# High-Scale Supersymmetry and Inflation Unified.



Kai Schmitz

Postdoc in the Particle and Astroparticle Physics Division at Max Planck Institute for Nuclear Physics (MPIK), Heidelberg, Germany

#### Based on

- Polonyi Inflation, K. S. and Tsutomu T. Yanagida (Kavli IPMU, Tokyo), arXiv:1604.04911 [hep-ph].
- A Unified Model of D-term Inflation, Valerie Domcke (APC, Paris) and K. S., arXiv:1702.02173 [hep-ph].

PLANCK 2017 | Parallel Session *Cosmo 2* University of Warsaw, Poland | May 25, 2017

### Supersymmetry: low-scale versus high-scale



#### Virtues of low-scale supersymmetry:

- **1** Solution to the (big) hierarchy problem.
- **2** *R* parity  $\rightarrow$  stable LSP  $\rightarrow$  dark matter.
- 3 Gauge unification at  $\Lambda_{GUT} \sim 10^{16} \, {\rm GeV}$ .
- 4 UV completion of the SM in string theory.

### TeV-scale SUSY under increasing pressure:

- 1 So far, no evidence for SUSY at the LHC.
- 2 Higgs mass  $m_h \simeq 125 \,\text{GeV}$  calls for large radiative corrections from (s)top loops,

[Okada, Yamaguchi, Yanagida '91] [Ellis, Ridolfi, Zwirner '91]

$$m_h^2 < m_Z^2 + \frac{3g^2 m_t^4}{8\pi^2 m_W^2} \left[ \ln \frac{m_{t_1}^2 + m_{t_2}^2}{2 m_t^2} + \cdots \right]$$

Low-scale SUSY no longer everybody's darling. Fermi scale instead outcome of other dynamics: *compositeness, conformal symmetry, relaxion, clockwork, ...* [Mary talks at this conference]

Kai Schmitz (MPIK Heidelberg)

### Dynamical SUSY breaking as the origin of inflation

# WHAT IF ...

... SUSY is not responsible for stabilizing the EW scale? Imagine  $m_{\rm soft} \gtrsim O(10)$  TeV.

- ▶ No more gravitino / Polonyi problems in cosmology. Less tension from CP & FCNCs.
- Trivial mediation to the visible sector: solely via gravitational interactions (PGM, ...).

Prospect: Simpler models + less pheno constraints + keep virtues except for naturalness!

[Giudice, Luty, Murayama & Rattazzi '98] [Wells '03; '05] [Arkani-Hamed & Dimopoulos '05] [Ibe, Moroi & Yanagida '07; Ibe & Yanagida '12] [Arkani-Hamed, Gupta, Kaplan, Weiner & Zorawski '12] [Hall & Nomura '12] [Arvanitaki, Craig, Dimopoulos & Villadoro '13]

### Dynamical SUSY breaking as the origin of inflation

THEN: Intriguing new possibility! Inflation driven by SUSY vacuum energy  $\Lambda_{SUSY}^4$ .

$$\langle V_{\text{SUGRA}} \rangle = \Lambda_{\text{SUSY}}^4 - 3 e^{\langle K \rangle} \langle |W|^2 \rangle = \text{CC} \simeq 0, \quad \Lambda_{\text{SUSY}}^4 = \langle |F|^2 \rangle + \frac{1}{2} \langle D^2 \rangle$$

Our idea: If A<sup>4</sup><sub>SUSY</sub> large enough, A<sup>4</sup><sub>SUSY</sub> may be the vacuum energy driving inflation!

► Goal: Inflation from *dynamical SUSY breaking*! No dimensionful input parameters.

### IYIT model of dynamical SUSY breaking [[zawa & Yanagida '96; Intriligator & Thomas '96]

Break SUSY dynamically in a hidden sector to obtain  $\langle F \rangle$  and  $\langle D \rangle$  suitable for inflation.

