boldsymbol{D}^{2} / b^{2}=\frac{q^{2}}{r^{4}} \\
E_{\text {tot }} & =4 \pi b^{2} \int_{0}^{\infty} d r r^{2}\left(\sqrt{1+q^{2} / r^{4}}-1\right) \\
& =\frac{4 \Gamma^{2}(5 / 4) \sqrt{e^{3} b}}{3 \pi}=1.2361 \sqrt{e^{3} b}
\end{aligned}
$$

Fact-sheet for Einstein's Gravity

$$
S=\int \sqrt{-g} d^{4} x\left(\frac{R}{16 \pi G}\right)
$$

One loop pure gravitational action is renormalizable

Beyond two loops it is hard to compute, number of Feynman diagrams increases rapidly

Quadratic Curvature Gravity is renormalizable, but contains "Ghosts": Vacuum is Unstable

4th Derivative Gravity \& Power Counting Renormalizability
$I=\int d^{4} x \sqrt{g}\left[\lambda_{0}+k R+a R_{\mu \nu} R^{\mu \nu}-\frac{1}{3}(b+a) R^{2}\right]$

$$
D \propto \frac{1}{k^{4}+A k^{2}}=\frac{1}{A}\left(\frac{1}{k^{2}}-\frac{1}{k^{2}+A}\right)
$$

Massive Spin-0 \& Massive Spin-2 (Ghost) Stelle (1977)
Utiyama (1960), De Witt (1961), Stelle (1977)

Modification of Einstein's GR

Modification of
Graviton Propagator

Extra propagating degree of freedom

Challenge: How to get rid of the extra dof?

Resolution of Quantum Ghosts \& Classical Instabilities

Higher derivative theories generically carry Ghosts (-ve Risidue)

$$
\begin{array}{r}
S=\int d^{4} x \quad \phi \square\left(\square+m^{2}\right) \phi \Rightarrow \square\left(\square+m^{2}\right) \phi=0 \\
\Delta\left(p^{2}\right) \sim \frac{1}{p^{2}}-\frac{1}{p^{2}-m^{2}} \quad \begin{array}{c}
\text { Propagator with first } \\
\text { order poles }
\end{array}
\end{array}
$$

Ghosts cannot be cured order by order, finite terms in perturbative expansion will always lead to Ghosts !!

$$
\begin{gathered}
S=\int d^{4} x \phi e^{-\square / M^{2}}\left(\square+m^{2}\right) \phi \Rightarrow e^{-\square / M^{2}}\left(\square+m^{2}\right) \phi=0 \\
\Delta\left(p^{2}\right)=\frac{e^{-p^{2} / M^{2}}}{p^{2}-m^{2}} \quad \text { No extra states other than the } \\
\text { original dof. }
\end{gathered}
$$

Woodard (1991), Moffat (1991), Tomboulis (1997), Tseytlin (1997), Siegel (2003), Biswas, Grisaru, Siegel (2004), Biswas, Mazumdar, Siegel (2006)

Born-Infeld Gravity

GR in IR

Corrections in UV

$M \rightarrow \infty$ (Theory reduces to GR)

Biswas, AM, Siegel

Biswas, Gerwick, Koivisto, AM

Bouncing universes in string-inspired gravity, hep-th/0508194, JCAP (2006)

Towards singularity and ghost free theories of gravity, 1110.5249 [gr-qc], PRL (2012)

Higher Curvature Construction in

Gravity

$$
S_{q}=\int d^{4} x \sqrt{-g} R_{\mu_{1} \nu_{1} \lambda_{1} \sigma_{1}} \mathcal{O}_{\mathcal{O}_{2} \nu_{2} \nu_{2} \lambda_{2} \sigma_{2}}^{\mu_{1} \nu_{1} \lambda_{1} \sigma_{1}} R^{\mu_{2} \nu_{2} \lambda_{2} \sigma_{2}}
$$

