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Where do we stand today?

Eleven years since the discovery of the Higgs boson at the LHC,
roughly 9 million Higgs bosons having been produced in Runs 1
and 2 (although only about 0.3% of these produced Higgs bosons
can be detected by the ATLAS and CMS Collaborations).

Measurements of total and differential cross sections, branching
fractions, and other properties of the Higgs boson have revealed
the existence of a scalar particle that closely resembles the
predicted Higgs boson of the Standard Model (SM). Nevertheless,
the current accuracy of the Higgs data still leaves plenty of room
for possible deviations from the SM.



Summary of ATLAS Higgs boson data from Run 2 at the LHC
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Looking Forward...

Run 3 of the LHC (2022—2025) anticipates doubling the size

of the Run 2 Higgs data set. The High Luminosity (HL) LHC
ultimately expects a total integrated luminosity of about 20

times the size of the Run 2 Higgs data set.

Even with such an increase in the precision of Higgs
measurements, some of the most pressing questions
associated with the Higgs boson may lie beyond the LHC.

Future high energy e+e- colliders now under consideration
can provide the critical next step in pursuing the
fundamental questions associated with Higgs boson physics.
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Goals of future Higgs studies

The Higgs sector is likely to be involved with many of the
unanswered questions of fundamental physics that cannot
be addressed by the SM. These include CP violation and
baryogenesis, the origin of flavor, neutrino masses, the origin
of the electroweak symmetry breaking (EWSB) scale, early
universe dynamics, etc.

Precision studies of the Higgs boson properties will play a
critical role in revealing deviations from the Standard Model
that can provide important clues for constructing a more
fundamental theory of physics beyond the SM (BSM).



How the effects of BSM physics are reflected in precision Higgs studies

1. Accessing a new (higher) mass scale via decoupling.
» If v= 246 GeV is the scale of EWSB and M is the mass scale of new
BSM physics, then deviations from the SM (viewed as an effective
low-energy theory) are typically suppressed by vZ/M?2.

2. Accessing a new (feeble) coupling via the Higgs portal.

» If ¢ is the doublet Higgs field of the SM, then ¢t is a SM gauge
group singlet that can couple to a “dark” sector. If D is a a singlet
field then a term ¢t f(D) in the Lagrangian generates a mixing of
the SM Higgs field ¢ with new BSM fields thereby modifying the SM
couplings of the Higgs boson. Note that D can be a composite field
operator made up of fields with nonzero SM gauge charges.
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What is the target precision for future Higgs studies?

»The current LHC Higgs data has reached a level of roughly 10% precision
in measurements of signal strengths. Note that if, e.g., M =2 TeV, then
v2/M? = 0.015. It is not surprising that current LHC measurements of
Higgs couplings are not particularly sensitive to new TeV-scale physics.

» Deviations from SM behavior will only be convincing if the dominant
uncertainties are statistical (which can be further improved with more
data). Future et*e colliders provide this opportunity due to their
relatively clean environment and two dominant production mechanisms
(ete- > Z h and W*W* = h). +



‘ Example: The CP-conserving 2HDM |

The two-Higgs doublet model (2HDM) consists of two YV = 1
scalar doublet fields ®; and ®5. In the Higgs basis, one defines
two new linear combinations {#H1, Ho} where (H{) = v/v/2 and
(HY) = 0, with v ~ 246 GeV. If ©° = V2ReH{ — v were a mass
eigenstate, then its tree-level properties would coincide with those

of the SM Higgs boson.

The scalar potential contains the term
V 2 L2 (HIH)? 4+ { Zs(HIHL) (HIH:) + hee.},

which generates mixing between ¢° and v/2 Re H).



Denoting the two CP-even neutral scalar mass eigenstates by h

and H (with mp < mpy)

H CB—a —SB—a V2 Re H) —v
h SB—« Co—a \@Re 7‘[8

If i is SM-like, then m? ~ Z1v? (i.e., Z; ~ 0.26) and

o ’26‘?]2 ’26‘?]2
cp—al = ——— =~ s <1,
\/<mH —myi)(my, — Z1v?) My —my

This is the so-called Higgs alignment limit, which is achieved if
1. m#%, > | Zg|v?, corresponding to the decoupling limit; and/or

2. |Zg| < 1, corresponding to a feeble Higgs portal coupling.