### IYIT model of dynamical SUSY breaking [Izawa & Yanagida '96; Intriligator & Thomas '96]

Break SUSY dynamically in a hidden sector to obtain  $\langle F \rangle$  and  $\langle D \rangle$  suitable for inflation.



Hidden sector: Strongly coupled SU(2) with four quarks  $\Psi^i$ .

- Low-energy EFT in terms of composite mesons M<sup>ij</sup>.
- Add singlet fields to lift flat directions in moduli space.
- Conflict between SUSY masses and nonperturbative constraint ⇒ SUSY spontaneously broken!

$$\Lambda_{\rm SUSY}^4 = \left< \left| {{F}} \right|^2 \right> \sim \lambda^2 \Lambda^4 \label{eq:susy}$$

### IYIT model of dynamical SUSY breaking [Izawa & Yanagida '96; Intriligator & Thomas '96]

Break SUSY dynamically in a hidden sector to obtain  $\langle F \rangle$  and  $\langle D \rangle$  suitable for inflation.



Hidden sector: Strongly coupled SU(2) with four quarks  $\Psi^i$ .

- Low-energy EFT in terms of composite mesons M<sup>ij</sup>.
- Add singlet fields to lift flat directions in moduli space.
- Conflict between SUSY masses and nonperturbative constraint ⇒ SUSY spontaneously broken!

$$\Lambda_{SUSY}^{4}=\left\langle \left.\left|F\right|^{2}\right.\right\rangle \sim\lambda^{2}\Lambda^{4}$$

Effective Polonyi model at low energies:  $W_{\rm eff} = \mu^2 \Phi$ 

- ▶ IYIT Yukawa couplings  $\rightarrow$  log corrections at one loop.

Intriguing possibility: Polonyi inflation! Use  $\Phi$  as inflaton.



Kai Schmitz (MPIK Heidelberg)

# Polonyi inflation and late-time R symmetry breaking

$$V(\varphi) = \mu^4 \left[ 1 - \frac{\varepsilon}{2} \left( \frac{\varphi}{M_{\text{Pl}}} \right)^2 + \frac{1}{8} \left( 1 - \frac{7\varepsilon}{2} + \frac{8\varepsilon^2}{3} \right) \left( \frac{\varphi}{M_{\text{Pl}}} \right)^4 + \cdots \right] + \frac{6m^4}{16\pi^2} \ln \frac{\varphi}{\varphi_c}$$

#### Further model ingredients:

Corrections to a canonical K\u00e4hler potential,

$$\mathcal{K} = |\Phi|^2 + \frac{\varepsilon}{4} \frac{|\Phi|^4}{M_{\rm Pl}^2}$$

2 No constant superpotential during inflation! Generate at end of inflation to tune  $CC \rightarrow 0$ ,

$$W_{\rm eff} = \mu^2 \, \Phi + w \,, \quad w = \begin{cases} 0 & \phi \gg \phi_c \\ w_0 & \phi \ll \phi_c \end{cases}$$

E.g., trigger gaugino condensation in another hidden sector at small inflaton field values.

# Polonyi inflation and late-time R symmetry breaking

$$V(\varphi) = \mu^4 \left[ 1 - \frac{\varepsilon}{2} \left( \frac{\varphi}{M_{\text{Pl}}} \right)^2 + \frac{1}{8} \left( 1 - \frac{7\varepsilon}{2} + \frac{8\varepsilon^2}{3} \right) \left( \frac{\varphi}{M_{\text{Pl}}} \right)^4 + \cdots \right] + \frac{6m^4}{16\pi^2} \ln \frac{\varphi}{\varphi_c}$$

### Successful F-term inflation in the Polonyi potential

- Energy density µ<sup>4</sup> = |F<sub>Φ</sub>|<sup>2</sup> not only responsible for SUSY in the MSSM, but also for inflation!
- Same potential as in F-term hybrid inflation, incl. SUGRA corrections, but in the limit  $m_{3/2} \rightarrow 0$ .
- No tadpole, no waterfall transition, no cosmic strings. Worry-free UV completion of FHI!

