
Sq =

⇤
d4x

⇥
�g[RF1(⇤)R+RF2(⇤)⇤µ⇤µR

µ⇤ +Rµ⇤F3(⇤)Rµ⇤ +R⇤
µF4(⇤)⇤⇤⇤�R

µ�

+ R�⇧F5(⇤)⇤µ⇤⇧⇤⇤⇤�R
µ⇤ +RF6(⇤)⇤µ⇤⇤⇤�⇤⇧R

µ⇤�⇧ +Rµ�F7(⇤)⇤⇤⇤⇧R
µ⇤�⇧

+ R⌅
�F8(⇤)⇤µ⇤⇧⇤⇤⇤⌅R

µ⇤�⇧ +Rµ1⇤1F9(⇤)⇤µ1⇤⇤1⇤µ⇤⇤⇤�⇤⇧R
µ⇤�⇧

+ Rµ⇤�⇧F10(⇤)Rµ⇤�⇧ +R⌅
µ⇤�F11(⇤)⇤⌅⇤⇧R

µ⇤�⇧ +Rµ⌅1⇤⇧1F12(⇤)⇤⌅1⇤⇧1⇤⌅⇤⇧R
µ⌅⇤⇧

+ R⇤1⌅1⇧1
µ F13(⇤)⇤⌅1⇤⇧1⇤⇤1⇤⇤⇤⌅⇤⇧R

µ⇤�⇧ +Rµ1⇤1⌅1⇧1F14(⇤)⇤⌅1⇤⇧1⇤⇤1⇤µ1⇤µ⇤⇤⇤⌅⇤⇧R
µ⇤�⇧]

Non-Local Field Theory: 
From Gravity to Higgs
          Anupam Mazumdar
                          

V ⇠ 1

r

How to Resolve 1/r- Singularity?



Locality in space & time : From 
Blackhole to Cosmological Singularity

A B

Graviton or  Photon  
(mediator is massless)

V ⇠ 1

r



Gravitational Interaction is least known

There ought to be a New Scale of Gravity which can ameliorate 1/r Singularity

Stodolna, et.al, (FOM Institute for Atomic and  
Molecular Physics), PRL 110:213001, 2013

Hydrogen atom ⇠ 10�10 m

Beyond micro-meter Gravitational Interactions are not known!

330 years & Gravity is Still Mysterious

or, M ⇠ 10

�2
eV



New Scales in Gravity & Higgs Sectors

Energy Ladder

(1027 eV)4

(10�3 eV)4

(10�2 eV)4

?

(10�3 eV)4

(1012 eV)4

(1028 eV)4

?



How to ameliorate the UV 
behaviour?

Maxwell’s Theory

Gravity

Abelian-Higgs



Maxwell’s Electromagnetism

1/r-fall of Coulomb’s 
Potential

Quantum 
Electrodynamics 

(QED)

Classical approach:
Born-Infeld

Self energy of an 
electron is infinite in 
Maxwell’s theory



Born-Infeld resolves 1/r singularity in 
Coulomb Potential

Nonlinear electrodynamics of Born and Infeld

Born and Infeld used false arguments but obtained a unique theory

LBorn−Infeld = b2

[

√

− det(gµν) −
√

− det(gµν + fµν/b)

]

Born-Infeld electrodynamics has earned its longevity
through its elegant, compact, determinantal form

S. Deser and G. W. Gibbons (1998)
in Born-Infeld-Einstein Actions

Lagrangian density in Minkowski space

LBorn−Infeld = b2
[

1 −
√

1 − (E2 − B2)/b2 − (E ·B)2/b4
]

Born-Infeld electrodynamics – p. 4/11b ! 1 L
Born�Infeld

! L
Maxwell

E
tot

=
1

2

Z
(E.D +B.H)d3r

D = er̂/4⇡r2, E = er̂/4⇡✏r2, B = H = 0

E
tot

=
1

32⇡2

Z 1

0

e2

r4
4⇡r2dr = 1

Energy of a point charge

Energy density is integrable for a point particle

∇ · D = eδ(3)(r) B = 0

D =
er

4π|r|3
D2/b2 =

q2

r4

Etot = 4πb2

∫ ∞

0
dr r2

(

√

1 + q2/r4 − 1
)