LHC constraints on Higgs alignment in the 2HDM
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Regions excluded by fits to the measured rates of the productions and decay of the Higgs
boson (assumed to be h of the 2HDM). Contours at 95% CL. The observed best-fit values for
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Deviations of the couplings of h from their SM values
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where Pg 1, = (1 & 75) and the mass-eigenstate quark fields are

D = (d,s,b)", U = (u,c,t)", with corresponding diagonal mass
matrices Mr and independent Yukawa matrices p" (F' = U, D).

Note that for Type | Yukawa couplings, p¥ = v/2Mg cot 3/v.

For Type Il Yukawa couplings, replace cot 8 with —tan 3 in pP.



In the decoupling limit, cs_o ~ v?/M?*, where M is the mass

scale of the heavy scalars of the 2HDM. Thus,

v Vv?

ghVVNma ghFFNW-
The hF'F couplings can be further enhanced in some cases. For
example, in the Type |l 2HDM,

v? cot 3 v?tan f3




A Landscape of possible future e*e” colliders

Collider Vs P [%] Lint
e /et ab~!
ILC 250 GeV | £80/ £ 30 2

350 GeV | £80/+£30 | 0.2
500 GeV | £80/ + 30 4
1 TeV | £80/ + 20 8

ILC-GigaZ myz +80/ £ 30 0.1

CLiC 380 GeV +80/0 1
500 GeV | +80/0 2.5
1 TeV +80/0 5
CEPC my 60 / 100
2my 3.6 / 6
240 GeV 12 / 20
2mt — / 1
FCC-ee myz 150
2mw 10
240 GeV 5
2mt 1.5

Table 2: Running scenarios used for the Snowmass 21 studies.



Higgs boson production processes at the ILC
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Figure 1.4. (Left)The production cross sections of the Higgs boson with the mass of 125 GeV at the ILC as a
function of the collision energy /s. Polarization of the electron beam (80%) and the positron beam (20%) is as-
sumed. (Right) The cross sections of the production processes ete - hZ, ete- = Hv.v., ete— — Hete ,
ete”™ - ttH, ete™ — HHZ and eTe~ — HHuv,U. as a function of the collision energy for the mass of 125 GeV.
No polarization is assumed for the initial electron and positron beams.



Relative Higgs coupling measurements in % at various future colliders (when combined
with HL-LHC results) based on on the kappa framework. Taken from the Snowmass 2021
Report of the Topical Group on Higgs Physics for the Energy Frontier.
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FIG. 19: Projected relative Higgs coupling measurements in % when combined with HL-LHC results. All values assume no
beyond the Standard Model decay modes. In addition, only initial stages are shown for near-term colliders: This corresponds
to 3 ab~ ! and two interaction points (IPs), ATLAS and CMS, for the HL-LHC at 14 TeV, 2 ab™" and 1 IP at 250 GeV for
ILC/C?, 20 ab! and 2 IP at 240 GeV for CEPC, 1 ab~! and 1 IP at 380 GeV for CLIC, and 5 ab~' and 4 IP at 240 GeV for
FCC-ee. Note that the HL-LHC kncc projection uses only the CMS detector and is an upper bound [60].



Importance of higher dimensional operators v
h 1
example: h Z Z vertex ! N

VV

TH (p1,p2) = F1 g"" + Fa(p1-p2 " — pipy) + F3 €Waﬁplap2ﬂ

where the form factors F;, F, and F; depend on Lorentz invariant
combinations of the kinematic variables.

F, corresponds to the tree-level SM interaction, Lin = hZ,Z"
F, corresponds to the CP-even effective interaction, Leg = hF),, F"*

F; corresponds to the CP-odd effective interaction, L.g = hFWFV“”

Caution: Higher dimensional operators in SMEFT may not account for all
BSM Higgs phenomena if additional relatively light scalars exist.