 $A_s = A_s^{\rm obs}$  requires a dynamical scale  $\Lambda \sim 10^{16} \, {\rm GeV!}$ 

- "Prediction" of GUT scale  $\Lambda_{GUT}$  from  $A_s^{obs}$ .
- Soft scalar masses  $m_0 \sim m_{3/2} \sim 10^{12} \, {\rm GeV}$ .



Polonyi inflation-the big picture:



- Late-time R symmetry breaking is possible; requires concerted interplay of parameters.

### Polonyi inflation-the big picture:



- Late-time R symmetry breaking is possible; requires concerted interplay of parameters.

Alternative fact: SUSY and *R* symmetry broken from the outset. Inflaton driven by  $\langle D \rangle \neq 0$ .

### Polonyi inflation-the big picture:



- Late-time R symmetry breaking is possible; requires concerted interplay of parameters.

Alternative fact: SUSY and *R* symmetry broken from the outset. Inflaton driven by  $\langle D \rangle \neq 0$ .

**1** IYIT sector exhibits global flavor symmetry  $U(1)_A$ . Opportunity to obtain  $\langle D \rangle \neq 0$ .

### Polonyi inflation-the big picture:



- Late-time R symmetry breaking is possible; requires concerted interplay of parameters.

Alternative fact: SUSY and *R* symmetry broken from the outset. Inflaton driven by  $\langle D \rangle \neq 0$ .

- **1** IYIT sector exhibits global flavor symmetry  $U(1)_A$ . Opportunity to obtain  $\langle D \rangle \neq 0$ .
- Promote to weakly gauged local symmetry. Then, dynamically generated FI term [Fayet & Iliopoulos '74] [Domcke, K.S., Yanagida '15]

$$V_D = \frac{1}{2} g^2 q_0^2 \xi^2, \quad \xi = \langle M_- \rangle^2 - \langle M_+ \rangle^2$$

### Polonyi inflation-the big picture:



- Late-time R symmetry breaking is possible; requires concerted interplay of parameters.

Alternative fact: SUSY and *R* symmetry broken from the outset. Inflaton driven by  $\langle D \rangle \neq 0$ .

- **1** IYIT sector exhibits global flavor symmetry  $U(1)_A$ . Opportunity to obtain  $\langle D \rangle \neq 0$ .
- Promote to weakly gauged local symmetry. Then, dynamically generated FI term [Fayet & Iliopoulos '74] [Domcke, K.S., Yanagida '15]

$$V_D = rac{1}{2} g^2 q_0^2 \xi^2, \quad \xi = \langle M_- 
angle^2 - \langle M_+ 
angle^2$$

3 Add new inflation sector: inflaton singlet S and charged waterfall fields  $\Phi$  and  $\overline{\Phi}$ , Binetruy & Dvali '96] [Halyo '96]

$$W_{\text{inf}} = \kappa S \Phi \overline{\Phi}, \quad V_D = \frac{1}{2} g^2 \left[ q_0 \xi - q \left( \left| \Phi \right|^2 - \left| \overline{\Phi} \right|^2 \right) \right]^2$$

New possibility: SUSY breaking results in dynamical FI term, which drives inflation!

# A consistent model of D-term inflation

$$V(\sigma) \simeq \left(-\frac{3M_{\rm Pl}^2}{\Omega(\sigma)}\right)^2 \left[\frac{1}{2}g^2q_0^2\xi^2 - \frac{\chi}{3}\mu^4\left(\frac{\sigma}{M_{\rm Pl}}\right)^2\right] + \frac{\Delta m_J^4(\sigma)}{16\pi^2}\ln\frac{\sigma}{\sigma_c}$$

### Further model ingredients:

Work in Jordan-frame supergravity with canonically normalized kinetic terms: [Ferrara, Kallosh, Linde, Marrani, van Proeyen '10; '11] [FKL, Porrati '13]

$$-\frac{\Omega}{6}R = \left[\frac{M_{\rm Pl}^2}{2} - \frac{1}{6}\left(F + \Phi^{\dagger}\Phi + \cdots\right)\right]R$$

Inflaton sector sequesters from SUSY sector. No SUGRA eta problem. Waterfall fields can become unstable at the end of inflation.