=
4Γ2(5/4)

√
e3b

3π
= 1.2361

√
e3b

Finite energy solutions of Born-Infeld theory are now often called BIons

Electromagnetic field of a moving charge is found by Lorentz transformation

Born-Infeld electrodynamics – p. 7/11

Maxwell Born-Infeld



Fact-sheet for Einstein’s Gravity

S =

Z p
�gd

4
x

✓
R

16⇡G

◆

One loop pure gravitational action is renormalizable

Beyond two loops it is hard to compute, number of Feynman 
diagrams increases rapidly

Quadratic Curvature Gravity is renormalizable, but contains 
“Ghosts”: Vacuum is Unstable

Utiyama (1961), De Witt (1961),  Stelle (1977)
t’Hooft, Veltman (1974)



4th Derivative Gravity & Power Counting     
Renormalizability

In four dimensions the expression for the Euler characteristic can be written equivalently as

χ =
1

32π2

∫

d4x
√

g
[

RµνλσRµνλσ − 4RµνRµν + R2
]

(100)

The last result is the four-dimensional analogue of the two-dimensional Gauss-Bonnet formula

χ =
1

2π

∫

d2x
√

g R (101)

where χ = 2(g − 1) and g is the genus of the surface (the number of handles). For a manifold of

fixed topology one can therefore use in four dimensions

RµνλσRµνλσ = 4RµνRµν − R2 + const. (102)

and

CµνλσCµνλσ = 2 (RµνRµν − 1
3R2) + const. (103)

Thus only two curvature squared terms for the gravitational action are independent in four dimen-

sions (Lanczos, 1938), which can be chosen, for example, to be R2 and R2
µν . Consequently the

most general curvature squared action in four dimensions can be written as

I =
∫

d4x
√

g
[

λ0 + k R + aRµνRµν − 1
3 (b + a)R2

]

(104)

with k = 1/16πG, and up to boundary terms. The case b = 0 corresponds, by virtue of Eq. (103), to

the conformally invariant, pure Weyl-squared case. If b < 0 then around flat space one encounters

a tachyon at tree level (Stelle, 1977). It will also be of some interest later that in the Euclidean

case (signature + + ++) the full gravitational action of Eq. (104) is positive for a > 0, b < 0 and

λ0 > −3/4b(16πG)2.

Curvature squared actions for classical gravity were originally considered in (Weyl, 1922) and

(Pauli, 1956). In the sixties it was argued that the higher derivative action of Eq. (104) should be

power counting renormalizable (Utiyama and DeWitt, 1961). Later it was proven to be renormal-

izable to all orders in perturbation theory (Stelle, 1977). Some special cases of higher derivative

theories have been shown to be classically equivalent to scalar-tensor theories (Whitt 1984).

One way to investigate physical properties of higher derivative theories is again via the weak

field expansion. In analyzing the particle content it is useful to introduce a set of spin projection

operators (Arnowitt, Deser and Misner, 1958; van Nievenhuizen, 1973), quite analogous to what

is used in describing transverse-traceless (TT) modes in classical gravity (Misner, Thorne and

Wheeler, 1973). These projection operators then show explicitly the unique decomposition of the

Utiyama (1960),  De Witt (1961),   Stelle (1977)

Massive Spin-0        &       Massive Spin-2 ( Ghost )  Stelle (1977)

D / 1

k4 +Ak2
=

1

A

✓
1

k2
� 1

k2 +A

◆

Modification of Einstein’s GR

Modification of 
Graviton Propagator

Extra propagating 
degree of freedom

Challenge:  How to get rid of the extra dof ?



Higher derivative theories generically carry Ghosts ( -ve Risidue )

Propagator with first 
order poles

Resolution of Quantum Ghosts & 
Classical Instabilities

Ghosts cannot be cured order by order, finite terms in perturbative expansion 
will always lead to Ghosts !!

No extra states other than the 
original dof.