Higgs boson coupling uncertainties based on a SMEFT analysis

The set of SMEFT operator coefficients is taken as a subset of
the full set of dimension 6 operators in the Warsaw basis. The

effective Lagrangian is given by £ = Lga + Lg where
Le :,CH—I—[:W,B—I—EcM—I—Eq)q—F[:q)f—l—ﬁg.

The dimension 6 terms depending only on the Higgs and vector

boson fields are:

L=
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Terms depending on the Higgs fields and the electron fields are:

/

- 1
Loy — CoL <(I)TZD (I>> (LT’y“L) + Cc1>L

’U2
C
o (017D u@) (e'"e)

(@1t @) (LteyL)

where L and e are the left- and right-handed fields of the first
lepton generation and t* = 0%/2 is the weak isospin generator.
The dimension 6 term that shifts the Higgs-7 Yukawa coupling is

YrCr
U2

Loy = (@7®) (L, - Pe,)

and the other operators that contribute to scalar couplings are
constructed in a similar way. The operator

2
£, == (af0) Gy, G

shifts the Higgs boson partial width to gluons.



2/ab-250 +4/ab-500|5/ab-250 +1.5/ab-350
coupling| pol. pol. unpol. unpol.
hZZ 0.50 0.35 0.41 0.34
hWW 0.50 0.35 0.42 0.35
hbb 0.99 0.59 0.72 0.62
hrr 1.1 0.75 0.81 0.71
hgg 1.6 0.96 1.1 0.96
hee 1.8 1.2 1:2 1.1
hy~y | 1.0 1.0 1.0
hyZ 9.1 6.6 9.5 8.1
hpp 4.0 3.8 3.8 3.7
htt - 6.3 - -
hhh - 20 - -
Fiot 2.3 1.6 1.6 1.4
Linow 0.36 0.32 0.34 0.30
Potier 1.6 1.2 1l 0.94

TABLE VII: Projected uncertainties in the Higgs boson couplings computed within the SMEFT framework and including
projected improvements in precision electroweak measurements, as described in the ILC reports and the FCC-ee CDR [51], [70

1].



As noted in the Snowmass 2021 Report of the Topical Group on
Higgs Physics for the Energy Frontier:

“Despite their different strategies, all e*e” Higgs factory proposals lead
to very similar projected uncertainties on the Higgs boson couplings.
The higher luminosity proposed for circular e*e"machines is
compensated by the advantages of polarization at linear colliders,
vielding very similar projected sensitivity for the precision of Higgs
couplings. In combination with the measurement of the rate of Zh
events with an h - ZZ decay, a model-independent determination of
the Higgs total width can be obtained at an e*e” collider. The analysis of
the other Higgs decays similarly provides a set of model-independent
Higgs partial width and coupling measurements.”

Remark: regarding the last point above, a precision measurement of the Higgs mass is needed to
compare the experimentally measured e*te = Zh cross section with the theoretical prediction.



Taken from “The

International Linear
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A number of specific models
with large Higgs coupling
deviations due to new
particles that are out of
reach at the HL-LHC were
collected in T. Barklow et al.,
arXiv:1708.08912.

Visualization of the deviations of Higgs
couplings from the SM for the new physics
discussed in arXiv:1708.08912, compared
to the uncertainties in the measurements
expected from a fit to ILC data at 250 and
500 GeV.
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What if additional light states are present?

» Higgs boson decays into dark sector particles

» Higgs boson decays into new light states
o h—> aa (e.g. N2HDM, NMSSM, etc.)
oh->yyy (yq=dark photon)

» Other new scalars [H(95)7]

Invisible Higgs decays are accessible at a Higgs factory via ete” - Zh
production, where the recoiling Z tags the Higgs events.



CMS Preliminary 132.2 fb™ (13 TeV) CMS Preliminary 132.2 fb™ (13 TeV)
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Figure 7: The observed local p-values for an additional SM-like Higgs boson as a function of

Taken from CMS PAS HIG-20-002 myy, from the analysis of the data from 2016, 2017, 2018, and their combination.