2 Slightly broken shift symmetry in  $\sigma$  direction: [Kawasaki, Yamaguchi, Yanagida '00]

$$F = \frac{\chi}{2} \left( S + S^{\dagger} \right)^2 - \frac{\left( 1 - \chi \right)}{2} \left( S - S^{\dagger} \right)^2$$

# A consistent model of D-term inflation

$$V(\sigma) \simeq \left(-\frac{3M_{\rm Pl}^2}{\Omega(\sigma)}\right)^2 \left[\frac{1}{2}g^2q_0^2\xi^2 - \frac{\chi}{3}\mu^4\left(\frac{\sigma}{M_{\rm Pl}}\right)^2\right] + \frac{\Delta m_J^4(\sigma)}{16\pi^2}\ln\frac{\sigma}{\sigma_c}$$

#### Implications and applications

No hard dimensionful input scale. SUSY at a very high scale. Recover once again A<sub>GUT</sub>.

$$\frac{m_{3/2}}{5 \times 10^{12} \, {\rm GeV}} \sim \left(\frac{\sqrt{\xi}}{5 \times 10^{15} \, {\rm GeV}}\right)^{5/2}$$

Identify U(1)<sub>A</sub> with U(1)<sub>B-L</sub> and couple waterfall field Φ to right-handed neutrinos, [Buchmüller, K.S., Vertongen '10; Buchmüller, Domoke, K.S. '12]

$$W \supset \frac{1}{2} h_i \Phi N_i N_i$$

 Employ in the two-field relaxion mechanism. [Evans, Gherghetta, Nagata, Peloso '17]



### Experimental signatures beyond inflation

#### Thermally produced winos with a fine-tuned mass as dark matter:

- Pure gravity mediation: anomaly-mediated gaugino masses m<sub>3/2</sub>/16π<sup>2</sup> ~ 10<sup>10</sup> GeV. [Dine & MacIntire '92] [Giudice, Luty, Murayama & Rattazzi '98] [Randall & Sundrum '99] [Bagger, Moroi & Poppitz '00]
- ▶ LSP (wino) overproduction during reheating in gravitino decay:  $\psi_{3/2} \rightarrow \cdots \rightarrow LSP$ . [Moroi & Randall '00] [Kawasaki, Takahashi & Yanagida '06] [Buchmüller, Domcke & K.S. '12]
- Assume anthropic selection of a fine-tuned wino mass. AMSB + Higgsino loops: [Ibe, Matsumoto & Yanagida '12] [Hall, Nomura & Shirai '13]

$$\textit{M}_{wino} \sim 3\,\text{TeV}$$

- Nonthermal relics reach thermal equilibrium. Solution to the gravitino problem!
- Our prediction: neutral/charged winos only sparticles at low energies (detectable!).

### Experimental signatures beyond inflation

Gravitational waves from inflation, reheating, etc.

- GWs from inflation typically very weak. GWs from reheating model-dependent.
- Drastically enhanced if inflaton exhibits an axion-like coupling to gauge fields, [Cook & Sorbo '12] [Barnaby, Pajer, Peloso '12] [Domcke, Pieroni, Binetruy '16]

$$\mathscr{L}_{\mathrm{eff}} \supset \frac{\varphi}{f} F_{\mu\nu} \, \tilde{F}^{\mu\nu}$$

Fits well together with the inflaton shift symmetry in the case of D-term inflation.

