

Heavy Quark Flavored Scalar Dark Matter

Peiwen Wu

Korea Institute for Advanced Study (KIAS)

Collaborated with Pyungwon Ko, Seungwon Baek based on arXiv: 1606.00072 and 1709.00697

> Scalars 2017 Warsaw, Poland, Dec 2nd, 2017

Scalars 2017, Dec 2nd, 2017, Warsaw

Peiwen Wu, KIAS, Heavy Quark Flavored Scalar DM

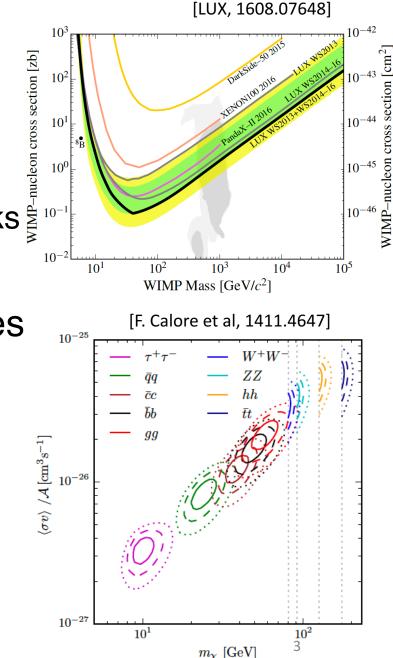
Outline

- Motivation: Why heavy quark flavored DM?
- Model description
- Properties:
 - Direct detection, RGE effects
 - Indirect detection
 - Thermal relic abundance
 - Top FCNC
 - Collider Signals

Summary

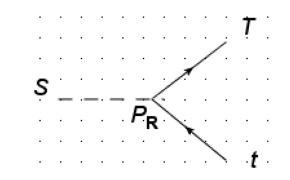
Why Flavored DM?

- No confirmed DD signal yet
 - small/vanishing <u>direct</u> coupling of DM to u/d quarks
- Favored channels when fitting astro- anomalies
 - $b\overline{b}, \tau\tau$ are favored, up to astro- uncertainties [see Hooper et al]
- Theoretical model building [see Agrawal, Kilic et al]
 - flavor symmetry in dark sector, MFV...



Top-flavored DM

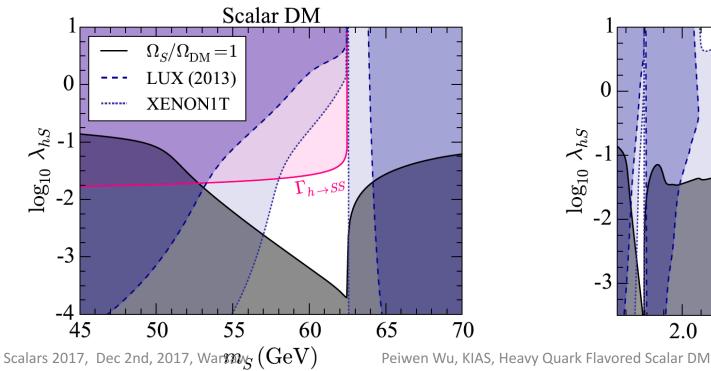
- DM: real scalar S
 - SM singlet, couple only to t_R
- Vector-like (VL) fermion T
 - (T, t_R) same quantum number
 - no chiral anomaly
- Z_2 parity to stabilize DM: S, T are odd
 - no mass mixing (S, H), (T, t)
 - $Br(T \rightarrow St^{(*)}) = 100\%$
 - LHC searches for VL (T, B) do not apply

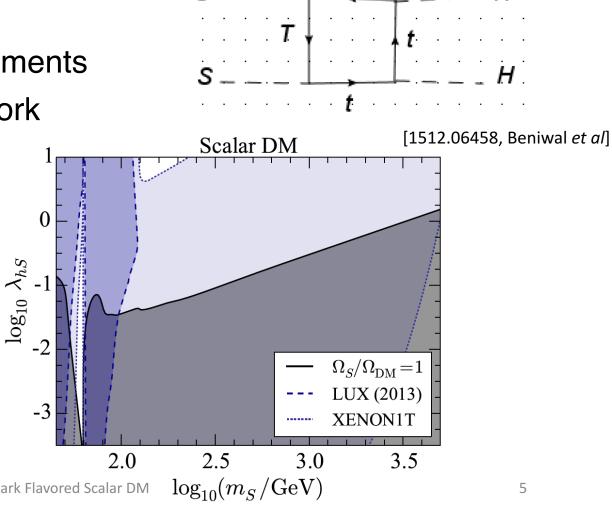


 $\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_S + \mathcal{L}_T + \mathcal{L}_Y$