Importance of the Triple Higgs (hhh) coupling

In the Standard Model, the V(O)
dynamics of EWSB is

governed by the Higgs scalar

potential. However, we have

very limited experimental

information on the shape of

this potential away from its

minimum. 777

The hhh coupling provides
critical information on the
nature of the electroweak
phase transition.
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Key ingredients for electroweak baryogenesis
» Strong first order electroweak phase transition

» New sources of CP-violation (consistent with limits on the edm of
the electron)

Requires new BSM physics that generates an enhancement of the hhh
coupling (denoted by k;). Examples include extended Higgs sectors
which can induce large radiative corrections to hhh coupling in certain

parameter regimes.

Added benefit: a strong electroweak phase transition can yield a
detectable gravitational wave signal (in future experiments such as LISA).



Measuring the hhh coupling via DiHiggs and Zh production

» DiHiggs production

I
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Figure 1.5. Typical diagrams for double Higgs boson production via off-shell Higgsstrahlung (Left) and W-boson
fusion (Right) processes.
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FIG. 3: Indirect lo constraints possible in §z — §, param-
eter space by combining associated production cross section
measurements of 0.4% (1%-estimated) precision at /s = 240
GeV, (350 GeV) in solid black. For large values of |5 this
ellipse can only be considered qualitatively as the calculation
is only valid to lowest order in ;. The different scales should
be noted. Direct constraints possible at the high luminosity
LHC and 1 TeV ILC (with LU denoting luminosity upgrade)

FIG. 1: NLO vertex corrections to the associated production Taken from Matthew MCCU”OUgh, arXiv:1312.3322
cross section which depend on the Higgs self-coupling. These

terms lead to a linear dependence on modifications of the self-

coupling 5.
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ATLAS and CMS HL-LHC prospects
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Fig. 66: (a) Minimum negative-log-likelihood as a function of k,, calculated by performing a conditional
signal+background fit to the background and SM signal. The coloured dashed lines correspond to the
combined ATLAS and CMS results by channel, and the black line to their combination. The likelihoods
for the HH — bbV'V (llvv) and HH — bbZ Z(4l) channels are scaled to 6000 fb~".(b) Expected mea-
sured values of ) for the different channels for the ATLAS in blue and the CMS experiment in red, as
well as the combined measurement. The lines with error bars show the total uncertainty on each mea-
surement while the boxes correspond to the statistical uncertainties. In the cases where the extrapolation
is performed only by one experiment, same performances are assumed for the other experiment and this
is indicated by a hatched bar.



Prospects for measuring the trilinear Higgs
coupling: HL-LHC vs. ILC

[J. List et al. "21]
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2HDM, 1-loop predictions for the trilinear Higgs

coupling vs. current bound and future sensitivities
[T. Biekétter, S. Heinemeyer, J. M. No, M. O. Olea, G. W, ’2
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Fig. 3.10: Sensitivity at 68% probability on the Higgs self-coupling parameter k3 at the various
future colliders. All the numbers reported correspond to a simplified combination of the consid-
ered collider with HL-LHC, which is approximated by a 50% constraint on k3. For each future
collider, the result from the single-H from a global fit, and double-H are shown separately. For
FCC-ee and CEPC, double-H production is not available due to the too low /s value. FCC-ee
is also shown with 4 experiments (IPs) as discussed in Ref. [75] although this option is not part
of the baseline proposal. LE-FCC corresponds to a pp collider at /s = 37.5 TeV.
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Parting IMessages

» “The case for an e*e” Higgs factory is strong today, but it can be made
stronger with concerted effort, especially in the relation between models
and their impact on the Higgs properties” (Michael Peskin)

» Precision Higgs measurements at an e*e- Higgs factory can potentially yield
deviations from the SM that indicate the existence of new, undiscovered
particles at the TeV scale that lie beyond the reach of HL-LHC.

» Higgs factories also provide sensitive probes of new feebly-interacting
particles via the Higgs portal.

» At ete Higgs factories with CM energies of 500 GeV and above, access to the
triple-Higgs coupling and probes of new (scalar-mediated) sources of CP
violation can address the nature of the electroweak phase transition.