### Take-Home Messages

Questions: Embedding of inflation into particle physics? Role of SUSY in nature?

- High-scale SUSY does not address the hierarchy problem; but offers new perspective on the interplay between SUSY breaking and cosmic inflation.
  - Inflation may be driven by F term or D term associated with SUSY breaking.
- 2 Models of dynamical SUSY breaking (e.g., the IYIT model) result in effective Polonyi models. May give rise to F-term hybrid inflation → *Polonyi inflation*.
  - Minimal and viable model; but requires *late-time R symmetry breaking*.
- IYIT model coupled to Jordan-frame supergravity allows to realize D-term inflation in accord with all theoretical and phenomenological constraints.
  - ► Gauged flavor symmetry. Unifies SUSY breaking, inflation, and *B*−*L* breaking!

Possible answer: Inflation and SUSY breaking may have single dynamical origin!

> DM signal at low energies. Further signatures from GWs, reheating, ...

# Thank you for your attention!

# Supplementary Material

# IYIT Model of Dynamical SUSY Breaking [Izawa & Yanagida '96; Intriligator & Thomas '96]

Simplest realization of DSB in vector-like gauge theories: Sp(N) with  $N_f = N + 1$  flavors.

Supersymmetric gauge theory that becomes strongly coupled at dynamical scale Λ.

### Flat moduli space at low energies [Seiberg '94; Luty '98]

- $Sp(1) \cong SU(2)$  with 4 fundamental quarks  $\Psi^{i}$ .
- Low-energy EFT in terms of composite mesons,  $M^{ij} \sim \frac{1}{\Lambda} \langle \Psi^i \Psi^j \rangle$ ,  $Pf(M^{ij}) \sim \Lambda^2$

Instanton-induced (deformed) moduli constraint.

#### 2 Lift flat directions by means of Yukawa interactions

• Coupling to singlets in tree-level superpotential,  $W_{\text{tree}} = \lambda_{ij} Z_{ij} \Psi^i \Psi^j \rightarrow W_{\text{eff}} \sim \lambda_{ij} \Lambda Z_{ij} M^{ij}$ 

► Global axial  $U(1)_A$  associated with  $\Psi^i$  rotation,  $[\Psi^{1,2}] = +q_0$ ,  $[\Psi^{3,4}] = -q_0$ 



3 Yukawa couplings such that

- $\models |F_{Z_{\pm}}| = \lambda_{\pm} \Lambda \langle M_{\pm} \rangle \neq 0$
- F-term SUSY breaking.
- $\langle M_{\pm} \rangle \neq 0$  breaks  $U(1)_A$ .

# Effective Polonyi model

Superpotential at low energies:  $W_{\rm eff} = \mu^2 \Phi + \cdots$ 

- SUSY-breaking Polonyi field  $\Phi = (Z_+ + Z_-)/\sqrt{2}$ .
- In global SUSY, tree-level flat direction. [Ray '06; Shih '08]
- F-term SUSY-breaking scale  $\mu^2 = \sqrt{2}\sqrt{\lambda_+\lambda_-} \Lambda^2$ .





### Radiative corrections:

Yukawa couplings to quarks/mesons induce effective one-loop potential:

$$V_{\rm CW} \sim \begin{cases} m_{\rm eff}^2 \, \phi^2 & ; \ \phi \ll \phi_c \\ m^4/16 \pi^2 \ln \phi/\phi_c \; ; \; \phi \gg \phi_c \end{cases}$$

- Strong stabilization around the origin.
- Log corrections at large field values.

Dynamical UV completion of the Polonyi model (in global SUSY):  $W = \mu^2 \Phi + w_0$  [Polonyi '78]

> R-symmetry-breaking constant  $w_0$ , so as to tune the cosmological constant to zero.

Kai Schmitz (MPIK Heidelberg)

## Inflation in the effective Polonyi model

Aim: Realize inflation in the effective potential for the Polonyi field  $\Phi$ .