Higgs portal set to be negligible

- generated via tree/loop
- strongly constrained by current experiments
- We set $\lambda_{SH}^{ren.}(\mu_{EFT}=m_Z)=0$ in this work





Top + Charm Flavored

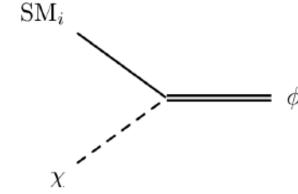
$$\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_S + \mathcal{L}_{\psi} + \mathcal{L}_{Y}$$

Ş

PR

Realization in M(inimal) F(lavor) V(iolation)

- U_R -flavored DM: $\mathcal{L} \supset U^i[\lambda]_i^{\ j}(DM)_j(med.)$
- expansion of λ_i^{j} , m_{DM} in terms of SM Yukawa Y



[arXiv: 1109.3516 Can Kilic *et al*]

•
$$U(3)_{DM} = U(3)_{U}$$

• $[\lambda]_{i}^{j} = (\alpha_{U} \cdot 1 + \beta_{U} Y_{u}^{+} Y_{u})_{i}^{j}, \quad [m_{DM}]_{i}^{j} = (m_{0,U} \cdot 1 + \Delta m_{U} Y_{u}^{+} Y_{u})_{i}^{j}$
• $U(3)_{DM} = U(3)_{D}$
• $[\lambda]_{i}^{j} = \beta_{D} (Y_{d}^{+} Y_{u})_{i}^{j}, \quad [m_{DM}]_{i}^{j} = (m_{0,D} \cdot 1 + \Delta m_{D} Y_{d}^{+} Y_{u})_{i}^{j}$
• $U(3)_{DM} = U(3)_{Q}$
• $[\lambda]_{i}^{j} = \beta_{Q} (Y_{u})_{i}^{j}, \quad [m_{DM}]_{i}^{j} = (m_{0,Q} \cdot 1 + \Delta m_{Qu} Y_{u} Y_{u}^{+} + \Delta m_{Qd} Y_{d} Y_{d}^{+})_{i}^{j}$

Direct Detection : EFT

[Hisano et al, 1502.02244]

•
$$\mu_{EFT} \sim m_Z$$
 $\mathcal{L}_{eff} = \sum_{p=q,g} C_S^p \mathcal{O}_S^p$, $\begin{array}{l} \mathcal{O}_S^q \equiv \phi^2 m_q \bar{q} q , \\ \mathcal{O}_S^q \equiv \frac{\alpha_s}{\pi} \phi^2 G^{A\mu\nu} G_{\mu\nu}^A \\ \mathcal{O}_S^q \equiv \frac{\alpha_s}{\pi} \phi^2 G^{A\mu\nu} G_{\mu\nu}^A \\ \mathcal{O}_S^q \equiv \frac{\alpha_s}{\pi} \phi^2 G^{A\mu\nu} G_{\mu\nu}^A \\ \mathcal{O}_S^q = \frac{\alpha$

Nov 6th, 2nd KEK-NCTS-KIAS workshop, Seoul, South Korea

Peiwen Wu, KIAS, Heavy Quark Flavored Scalar DM

Direct Detection : EFT

[Hisano et al, 1502.02244]

• $\mu_{EFT} \sim m_Z$ $\mathcal{L}_{eff} = \sum_{p=q,g} C_S^p \mathcal{O}_S^p$, $\mathcal{O}_S^q \equiv \phi^2 m_q \bar{q} q$, • $\mathcal{D}_S^g \equiv \frac{\alpha_s}{\pi} \phi^2 G^{A\mu\nu} G_{\mu\nu}^A$ • RGE $C_S^q(\mu) = C_S^q(\mu_0) - 4C_S^G(\mu_0) \frac{\alpha_s^2(\mu_0)}{\beta(\alpha_s(\mu_0))} (\gamma_m(\mu) - \gamma_m(\mu_0))$, • $\mathcal{R}_S^q(\mu) = C_S^q(\mu_0) - 4C_S^G(\mu_0) \frac{\alpha_s^2(\mu_0)}{\beta(\alpha_s(\mu_0))} (\gamma_m(\mu) - \gamma_m(\mu_0))$, $C_{\mathrm{S}}^{G}(\mu) = \frac{\beta(\alpha_{s}(\mu))}{\alpha_{s}^{2}(\mu)} \frac{\alpha_{s}^{2}(\mu_{0})}{\beta(\alpha_{s}(\mu_{0}))} C_{\mathrm{S}}^{G}(\mu_{0}) .$ • Quark thresholds $C^q_S(\mu_b)|_{N_f=4} = C^q_S(\mu_b)|_{N_f=5}$, $C_{\rm S}^G(\mu_b)|_{N_f=4} = -\frac{1}{12} \left| 1 + \frac{11}{4\pi} \alpha_s(\mu_b) \right| C_{\rm S}^b(\mu_b)|_{N_f=5} + C_{\rm S}^G(\mu_b)|_{N_f=5}$ • $\mu_{OCD} \sim 1 \text{ GeV}$ $\mathcal{L}_{\rm SI}^{(N)} = f_N \phi^2 \overline{N} N \ , \ \sigma = \frac{1}{\pi} \left(\frac{M_T}{M + M_T} \right)^2 |n_p f_p + n_n f_n|^2$