Woodard (1991), Moffat (1991),  Tomboulis (1997),  Tseytlin (1997),    Siegel (2003),   Biswas, Grisaru,  Siegel 
(2004),   Biswas,  Mazumdar,  Siegel (2006)

S =

Z
d

4
x �⇤(⇤+m

2)� ) ⇤(⇤+m

2)� = 0

�(p2) ⇠ 1

p2
� 1

p2 �m2

�(p2) =
e�p2/M2

p2 �m2

S =

Z
d

4
x �e

�⇤/M2

(⇤+m

2)� ) e

�⇤/M2

(⇤+m

2)� = 0



Born-Infeld Gravity
GR in IR Corrections in UV

4

vacua may be a way to constrain the higher curvature
terms that didn’t seem to play any role in our analysis.
Other ways of constraining/determining the higher cur-
vature terms would be to look for additional symmetries
or to try to extend Stelle’s renormalizability arguments
to these non-local theories. E�orts in this direction have
been made [14]. Finally, it is known that one can ob-

tain GR starting from the free quadratic theory for hµ⇤

by consistently coupling to its own stress energy tensor.
Similarly, can one obtain unique consistent covariant ex-
tensions of the higher derivative quadratic actions that
we have considered? We leave these questions for future
investigations.

Appendix

The full quadratic action in curvature reads

Sq =

⇤
d4x

⇥
�g[RF1(⇤)R+RF2(⇤)⇤µ⇤µR

µ⇤ +Rµ⇤F3(⇤)Rµ⇤ +R⇤
µF4(⇤)⇤⇤⇤�R

µ�

+ R�⇧F5(⇤)⇤µ⇤⇧⇤⇤⇤�R
µ⇤ +RF6(⇤)⇤µ⇤⇤⇤�⇤⇧R

µ⇤�⇧ +Rµ�F7(⇤)⇤⇤⇤⇧R
µ⇤�⇧

+ R⌅
�F8(⇤)⇤µ⇤⇧⇤⇤⇤⌅R

µ⇤�⇧ +Rµ1⇤1F9(⇤)⇤µ1⇤⇤1⇤µ⇤⇤⇤�⇤⇧R
µ⇤�⇧

+ Rµ⇤�⇧F10(⇤)Rµ⇤�⇧ +R⌅
µ⇤�F11(⇤)⇤⌅⇤⇧R

µ⇤�⇧ +Rµ⌅1⇤⇧1F12(⇤)⇤⌅1⇤⇧1⇤⌅⇤⇧R
µ⌅⇤⇧

+ R⇤1⌅1⇧1
µ F13(⇤)⇤⌅1⇤⇧1⇤⇤1⇤⇤⇤⌅⇤⇧R

µ⇤�⇧ +Rµ1⇤1⌅1⇧1F14(⇤)⇤⌅1⇤⇧1⇤⇤1⇤µ1⇤µ⇤⇤⇤⌅⇤⇧R
µ⇤�⇧] (27)

The coe⇥cients of the free theory (3) in terms of the F ’s are given by

a(⇤) = 1� 1

2
F3(⇤)⇤� 1

2
F7(⇤)⇤2 � 2F10(⇤)⇤� 1

2
F11(⇤)⇤2 � 1

2
F12(⇤)⇤3 (28)

b(⇤) = �1 +
1

2
F3(⇤)⇤+

1

2
F7(⇤)⇤2 + 2F10(⇤)⇤+

1

2
F11(⇤)⇤2 +

1

2
F12(⇤)⇤3 (29)

c(⇤) = 1 + 2F1(⇤)⇤+ F2(⇤)⇤2 +
1

2
F3(⇤)⇤+

1

2
F4(⇤)⇤2 +

1

2
F5(⇤)⇤3 (30)

d(⇤) = �1� 2F1(⇤)⇤� F2(⇤)⇤2 � 1

2
F3(⇤)⇤� 1

2
F4(⇤)⇤2 � 1

2
F5(⇤)⇤3 (31)

f(⇤) =� 2F1(⇤)⇤� F2(⇤)⇤2 � F3(⇤)⇤

� 1

2

�
F4(⇤)⇤2 + F5(⇤)⇤3 + F7(⇤)⇤2 + 4F10(⇤)⇤+ F11(⇤)⇤2 + F12(⇤)⇤3

⇥
(32)
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We present the most general ghost-free gravitational action in a Minkowski vacuum. Apart from
the much studied f(R) models, this includes a large class of non-local actions with improved UV
behavior, which nevertheless recover Einstein’s general relativity in the IR.