All possible terms allowed by symmetry

Unknown Infinite Functions of Covariant Derivatives

$$
\begin{aligned}
S_{q} & =\int d^{4} x \sqrt{-g}\left[R F_{1}(\square) R+R F_{2}(\square) \nabla_{\mu} \nabla_{\nu} R^{\mu \nu}+R_{\mu \nu} F_{3}(\square) R^{\mu \nu}+R_{\mu}^{\nu} F_{4}(\square) \nabla_{\nu} \nabla_{\lambda} R^{\mu \lambda}\right. \\
& +R^{\lambda \sigma} F_{5}(\square) \nabla_{\mu} \nabla_{\sigma} \nabla_{\nu} \nabla_{\lambda} R^{\mu \nu}+R F_{6}(\square) \nabla_{\mu} \nabla_{\nu} \nabla_{\lambda} \nabla_{\sigma} R^{\mu \nu \lambda \sigma}+R_{\mu \lambda} F_{7}(\square) \nabla_{\nu} \nabla_{\sigma} R^{\mu \nu \lambda \sigma} \\
& +R_{\lambda}^{\rho} F_{8}(\square) \nabla_{\mu} \nabla_{\sigma} \nabla_{\nu} \nabla_{\rho} R^{\mu \nu \lambda \sigma}+R^{\mu_{1} \nu_{1}} F_{9}(\square) \nabla_{\mu_{1}} \nabla_{\nu_{1}} \nabla_{\mu} \nabla_{\nu} \nabla_{\lambda} \nabla_{\sigma} R^{\mu \nu \lambda \sigma} \\
& +R_{\mu \nu \lambda} F_{10}(\square) R^{\mu \nu \lambda \sigma}+R_{\mu \nu \lambda}^{\rho} F_{11}(\square) \nabla_{\rho} \nabla_{\sigma} R^{\mu \nu \lambda \sigma}+R_{\mu \rho_{1} \nu \sigma_{1}} F_{12}(\square) \nabla^{\rho_{1}} \nabla^{\sigma_{1}} \nabla_{\rho} \nabla_{\sigma} R^{\mu \rho \nu \sigma} \\
& \left.+R_{\mu}^{\nu_{\mu} \rho_{1} \sigma_{1}} F_{13}(\square) \nabla_{\rho_{1}} \nabla_{\sigma_{1}} \nabla_{\nu_{1}} \nabla_{\nu} \nabla_{\rho} \nabla_{\sigma} R^{\mu \nu \lambda \sigma}+R^{\mu_{1} \nu_{1} \rho_{1} \sigma_{1}} F_{14}(\square) \nabla_{\rho_{1}} \nabla_{\sigma_{1}} \nabla_{\nu_{1}} \nabla_{\mu_{1}} \nabla_{\mu} \nabla_{\nu} \nabla_{\rho} \nabla_{\sigma} R^{\mu \nu \lambda \sigma}\right]
\end{aligned}
$$

Higher Curvature Action \& Form

Factors

$S=\int d^{4} x \sqrt{-g}\left[\frac{R}{16 \pi G}+R \mathcal{F}_{1}\left(\frac{\square}{M^{2}}\right) R+R_{\mu \nu} \mathcal{F}_{2}\left(\frac{\square}{M^{2}}\right) R^{\mu \nu}+R_{\mu \nu \lambda \sigma} \mathcal{F}_{3}\left(\frac{\square}{M^{2}}\right) R^{\mu \nu \lambda \sigma}\right]$
Einstein-Hilbert

Ultra-violet modifications

Recovers IR

$$
\frac{\square}{M^{2}} \quad M \rightarrow \infty(\text { Theory reduces to GR) }
$$

Infinite Derivative Gravity (IDG)

Biswas, AM, Siegel, hep-th/0508194
Biswas, Gerwick, Koivisto, AM, gr-qc/1110.5249
Biswas, Koshelev, AM, (extension for de Sitter \mathcal{E} Anti-deSitter),
arXiv:1602.08475, arXiv:1606.01250

Infinite derivative Gravity

$$
S=\int d^{4} x \sqrt{-g}\left[M_{p}^{2} \frac{R}{2}+R\left[\frac{e^{-\square / M_{s}^{2}}-1}{\square}\right] R-2 R_{\mu \nu}\left[\frac{e^{-\square / M_{s}^{2}}-1}{\square}\right] R^{\mu \nu}\right]
$$

Massless Graviton, massless spin-2 and spin-0 components propagate

Non-Local Gravitational Potential

$$
S=\int d^{4} x \sqrt{-g}\left[\frac{R}{2}+R\left[\frac{e^{\frac{-\square}{M^{2}}}-1}{\square}\right] R-2 R_{\mu \nu}\left[\frac{e^{-\frac{\square}{M^{2}}}-1}{\square}\right] R^{\mu \nu}\right]
$$

$$
\begin{gathered}
d s^{2}=-(1-2 \Phi) d t^{2}+(1+2 \Psi) d r^{2} \\
\Phi=\Psi=\frac{G m}{r} \operatorname{erf}\left(\frac{r M}{2}\right)
\end{gathered}
$$

Interaction becomes Non-Local

Biswas, Gerwick, Koivisto, AM, Phys. Rev. Lett. (2012) (gr-qc/1110.5249)