Nov 6th, 2nd KEK-NCTS-KIAS workshop, Seoul, South Korea

Peiwen Wu, KIAS, Heavy Quark Flavored Scalar DM

Loop momentum: SD & LD

- SD: $q \sim m_{mediator}$ LD: $q \sim m_{Q=\{c,b,t\}}$
- top, fully integrated out, generates $\{O_S^g\}$ $L_D^{(a)} \sim m_t$
- charm, active *d.o.f*, generates $\{O_S^g, O_S^c\}$

$$C_{S}^{g}|_{t}^{t} = \left(\frac{1}{4}\frac{y_{3}^{2}}{2}\right)\left(f_{+}^{(a)} + f_{+}^{(b)} + f_{+}^{(c)}\right)(m_{S}; m_{t}, m_{\psi})$$

$$C_{S}^{g}|_{c}^{c} = \left(\frac{1}{4}\frac{y_{2}^{2}}{2}\right)\left(f_{+}^{(b)} + f_{+}^{(c)}\right)(m_{S}; m_{c}, m_{\psi})$$

$$C_{S}^{g}|_{c}^{c} = \left(-12\right)\left(\frac{1}{4}\frac{y_{2}^{2}}{2}\right)f_{+}^{(a)}(m_{S}; m_{c}, m_{\psi}).$$

$$\left[-\frac{\alpha_{s}}{12\pi}G_{\mu\nu}^{a}G^{a\mu\nu} \rightarrow m_{Q}\bar{Q}Q\right]$$

$$f_{Q} = (-12)f_{G}\Big|_{Q}^{LD}$$

S

g g (AN)

(b)

B g

(c)

RGE

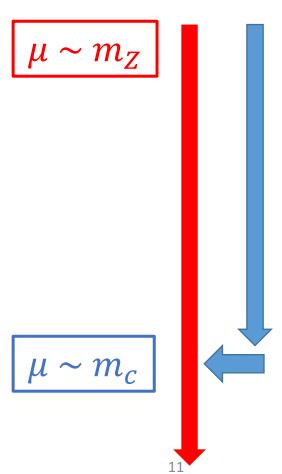
- $\mu_{EFT} \sim m_Z$
 - top, <u>fully integrated out</u>, generates $\{O_S^g\}$
 - charm, active *d.o.f*, generates $\{O_S^g, O_S^c\}$
- RGE evolution: $\{O_S^g, O_S^c\}$ are different

$$C_{\rm S}^{q}(\mu) = C_{\rm S}^{q}(\mu_{0}) - 4C_{\rm S}^{G}(\mu_{0})\frac{\alpha_{s}^{2}(\mu_{0})}{\beta(\alpha_{s}(\mu_{0}))}(\gamma_{m}(\mu) - \gamma_{m}(\mu_{0})) ,$$

$$C_{\rm S}^{G}(\mu) = \frac{\beta(\alpha_{s}(\mu))}{\alpha_{s}^{2}(\mu)}\frac{\alpha_{s}^{2}(\mu_{0})}{\beta(\alpha_{s}(\mu_{0}))}C_{\rm S}^{G}(\mu_{0}) .$$

