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Goal of study

® Find “simple” model which provides:
® CP violation and

® Dark Matter candidate



Standard Model scalar sector

® One SU(2) doublet, two complex fields
® 3 real fields “removed” (Goldstone)
® | real field left, Higgs

® CP conserved in the scalar sector



Two-Higgs-Doublet Model

Two SU(2) doublets, four complex fields
3 real fields “removed” (Goldstone)
| complex field left (Charged Higgs)

3 real fields left.



Two-Higgs-Doublet Model, cont

® CP violation may be spontaneous (real
potential), or

® CP violation may be “explicit” (complex,
but Hermitian potential).

® Conditions for CP violation expressed in
terms of “invariants” formed from
coefficients in potential



2HDM notation
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CP conservation:

Define:
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On the other hand, if

IHlJl =ImJ2 :ImJ3 =0

IS violated, we have CP violation



What is the physical content!?

Can
Im Jl, Im JQ, Im Jg

be rephrased in terms of
“physical” quantities?




The physical content

Footnote: ImJ; =ImJ3g + terms o< Im Jq,Im Js
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This result was published by
Lavoura and Silva in 1994
(see also Botella and Silva, 1995)

Revisited by Grzadkowski et al, 2014



Couplings:
antisymmetric
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Recall CP-conserving 2HDM

Let H, = h  Discovered 2012, 125 GeV
Ho=H
Hs=A

Then
(ZHA) e #£0  (hHYH™) ¢ #0
(ZhA) ey 40  (HHTH™) g #0
(ZhH) e3=0 (AH"H™) ¢3=0

The invariants Im.J;, ImJ,, Im.J; vanish
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LHC

Discovered Higgs particle is practically CP even
Within 2HDM, Im J;, Im Jy vanish
But Im J5;, could be non-zero

However, it is very hard to measure



Dark Matter

® Add , ZEro vev
® Studied in 2009, 201 |:“IDM2”
® Extension of popular IDM, but allowing CPV

3 doublets



Motivations for three Higgs doublets

® Three fermion generations may suggest
three doublets

® |nteresting scenario for dark matter

® Possibility of having a discrete symmetry
and still having spontaneous CP violation

® Rich phenomenology



Motivation for imposing discrete
symmetries

® Symmetries reduce the number of free
parameters

® Symmetries help to control FCNC

® Symmetries are needed to stabilise dark
matter



Foothote

® The first derivative of a potential (when set
to zero) defines the vacuum expectation
value(s)

® The second derivatives of a potential define
a mass-squared matrix



“Problems”

® Vacuum:When many fields, get many
coupled equations (cubic and trigonometric)

® Mass matrices:VWWhen many fields, get large
matrices to diagonalize



Simpler approach

Pick a vacuum of interest (must identify possibilities)

Pick a mass spectrum of interest
Construct potential

Check consistency (positivity etc)

Advantages

® Control of physical content

® |inear equations!

End of footnote



Three SU(2) x U(1)-symmetric doublets

Most general potential has 46 parameters (counted by Olaussen et al, 2011)

Consider S3 symmetric potential

Basic papers:

(a) Pakvasa & Sugawara, 1978
(b) Derman, 1979
(c) Kubo, Okada, Sakamaki, 2004

(a,c): irreducible reps, (b): reducible rep



Two “Frameworks”

May work with the

® reducible representation (Derman) or the

® irreducible representations (Pakvasa & Sugawara,
Das & Dey)

There is a linear map from one framework to the other



Reducible representation
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Irreducible representations
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Note that irreducible representation
chooses a particular “direction” among

¢17 ¢27 ¢3

Not unigue — convention



This potential exhibits
hi — —h, symmetry
but ho — —ho

Equivalent doublet representation
X1 1 i1 hy
(2) -7 ()G

the above symmetry becomes

X1 < X2



In the irreducible-rep framework
the case A =0 SPECIAL

or, in the reducible-rep framework
4A -2(C+C+D)—E +Ey+Es +E, =0

leads to a continuous SO(2) symmetry

hi \ [ cos —sinf hy
hy )\ sinf cosf ho

Massless states!