- Main obstacle: Large  $\mu$  implies large  $w_0$ . Gravitational corrections spoil slow-roll.
- Way out: Unbroken *R* symmetry in the sector responsible for  $w_0 \Rightarrow w = 0$  initially.

Effective IYIT superpotential may be brought into the following form:

$$W_{\mathrm{eff}}\simeq\kappa_{\Phi}\Phi\left[v^{2}-\frac{1}{2}\left(X^{n}\right)^{2}\right]+m_{n}\,S_{n}\,X^{n}$$

- SO(5) realization of F-term hybrid inflation (FHI) with massive waterfall fields. [Copeland *et al.* '94] [Dvali, Shafi, Schaefer '94]
- Mesons  $X^n$ : SO(5) multiplet of *would-be* waterfall fields with masses  $m_n \ge \kappa_{\Phi} v$ .
- Stabilized by SO(5) multiplet of IYIT singlets  $S_n$ , even at the end of inflation.

Big picture: SUSY breaking prior to *R* symmetry breaking  $\Rightarrow$  Reason for inflation!

- Assume late-time R symmetry breaking. w<sub>0</sub> only generated at the end of inflation.
- Until then, (FHI-like) Polonyi inflation driven by the SUSY-breaking Polonyi F term.

# R symmetry breaking via gaugino condensation

Idea: Gaugino condensation in a strongly coupled pure SYM theory. Use to generate  $w_0!$ [Veneziano & Yankielowicz '82]

- ► *R*-symmetry-breaking sector: SQCD with field-dependent masses,  $W_R = P Q^i \bar{Q}^i$ .
- ►  $\langle P \rangle \gtrsim \tilde{\Lambda}$ : Integrate out heavy quarks  $\Rightarrow$  Pure SYM  $\Rightarrow$  Gaugino condensation.

$$W_R^{\text{eff}} \rightarrow w = \frac{N_c}{16\pi^2} \tilde{\Lambda}_{\text{eff}}^3, \quad \tilde{\Lambda}_{\text{eff}}^{3N_c} = \langle P \rangle^{N_f} \tilde{\Lambda}^{3N_c - N_f}$$

#### Application to the scenario of Polonyi inflation:

- Introduce waterfall superpotential,  $W_P = \alpha Y \left( v_P^2 \frac{1}{2} P^2 \right) + \frac{\beta}{6} Y^3 + \cdots$
- Competition between tachyonic mass in global SUSY and Hubble-induced mass,

$$m_{\rho^{-}}^{2}(\varphi) = -\alpha^{2}v_{P}^{2} + \frac{V(\varphi)}{M_{\rm Pl}^{2}} + \Delta m^{2}(\varphi)$$

Arrange parameters such that *P* becomes unstable only at small inflaton field values.

#### Waterfall transition in a separate sector $\Rightarrow$ Control over time of R symmetry breaking!

# Scalar potential of Polonyi inflation

Ingredients: ① IYIT log corrections ② Near-canonical Kähler potential ③ w = 0 initially

$$V(\varphi) = \mu^4 \left[ 1 - \frac{\varepsilon}{2} \left( \frac{\varphi}{M_{\text{Pl}}} \right)^2 + \frac{1}{8} \left( 1 - \frac{7\varepsilon}{2} + \frac{8\varepsilon^2}{3} \right) \left( \frac{\varphi}{M_{\text{Pl}}} \right)^4 + \cdots \right] + \frac{6m^4}{16\pi^2} \ln \frac{\varphi}{\varphi_c}$$



#### Dynamics controlled by interplay b/t

- Radiative log term
- SUGRA mass term

#### Saddle point for $\varepsilon = \varepsilon_0$

- ε > ε₀: Hill-top regime ⇒ Fine-tuned initial conditions or inflaton stuck in false vacuum.
- $\varepsilon < \varepsilon_0$ : Inflection-point regime

