

COEPP

ARC Centre of Excellence for Particle Physics at the Terascale

Direct detection of self-interacting dark matter

Jackson D. Clarke with Noel E. Dawe and Robert Foot

Based on arXiv:1512.06471 and [to appear]

[online slides for animations]

• DM wind varies with phase $t_0 \approx 153$ days [June 2nd]

$$v_{\infty} = 232 + 15 \cos\left(\frac{2\pi(t-t_0)}{\text{year}}\right) \text{ km/s}$$

• Signal rate independent of position of detector

Part I

Self-interacting dark matter: general picture

- Consider self-interacting dark matter (SIDM)
 - $\circ \quad$ any captured DM now an obstacle to the DM wind
 - $\circ \quad \Rightarrow$ spatially dependent DM direct detection scattering rate
- Now we care about where our detector is...

• E.g. Gran Sasso (43°)

• E.g. Gran Sasso (43°), Kamioka (36°)

• E.g. Gran Sasso (43°), Kamioka (36°), and Stawell (-37°)

- E.g. Gran Sasso (43°), Kamioka (36°), and Stawell (-37°)
- Also: Earth rotation axis annually oscillates with $t_0 = 115$ days [April 25th]

SIDM: Implications

- Important take-home implications:
 - Latitudinally dependent signal [southern hemisphere particularly interesting]
 - New source of annual modulation [t_o=115 days]
 - Sidereal modulation $[T_{sid} \approx 24hrs 4mins]$

Part II

Plasma dark matter: a case study

Plasma dark matter

- Hidden sector dark matter comprising:
 - Dark electron
 - Dark proton
 - Massless dark photon

$$\mathcal{L} = \mathcal{L}_{SM}(e, \mu, u, d, A^{\mu}, \ldots) + \mathcal{L}_{dark}(e_d, p_d, A^{\mu}_d) + \frac{\epsilon'}{2} F^{\mu\nu} F'_{\mu\nu}$$

• Free parameters:

 $m_{e_d}, m_{p_d}, Z', \alpha_d, \epsilon$

[for this talk consider $m_{ed} \ll m_{pd}$]

Plasma dark matter

• Important are the dark atomic ionisation energy, and halo temperature:

$$I = \frac{1}{2} Z^{\prime 2} \alpha_d^2 m_{e_d} \qquad T \sim \frac{1}{2} \bar{m} v_{\rm rot}^2$$

• If $I/T \ll 1$ then DM will be in ionised "plasma" state in Milky Way

$$\frac{I}{T} \sim 0.2 \ Z'^2 (Z'+1) \left(\frac{\alpha_d}{10^{-2}}\right)^2 \left(\frac{m_{e_d}}{\text{MeV}}\right) \left(\frac{\text{GeV}}{m_{p_d}}\right) \left(\frac{220 \text{ km/s}}{v_{rot}}\right)^2 \ll 1$$

Implication #1

Energy equipartition implies e_d have velocity dispersion ≥ 220 km/s

$$v_0(e_d) \sim \left(\frac{\bar{m}}{m_{e_d}} \frac{\text{MeV}}{\text{GeV}}\right)^{\frac{1}{2}} \left(\frac{v_{rot}}{220 \text{ km/s}}\right) 7000 \text{ km/s}$$

Dark electromagnetism keeps them from escaping the galaxy

Implication #2

Large-scale plasma dynamics described by magnetohydrodynamics: fluid-like behaviour emerges from collective effects of long-range scattering

Sound speed

$$c_s = \sqrt{\frac{\gamma T}{\bar{m}}} \sim \sqrt{\frac{5}{6}} v_{rot}$$

Implies Mach numbers M = $v_{wind}/c_s \sim 1$

Implication #3

Captured DM comes into thermal equilibrium with $\rm T_{Earth}{\sim}5000K...$

If $I \gg T_{Earth}$ then largely neutral : absorbing "**Moon-like**" scenario

If $I \ll T_{Earth}$ then largely ionised : reflecting "**Venus-like**" scenario

Simulations

Direct detection

- Consider example: electron recoils in mirror dark matter...
 - Assume f(v) everywhere locally a boosted Maxwellian [a bad assumption but all we can do]
 - v_o~11,200km/s*(cs/200km/s)
 - \circ v_{min}~26,500km/s for E_{threshold}~2keV
 - \circ In limit $|v_{_{B}}|^{2} \ll v_{_{O}}^{-2}$ get rate:

$$R_e = N_T g_T n_{e_d} \lambda \left(\frac{2m_{e_d}}{\pi T}\right)^{\frac{1}{2}} \left(\frac{e^{-\frac{E_t}{T}}}{E_t} - \frac{\Gamma\left[0, \frac{E_t}{T}\right]}{T}\right)$$

• Both T and n_{ed} temporal/spatial variation come from simulation

Examples

• Venus-like; $c_s = 200 \text{ km/s}$; $R_E/R_{DM} = 2$

Examples

Part III

Sidereal modulation: model-independent search strategies

If this general picture is *even remotely plausible*, we should be searching for sidereal modulation!

If we see it, we know immediately it is of cosmological origin

• Consider a nice example: Venus-like at Gran Sasso...

• Suggest: simple binned χ^2 , far/near ratio, or Lomb-Scargle spectral analysis

[Generated taking: $S_0 \approx 8$ cpd, flat background $B_0 = 300$ cpd, 3 years data taking]

near/far χ^2

Lomb-Scargle power

Conclusion

Interaction of DM wind with captured DM implies a non-trivial, **spatially varying** near-Earth DM distribution

An interesting implication is a potentially strong **sidereal modulation** signal for direct detection (particularly perhaps for Southern Hemisphere detectors)

We should be looking for it!