At this stage, the two frameworks are
equivalent

However, introducing Yukawa
couplings, for example, in terms of

¢17 ¢27 ¢3

hl) h27 hS

Oor

they would naturally be different



The vevs are related
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Vacua

Derivatives of potential wrt (complex) fields must vanish

Three complex derivatives =0 or

Five real derivatives (3 moduli, 2 relative phases) =0

The minimisation conditions must be consistent.
This is an important

May work in either framework

But a particular vacuum may look simpler in one framework
than in the other.



Classical (real) vacua

The early literature focused on fermion masses
and real vacua (no CPV):

Examples:

P2 = P3 Derman 1979

wi =+v3w, Das & Dey 2014



Classical (real) vacua

In the reducible-representation framework,
we may equally well take

pPL=pP2 or FP1—=p3

They correspond to different vacua in the irreducible-
representation framework, one case has

wlz()



Complex vacua

Complex vacua may allow CP violation

Examples:
C-0 (p1, p2, p3) = x(1,¥™7, e 27/7)
C-I-a  (p1, p2, p3) = x(1, e’ eiT)
C-I-al  (p1,p2,p3) = x(e”"",1,1)
C-I-a2  (p1, p2, p3) = x(l,e7"", 1)
C-I-a3  (p1,p2,p3) = (1,1, 6_”)

C-I-a  violates CP, C-0 does not

= wg = 0

= w; = V3ws
= w; = V3w,
= w; = —V 3w,
= wy = 0



Complex vacua

Here, an overall phase rotation brings us from vacuum
C-I-a to C-I-al

Next:

C-l-al 7282 (Cl-a2 72288 (C-l-a3

These are all different names for one and the same vacuum



Complex vacua
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® Complex vevs are no guarantee for SCPV

® The symmetry of the Lagrangian could
“hide” the complex conjugation

2im/3 —22'77/3)

Example C'O: (/017/027p3) — ZE(l,G , €

Complex conjugation:
ZE(l, 62’i7r/37 6—2i7r/3) s ZE(l, 6—21'77/37 €2i7r/3)
But the Lagrangian has a symmetry:

P2 <> @3 and  py <> p3
which will undo the complex conjugation



Such geometrical phases,
and their relation to CP violation, have been explored
by Branco, Gerard and Grimus (1984)



Complex vacua

Complex vacua may allow CP violation

More:
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Complex vacua

Spontaneous CP violation
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Complex vacua Ay =0

C-Il-a (wy, ws, wg) = (0,we", Ws) = (p, p, p')
C-IIb  (wi,ws, ws) = (e, —we” /V/3,1d5) = (p,p',p)
C-I-c  (wy,ws, ws) = (We,we [V3,0g) = (¢, p, p)
C-TI-d (w1, we, wg) = (wlei"l,u? e'?2,0) = (p1, p2, P3)
C-II-PS  (wy, wy, wg) = (u?ew, we ™. We) = (p1, P2, P3)
C-II-IN  (wy, wa, wg) = (We'7, we', wg) = (p1, p2, P3)
C-IIT  (w, ws, ws) = (1€, W€'?, tg) = (p1, p2, p3)



Spontaneous CP violation
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Note that C-1I-PS does not violate CP

A L0 N —10 A C. ¢ A Yo RN To NS
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When )\, =0 have symmetry

hl < hg and W1 <=2 Wo



Sometimes there are problems




When A\; =0
there are massless states

Add a soft SO(2)-breaking term:

1
V — VA 2u2(h;h1 + hiho)

Vacuum conditions are changed



Our Aims

Determine whether Spontaneous CP violation
in Ss is compatible with a good inert dark
matter candidate and what are the properties

Challenges include:

® Determine necessary and sufficient vacuum
stability conditions

® Obey unitarity constraints for the potential
® Obtain correct dark matter density

® |dentify realistic Yukawa structures



Concluding comments

® The S3-symmetric scalar sector is very rich
® [wo different (equivalent) frameworks

® Spontaneous CP violation can take place

® Room for Dark Matter

® Next:Yukawa couplings



Apology

This was not meant to be an overview of what
is known about an Sz-symmetric potential,
only elements of what we have understood so far



Back-up

For more details on these vacua,
see talks at

® Multi-Higgs models, Lisboa Sep 2016
® Scalars 2017

® Multi-Higgs models, Lisboa 2018

® Scalars 2019

® etc

also by other authors