Resolution of Singularity at short distances

$$
a(\square)=e^{\gamma(\square)} \quad \text { Any Entire Function: } \gamma(\square)=-\frac{\square}{M^{2}}-\sum_{N} a_{N}\left(\frac{\square}{M^{2}}\right)^{N}
$$

$$
m M \ll M_{p}^{2} \Longrightarrow m \ll M_{p}
$$

Current Bound : M $>0.01 \mathrm{eV} \quad m \leq 10^{25}$ grams
Biswas, Gerwick, Koivisto, AM (2012), Edholm, Koshelev, AM (2016), Frolov \& Zelnikov $(2015,2016)$

Astrophysical Blackhole

$$
S_{g} \propto N
$$

$$
\begin{gathered}
r \sim M_{e f f}^{-1} \sim \frac{\sqrt{N}}{M_{s}} \\
\frac{\bar{N}}{I_{s}} \geq r_{s c h} \sim \frac{2 M_{n s}}{M_{p}^{2}}
\end{gathered}
$$

Length scale of Non-locality shifts from UV to IR $\quad M_{e f f}=\frac{M_{s}}{\sqrt{N}}$

Koshelev, AM, PRD (2017)

Non-singular Cosmology

$$
S=\int d^{4} x \sqrt{-g}\left[\frac{R}{2}+R\left[\frac{e^{\frac{-\square}{M^{2}}}-1}{\square}\right] R-2 R_{\mu \nu}\left[\frac{e^{-\frac{\square}{M^{2}}}-1}{\square}\right] R^{\mu \nu}\right]
$$

Biswas, AM, Siegel (2007), Biswas, Koivisto, AM (2011), Biswas, Koshelev, AM, Vernov (2014)

Applications of Non-locality in Higgs

At high energies higher derivatives in the Higgs sector !

Local vs Non-Local Field Theory

$$
S=\int d^{4} x\left[-\frac{1}{2} \phi e^{\frac{\square+m^{2}}{M^{2}}}\left(\square+m^{2}\right) \phi-\frac{\lambda}{4!} \phi^{4}\right] \quad \Pi\left(p^{2}\right)=-\frac{i e^{-\frac{p^{2}+m^{2}}{M^{2}}}}{p^{2}+m^{2}}
$$

$$
P^{2}<M^{2}
$$

$$
r \sim M^{-1}
$$

Scale of Non-Locality

$$
\begin{gathered}
\delta m^{2} \sim \lambda M^{2} \quad \Gamma_{4} \sim-\lambda^{2} e^{-2 m^{2} / M^{2}}\left[1+\mathcal{O}\left(m^{2} / M^{2}\right)\right] \\
\sigma_{N L}\left(f \bar{f} \rightarrow f^{\prime} \bar{f}^{\prime}\right)=e^{-s / M^{2}} \sigma_{L}\left(f \bar{f} \rightarrow f^{\prime} \bar{f}^{\prime}\right)
\end{gathered}
$$

Moffat Phys.Rev.D (1990), Biswas + Okada, Nucl. Phys. B (2016)

Freezing Higgs Interactions

$$
\begin{align*}
\mathcal{L}= & -\frac{1}{2} \phi e^{\frac{\square+m_{2}^{2}}{M^{2}}}\left(\square+m_{\phi}^{2}\right) \phi+i \bar{\psi} e^{\frac{\square+m^{2}}{M^{2}}}\left(\gamma^{\mu} \partial_{\mu}-m_{\psi}\right) \psi \\
& -\lambda \phi^{4}-y \phi \bar{\psi} \psi+h . c . \quad \text { Abelian Higgs } \tag{1}\\
\mathcal{L}= & -\frac{1}{4} F^{\mu \nu} e^{\frac{\square}{M^{2}}} F_{\mu \nu}+i \bar{\psi} e^{\frac{\nabla^{2}}{M^{2}}} \gamma^{\mu} D_{\mu} \psi+h . c .
\end{align*}
$$

Ghoshal, AM, Okada, Villalba (2017)

Implications for Higgs Cosmology beyond the scale of Non-locality

The BIG THAW

Towards Asymptotic Freedom

Weakens Interactions in the UV

Weakening of Gravitational Interaction Smears out Singularities \& Event Horizon

Provide Stability to the Abelian Higgs Potential

Higgs Interactions in the UV become frozen, the Abelian-Higgs becomes non-dynamical in the UV

Blackhole vs Non-Singular Compact Object (NSCO)

spatial
infinity

singularity