The theory of General Relativity (GR) has an ultravi-
olet (UV) problem which is typically manifested in cos-
mological or black-hole type singularities. Any resolution
to this problem requires a theory which is well behaved
in the UV and reduces suitably to Einstein’s gravity in
the infrared (IR)1. In this letter, our aim is to investigate
whether the typical divergences at short distances can be
ameliorated in higher derivative covariant generalizations
of GR.

Higher derivative theories of gravity are generally bet-
ter behaved in the UV and o�er an improved chance
to construct a singularity free theory [2]. Furthermore,
Ref. [3] demonstrated that fourth order theories of grav-
ity are renormalizable, but inevitably su�er from unphys-
ical ghost states. Therefore, before we address the short-
distance behavior of GR, we first ennumerate the subset
of all possible modifications to Einstein’s gravity which
are guaranteed to be ghost-free. To the best of our knowl-
edge, a systematic method for this is not presently avail-
able.
Generic quadratic action of gravity: Let us start
with the most general covariant action of gravity. We im-
mediately realize that to understand both the asymptotic
behavior in the UV and the issue of ghosts, we require
only the graviton propagator. In other words, we look at
metric fluctuations around the Minkowski background

gµ⇤ = �µ⇤ + hµ⇤ , (1)

and consider terms in the action that are quadratic in
hµ⇤ . Since in the Minkowski background Rµ⇤�⌅ vanishes,
every appearance of the Riemann tensor contributes an
O(h) term in the action. Hence, we consider only terms
that are products of at most two curvature terms, and
higher ones simply do not play any role in this analysis.

1
In the light of current cosmic acceleration observations, there

have been e↵orts to modify gravity at large distances, see [1] for

a review, but we do not discuss these models here.

The most general relevant action is of the form

Sq =

�
d4x

⇤
�gRµ1⇤1�1⌅1O

µ1⇤1�1⌅1

µ2⇤2�2⌅2
Rµ2⇤2�2⌅2 , (2)

where O is a di�erential operator containing covariant
derivatives and �µ⇤ . We note that if there is a di�eren-
tial operator acting on the left Riemann tensor, one can
always recast that into the above form by integrating by
parts. The most general action is captured by 14 arbi-
trary functions, the Fi’s, which we display in eq.(27) in
the appendix.
Our next task is to obtain the quadratic (in hµ⇤) free

part of this action. Since the curvature vanishes on the
Minkowski background, the two h dependent terms must
come from the two curvature terms present. This means
the covariant derivatives take on their Minkowski values.
As is obvious, many of the terms simplify and combine
to eventually produce the following action

Sq = �
�

d4x
⇥1
2
hµ⇤a(⇤)⇤hµ⇤ + h⌅

µb(⇤)⌅⌅⌅⇤h
µ⇤ (3)

+ hc(⇤)⌅µ⌅⇤h
µ⇤ +

1

2
hd(⇤)⇤h+ h�⌅ f(⇤)

⇤ ⌅⌅⌅�⌅µ⌅⇤h
µ⇤
⇤
.

The above can be thought of as a higher derivative gener-
alization of the action considered by van Nieuwenhuizen
in Ref. [4]. Here, we have allowed a, b, c, d and f to be
nonlinear functions of the derivative operators that re-
duce in the appropriate limit to the constants a, b, c and
d of Ref. [4]. The function f(⇤) appears only in higher
derivative theories. In the appendix (28-32) we have cal-
culated the contribution from the Einstein-Hilbert term
and the higher derivative modifications to the action in
eq.(3). From the explicit expressions we observe the fol-
lowing relationships:

a+ b = 0 (4)

c+ d = 0 (5)

b+ c+ f = 0 (6)

so that we are left with only two independent arbitrary
functions.

Unknown Infinite Functions 
of Covariant Derivatives

4

terms that played no role in our analysis. Other ways
of constraining/determining the higher curvature terms
would be to look for additional symmetries or to try
to extend Stelle’s renormalizability arguments to these
non-local theories. Efforts in this direction have been
made [14]. Finally, it is known that one can obtain GR

starting from the free quadratic theory for hµν by consis-
tently coupling to its own stress energy tensor. Similarly,
can one obtain unique consistent covariant extensions of
the higher derivative quadratic actions that we have con-
sidered? We leave these questions for future investiga-
tions.