Expectation:  $\varepsilon \sim \varepsilon_0$  maximizes # of *e*-folds.  $\varepsilon < \varepsilon_0$  consistent with  $\varphi_{ini} \sim M_{Pl}$ .  $\Rightarrow \varepsilon \leq \varepsilon_0$ 

## Predictions of Polonyi inflation



Similarity / equivalence of scales:  $\Lambda \sim \Lambda_{GUT}$  and  $H \simeq m_{3/2}$ .  $\Rightarrow r \sim 10^{-5} \cdots 10^{-4}$ .

### Connection to spontaneous B-L breaking



$$W_{\rm inf} = \kappa S \Psi \overline{\Psi}, \quad V_D = \frac{g^2}{2} \left[ q_0 \xi - q \left( |\psi|^2 - |\overline{\psi}|^2 \right) \right]^2$$

Standard D-term inflation in a nutshell [Binetruy & Dvali '96] [Halyo '96]

- In global SUSY, inflaton direction flat at tree level.
- Lifted by radiative log corrections (plus SUGRA).
- Waterfall transition at the end of inflation

$$\langle \psi \rangle = (q_0/q\xi)^{1/2} \text{ or } \langle \bar{\psi} \rangle = (-q_0/q\xi)^{1/2}$$

Identify waterfall transition with B-L phase transition:  $U(1)_A \rightarrow U(1)_{B-L}$ (Buchmüller, K.S., Vertongen '10; Buchmüller, Domcke, K.S. '12; Buchmüller, Domcke, Kamada, K.S. '13)

- ► Set q = -2 and choose  $q_0 \xi < 0$ , so that  $\psi$  can couple to right-handed neutrinos  $W \supset \frac{1}{2} c_{ij} \psi N_i N_j \rightarrow W \supset \frac{1}{2} M_{ij} N_i N_j, \quad M_{ij} = c_{ij} \langle \psi \rangle$ 
  - Breaks B-L in the visible sector ⇒ type-I seesaw mechanism and leptogenesis. [Minkowski '77] [Yanagida '79] [Gell-Mann, Ramond, Slansky '79] [Mohapatra & Senjanovic '80] [Fukugita & Yanagida '86]

Exciting possibility to unify the dynamics of SUSY breaking, inflation, and B-L breaking!

# Problems of standard D-term inflation

Standard D-term inflation is, however, plagued by several problems:

- Coupling FI terms to SUGRA is a subtle story. Field-independent FI terms require exact global symmetries; field-dependent FI terms result in flat moduli directions. [Binetruy et al. '04] [Komargodski & Seiberg '09; '10] [Dienes & Thomas '10] [Wieck & Winkler '14]
- 2 Other charged scalars (that do not couple to the inflaton) may eat up the FI term, [Domcke, K. S. Yanagida '15] [Babu, K. S. Yanagida '16]

$$V_D = \frac{g^2}{2} \left[ q_0 \, \xi - q_i \left( \left| \tilde{q}_i \right|^2 - \left| \tilde{\tilde{q}}_i \right|^2 \right) \right]^2 \quad \Rightarrow \quad \langle \tilde{q}_i \rangle = \left( q_0 / q_i \, \xi \right)^{1/2}$$

In ordinary gravity mediation, *S* acquires a SUGRA mass that easily spoils slow-roll, [Dumitrescu, Komargodski, Sudano '10] [Kawamura '11]

$$m_S = m_{3/2} \sim \frac{F}{M_{\rm Pl}} \gg \frac{D}{M_{\rm Pl}} \sim H_{\rm inf}$$

4 In global SUSY,  $n_s$  deviates from the PLANCK best-fit value by about  $2\sigma$ , Binetruy & Dvali '96] [Halyo '96] [PLANCK '15]

$$n_s \simeq 1 - rac{1}{N_e^*} \simeq 0.98 \quad \leftrightarrow \quad n_s^{
m obs} \simeq 0.9677 \pm 0.0060$$

