Muon g - 2 in the 2HDM

Dominik Stöckinger, TU Dresden

SCALARS 2017, 3rd December 2017

 $M_H = M_{H^{\pm}} = 250 \text{ GeV}$

Collaboration with: A. Cherchiglia, H. Stöckinger-Kim

-∢ ⊒ →

Motivation 1

$$a_{\mu}^{\exp} - a_{\mu}^{SM} = (28.1 \pm (6.3^{Exp} \rightarrow 1.6^{FUTURE}) \pm 3.6^{Th(KNT)}) \times 10^{-10}$$

Keshavarzi,Nomura,Teubner'17; Jegerlehner'17:±4.4Th

 $M_H=M_{H^\pm}=250~GeV$

[Cherchiglia, DS, Stöckinger-Kim '17]

Motivation 2: g - 2 New Physics overview

Motivation 2: g - 2 New Physics overview

Dominik Stöckinger

< < > < < > < < >

Two-Higgs Doublet Model

• \rightsquigarrow h, H, H^{\pm}, A^0

- Yukawas: type 1, 2 (\leftarrow MSSM), X (lepton-specific), Y (flipped)
- consider general model without FCNC ~> "aligned" [Pich, Tuzon]

$$Y_{d,l;u}^{A} = \mp \zeta_{d,l;u}$$
$$Y_{f}^{h} = s_{\beta-\alpha} + c_{\beta-\alpha}\zeta_{f}$$
$$Y_{f}^{H} = c_{\beta-\alpha} - s_{\beta-\alpha}\zeta_{f}$$

 $\begin{array}{ll} \mathsf{MSSM}/\mathsf{Type 2:} & \zeta_{d,l} = -\tan\beta, & \zeta_u = 1/\tan\beta \\ \mathsf{Type X} \text{ (lepton-specific):} & \zeta_l = -\tan\beta, & \zeta_{d,u} = 1/\tan\beta \\ \mathsf{General: expect} & \zeta_l \sim 50, & \zeta_{d,u} \sim 1, & M_{\mathcal{A}} < M_h \end{array}$

Two-Higgs Doublet Model: full two-loop result

[Cherchiglia, Kneschke, DS, Stöckinger-Kim, 16]

$$a_{\mu}^{2\text{HDM},2} = a_{\mu}^{2\text{HDM},1} + a_{\mu}^{B} + a_{\mu}^{F} + a_{\mu}^{\Delta r\text{-shift}} \Rightarrow \Delta(a_{\mu}^{2\text{HDM},2}) \stackrel{<}{\sim} 10^{-10}$$

• two-loop = leading

• one-loop \propto -two-loop au-contribution

Two-Higgs Doublet Model: full two-loop result

[Cherchiglia, Kneschke, DS, Stöckinger-Kim, 16]

two-loop = leading

• one-loop \propto -two-loop au-contribution

Two-Higgs Doublet Model: τ -loop

But: $Z \rightarrow \tau \tau$, τ -decay, LEP $e^+e^- \rightarrow 4\tau$ constraints on $\zeta_L!$

[[]also: Chun,Kim'16; Abe et al '15; Han et al '15]

Two-Higgs Doublet Model: top-loop

But: $b \rightarrow s\gamma$ and $B_s \rightarrow \mu\mu$ constraints!

[also: Enomoto,Watanabe '15; Pich et al '14]

 $M_{A}{=}40$ GeV, $M_{H}{=}M_{H^{\pm}}{=}200$ GeV, ζ $_{I}{=}{-}60$

Two-Higgs Doublet Model: top-loop

But: LHC constraints: $gg \rightarrow A_0, A_0 \rightarrow \tau \tau$ decay high M_A $gg \rightarrow H, H \rightarrow \tau \tau$ vs. A_0A_0 decay

 $M_A = 80 \text{ GeV}, M_H = M_{H^{\pm}} = [200,300] \text{ GeV}, \zeta_I = -40$

9/16

What are the constraints on the 2HDM parameters ? Important: $M_A \zeta_I$ and ζ_u ; less important: $M_{H,H^{\pm}}$, Higgs potential, ζ_d

10/16

What are the constraints on the 2HDM parameters ? Important: $M_A \zeta_I$ and ζ_u ; less important: $M_{H,H^{\pm}}$, Higgs potential, ζ_d

- lepton Yukawa < \sim 100 for M_A > 20 GeV
- quark Yukawas $<\sim 0.5$
- if $M_{H,H^{\pm}} > 250$ or < 200 GeV: bounds stronger

What are the constraints on the 2HDM parameters ?

Remaining, bosonic contributions $\propto C_{HH^+H^-}$ but small useful approximation (×10⁻¹⁰; $\hat{x} = \frac{m}{100 \text{GeV}}$)

How does g-2 behave as function of parameters?

Important: M_A, ζ_I, ζ_u ; less important: $M_{H,H\pm}$; only via bosonic contributions: $c_{\beta\alpha}, \lambda_{1,6,7}$, tan β Type X: barely explain current deviation; Large ζ_u helps. For $|\zeta_I| < 20$: difficult, $a_u < 15 \times 10^{-10}$

12/16

- ∢ 🗗 ▶

What is the maximum possible a_{μ} in the 2HDM?

For fixed ζ_I

 $M_H = M_{H^\pm} = 150 \text{ GeV}$

 $M_H = M_{H^\pm} = 300 \text{ GeV}$

lowest M_A , weak suppression for higher M_A , 1σ explanation possible for $zeta_I = -40$.

Maximum for $zeta_I = -20$ and for $M_H = 150$: rather small

What is the maximum possible a_{μ} in the 2HDM? Overall

Type X maximum small; 1σ explanation only up to $M_A = 40$

 $M_{H} = M_{H^{\pm}} = 150 \text{ GeV}$

beyond type X: top-loop, bosonic not suppressed for high M_A ; peak at $M_A \sim 60...80$, 1σ explanation possible up to $M_A = 100$.

14/16

 $M_{H} = M_{H^{\pm}} = 250 \text{ GeV}$

Precision and reliability of BSM predictions

 $a_{\mu}(\text{Gm2Calc}) = 35 \times 10^{-10}, \ a_{\mu}(\text{SPheno}) = 61 \times 10^{-10}$

Shocking discrepancy for SUSY scenario with $m_{\tilde{a}} = 15 \text{TeV}!$

→ Include higher orders, use appropriate renormalization scheme, estimate theory uncertainty Available: 2HDM full two-loop; MSSM code Gm2Calc [Athron, JH Park, Voigt, Bach, Fargnoli, Gnendiger, Passehr, DS, Stöckinger-Kim, Greifenhagen]

Conclusions

- g 2 and new physics:
 - Models with different properties
 - Precision important

• THDM parameter constraints for $M_A < 100$ GeV:

- Yukawa couplings $|\zeta_I| < \sim 50$, $\zeta_u < \sim 0.5$
- large ζ_l only for $M_A > 20$ GeV
- $M_{H,H^{\pm}} \sim 250$ GeV allow largest Yukawas

• THDM and a_{μ}

- \rightsquigarrow light A_0 , large couplings to τ , t
- Type X: barely explains deviation
- beyond Z₂: $M_A = 20...100 \text{ GeV}$
- Interesting for LHC: $pp \rightarrow A \rightarrow \tau \tau$

< ロ > < 同 > < 三 >

16/16

Large a_{μ} in MSSM for tan $\beta \rightarrow \infty$,

[Bach,Park,DS,Stöckinger-Kim, '15]

How does g-2 behave as function of parameters?

Dominik Stöckinger

Conclusions

18/16