Appendix

The full quadratic action in curvature reads

Sq =

∫

d4x
√
−g[RF1(!)R+RF2(!)∇µ∇νR

µν +RµνF3(!)Rµν +Rν
µF4(!)∇ν∇λR

µλ

+ RλσF5(!)∇µ∇σ∇ν∇λR
µν +RF6(!)∇µ∇ν∇λ∇σR

µνλσ +RµλF7(!)∇ν∇σR
µνλσ

+ Rρ
λF8(!)∇µ∇σ∇ν∇ρR

µνλσ +Rµ1ν1F9(!)∇µ1
∇ν1∇µ∇ν∇λ∇σR

µνλσ

+ RµνλσF10(!)Rµνλσ +Rρ
µνλF11(!)∇ρ∇σR

µνλσ +Rµρ1νσ1
F12(!)∇ρ1∇σ1∇ρ∇σR

µρνσ

+ Rν1ρ1σ1

µ F13(!)∇ρ1
∇σ1

∇ν1∇ν∇ρ∇σR
µνλσ +Rµ1ν1ρ1σ1F14(!)∇ρ1

∇σ1
∇ν1∇µ1

∇µ∇ν∇ρ∇σR
µνλσ] (27)

The coefficients of the free theory (3) in terms of the F ’s are given by

a(!) = 1−
1

2
F3(!)!−

1

2
F7(!)!2 − 2F10(!)!−

1

2
F11(!)!2 −

1

2
F12(!)!3 (28)

b(!) = −1 +
1

2
F3(!)!+

1

2
F7(!)!2 + 2F10(!)!+

1

2
F11(!)!2 +

1

2
F12(!)!3 (29)

c(!) = 1 + 2F1(!)! + F2(!)!2 +
1

2
F3(!)!+

1

2
F4(!)!2 +

1

2
F5(!)!3 (30)

d(!) = −1− 2F1(!)! − F2(!)!2 −
1

2
F3(!)!−

1

2
F4(!)!2 −

1

2
F5(!)!3 (31)

f(!) =− 2F1(!)!− F2(!)!2 − F3(!)!

−
1

2

(

F4(!)!2 + F5(!)!3 + F7(!)!2 + 4F10(!)!+ F11(!)!2 + F12(!)!3
)

(32)
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Thus, we finally conclude that provided (17) is satisfied, the k2 = 0 pole just describes the physical graviton state, the
negative ghost-like residue of the scalar propagator has precisely the coefficient to cancel the unphysical longitudinal
degrees of freedom in the spin-2 part [40]. Secondly, the condition that the theory be ghost free boils down to simply
requiring that a(!) is an entire function, and a(!) − 3c(!) has at most a single zero, the corresponding residue at
the pole would necessarily have the correct sign, this is in fact what happens in the simple F (R) gravity models.
If further one does not want to introduce any extra degrees of freedom, one is left with only a single arbitrary entire

function, a(!):

a(!) = c(!) ⇒ 2F1(!) + F2(!) + 2F3(!) = 0 (19)

While several different F ’s can satisfy the above relation, a particularly simple class which mimics the stringy gaussian
nonlocalities is given by

a(!) = e−
!
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!
M2 − 1

! = −F2(!)

2
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leading to a ghost free action of the form:
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(21)

By construction the above action contains only the graviton as physical degrees of freedom as in GR, but contains an
exponentially damped propagator in the UV which, as we shall now argue, can have profound consequences for the
gravitational singularities.