5 The waterfall transition is accompanied by the production of cosmic strings. CMB constraints on the cosmic string tension rule out large parts of the parameter space. [Battye, Garbrecht, Moss '10] [PLANCK '15]

Kai Schmitz (MPIK Heidelberg)

# Jordan-frame supergravity

### SUGRA corrections can be tamed in Jordan-frame supergravity

[Ferrara, Kallosh, Linde, Marrani, van Proeyen '10; '11] [Ferrara, Kallosh, Linde, Porrati '13]

Matter fields couple nonminimally to gravity via the frame function Ω<sub>tot</sub>,

$$S = \int d^4x \sqrt{-g} \left[ -\frac{1}{6} \Omega_{\text{tot}} R + \cdots \right], \quad \Omega_{\text{tot}} = -3 M_{\text{Pl}}^2 \exp\left[ -\frac{K_{\text{tot}}}{3 M_{\text{Pl}}^2} \right] = -3 M_{\text{Pl}}^2 + F_{\text{tot}}$$

#### Assume partial sequestering in the kinetic function F<sub>tot</sub>

[Inoue, Kawasaki, Yamaguchi, Yanagida '92] [Randall & Sundrum '99] [Luty & Sundrum '02; '03] [Ibe, Izawa, Nakayama, Shinbara, Yanagida '06]

$$F_{\text{tot}} = F_{\text{hid}} + F_{\text{vis}} + F_{\text{inf}} + \frac{1}{M_*^2} F_{\text{hid}} F_{\text{vis}}, \quad F_{\text{inf}} = |\Psi|^2 + |\bar{\Psi}|^2 + F(S)$$

- Canonical terms for the waterfall fields  $\Rightarrow$  No dangerous SUGRA-induced masses.
- ► MSSM sfermions couple directly to the IYIT sector ⇒ Stabilized during/after inflation.

#### Approximate shift symmetry along the inflaton direction

[Kawasaki, Yamaguchi, Yanagida '00]

$$F(S) = \frac{1}{2} \chi \left(S + S^{\dagger}\right)^2 - \frac{1}{2} \left(1 - \chi\right) \left(S - S^{\dagger}\right)^2, \quad \chi \ll 1$$

• Canonical term yields Hubble-induced mass,  $m_S^2 \sim H_{inf}^2$ . In our case:  $m_S^2 \sim \chi m_{3/2}^2$ .

# A consistent realization of D-term inflation

### Ingredients for a successful model of D-term inflation

- 1 FI term generated by dynamics of a strongly coupled supersymmetric gauge theory.
- 2 Jordan-frame supergravity with canonical kinetic terms for all matter fields.
- 3 Approximate shift symmetry in the kinetic function along the inflaton direction.

### This remedies all shortcomings of standard D-term inflation

- **1** Field-dependent FI term,  $\xi = \langle M_{-} \rangle^{2} \langle M_{+} \rangle^{2}$ . Modulus  $\cong B L$  Goldstone multiplet.
- 2 MSSM sfermions stabilized thanks to direct coupling to the SUSY-breaking sector.
- 3 Sequestering  $\Rightarrow$  slow-roll OK; waterfall fields become unstable at the end of inflaton.
- 4  $n_s \simeq n_s^{\rm obs}$ , sensitive to amount of shift symmetry breaking,  $V \supset -\chi m_{3/2}^2 \varphi^2$ .
- **5** B-L broken before the end of inflation in the IYIT sector  $\Rightarrow$  no cosmic strings!

Note: This solution of the cosmic string problem only works in the D-term scenario,

$$W = \kappa S \left( v^2 - \Psi \bar{\Psi} \right), \quad V_D = \frac{g^2}{2} \left( q_0 \xi + \cdots \right)^2, \quad [v] = 0, \quad [\xi] \neq 0$$