III. BEYOND QUADRATIC CURVATURE TERMS

Is there a way to extend the above algorithm to include terms which are higher than quadratic in curvatures?
We know that the classical background space-time responds to the matter content of the universe, and one would
imagine that a truly consistent theory of gravity should be free from ghosts and other instabilities around any such
realizable background. This in fact would be a way to impose further restrictions on the allowed terms going beyond
the quadratic curvatures. While analyzing the issue of ghosts and instabilities around arbitrary classical backgrounds
is well beyond the present scope, (anti)de Sitter space-times serves as a relatively tractable playground. For instance,
the facts that the Weyl tensor vanishes on (A)dS space-times, that the Ricci tensor is proportional to the metric, and
finally that the metric is always annihilated by covariant derivatives, allow one to limit oneself to only actions of the
form [30]
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∫
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2
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]
(22)

while studying fluctuations.
To get an idea about how the higher curvatures may enter the arena, let us consider a simple subclass of the above

action which is a generalization of the stringy nonlocal gravity action (21):
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with

α1(0) = α2(0) = 1 , (24)

so that the action is equivalent to (21) as far as the fluctuations around the Minkowski space-time (Λ = 0) is concerned.
Now, in order to have a consistent (A)dS vacuum we need to make sure that the linear variation of the action

around the (A)dS metric, ḡµν :

gµν = ḡµν + hµν , (25)

vanishes. Since

R̄µν = λḡµν ; R̄ = 4λ and ∇̄µḡνρ = 0 (26)

Interaction becomes Non-Local
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Non-singular Cosmology
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Thus, we finally conclude that provided (17) is satisfied, the k2 = 0 pole just describes the physical graviton state, the
negative ghost-like residue of the scalar propagator has precisely the coefficient to cancel the unphysical longitudinal
degrees of freedom in the spin-2 part [40]. Secondly, the condition that the theory be ghost free boils down to simply
requiring that a(!) is an entire function, and a(!) − 3c(!) has at most a single zero, the corresponding residue at
the pole would necessarily have the correct sign, this is in fact what happens in the simple F (R) gravity models.
If further one does not want to introduce any extra degrees of freedom, one is left with only a single arbitrary entire

function, a(!):

a(!) = c(!) ⇒ 2F1(!) + F2(!) + 2F3(!) = 0 (19)

While several different F ’s can satisfy the above relation, a particularly simple class which mimics the stringy gaussian
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a(!) = e−
!

M2 and F3 = 0 ⇒ F1(!) =
e−

!
M2 − 1

! = −F2(!)

2
(20)

leading to a ghost free action of the form:

S =

∫
d4x

√
−g

[
R

2
+R

[
e

−!
M2 − 1

!

]
R− 2Rµν

[
e−

!
M2 − 1

!

]
Rµν

]
(21)

By construction the above action contains only the graviton as physical degrees of freedom as in GR, but contains an
exponentially damped propagator in the UV which, as we shall now argue, can have profound consequences for the
gravitational singularities.

III. BEYOND QUADRATIC CURVATURE TERMS

Is there a way to extend the above algorithm to include terms which are higher than quadratic in curvatures?
We know that the classical background space-time responds to the matter content of the universe, and one would
imagine that a truly consistent theory of gravity should be free from ghosts and other instabilities around any such
realizable background. This in fact would be a way to impose further restrictions on the allowed terms going beyond
the quadratic curvatures. While analyzing the issue of ghosts and instabilities around arbitrary classical backgrounds
is well beyond the present scope, (anti)de Sitter space-times serves as a relatively tractable playground. For instance,
the facts that the Weyl tensor vanishes on (A)dS space-times, that the Ricci tensor is proportional to the metric, and
finally that the metric is always annihilated by covariant derivatives, allow one to limit oneself to only actions of the
form [30]
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so that the action is equivalent to (21) as far as the fluctuations around the Minkowski space-time (Λ = 0) is concerned.
Now, in order to have a consistent (A)dS vacuum we need to make sure that the linear variation of the action

around the (A)dS metric, ḡµν :

gµν = ḡµν + hµν , (25)

vanishes. Since
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Applications of Non-locality in Higgs 

At high energies higher derivatives in the 
Higgs sector ! 



Local vs Non-Local Field Theory
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Freezing Higgs Interactions

Abelian Higgs
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Implications for Higgs Cosmology
beyond the scale of Non-locality



Weakens Interactions in the UV

Weakening of Gravitational Interaction Smears out 
Singularities & Event Horizon

Provide Stability to the Abelian Higgs Potential 

Higgs Interactions in the UV become frozen, the 
Abelian-Higgs becomes non-dynamical in the UV

Towards Asymptotic Freedom



Blackhole vs Non-Singular Compact Object (NSCO)

NSCO Surface