• reaching charm threshold, O_S^c is absorbed into O_S^g

top loop $\rightarrow \{O_S^g\}$ charm loop $\rightarrow \{O_S^g, O_S^c\}$



Direct Detection: RGE effects

 $\mathcal{L}_{SI}^{(N)} = f_N S^2 \overline{N} N , f_N = C_2 y_2^2 + C_3 y_3^2$

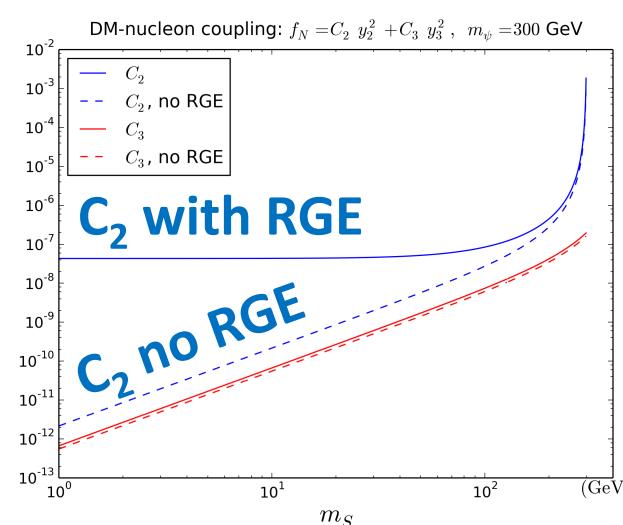
 f_N : DM-nucleon coupling @ 1 GeV

when $m_S \rightarrow 0$

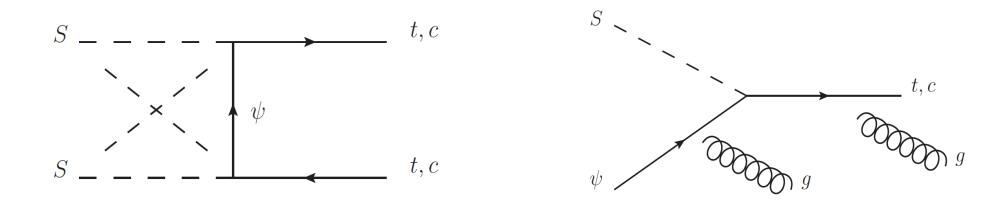
• w/o RGE, $C_{2,3} \propto \frac{m_S^2}{m_\psi^2} \rightarrow 0$

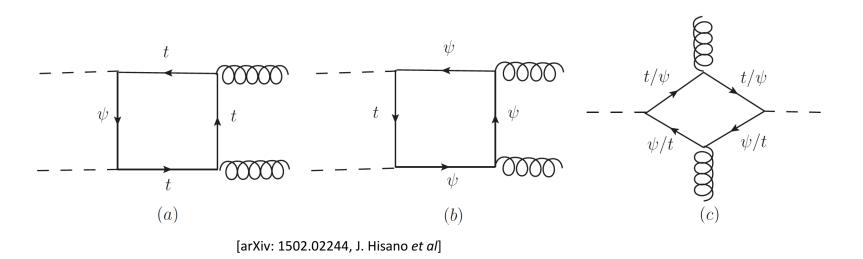
• w/ RGE, $C_2 \rightarrow \text{constant}, C_3 \rightarrow 0$

• $C_2 \gg C_3$, charm contribution dominates



Thermal Relic / Indirect Detection





Scalars 2017, Dec 2nd, 2017, Warsaw

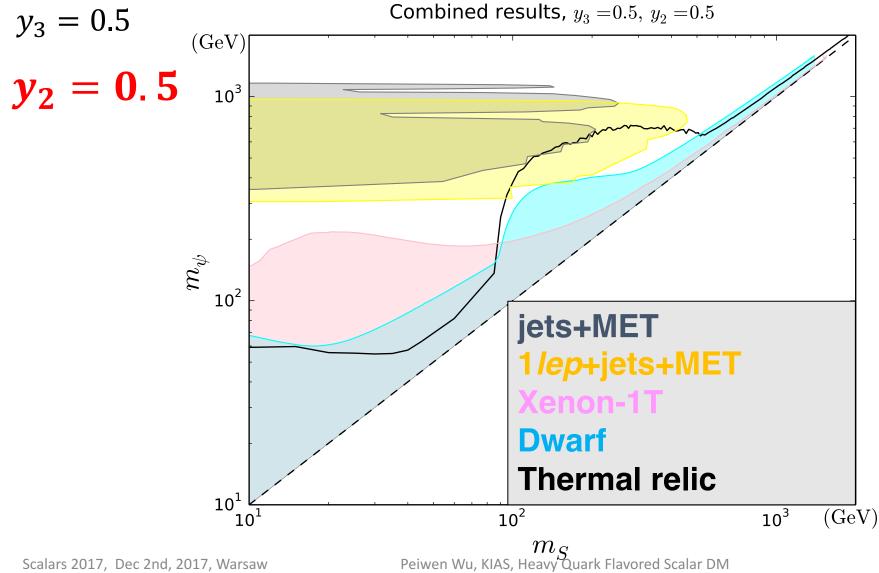
Peiwen Wu, KIAS, Heavy Quark Flavored Scalar DM

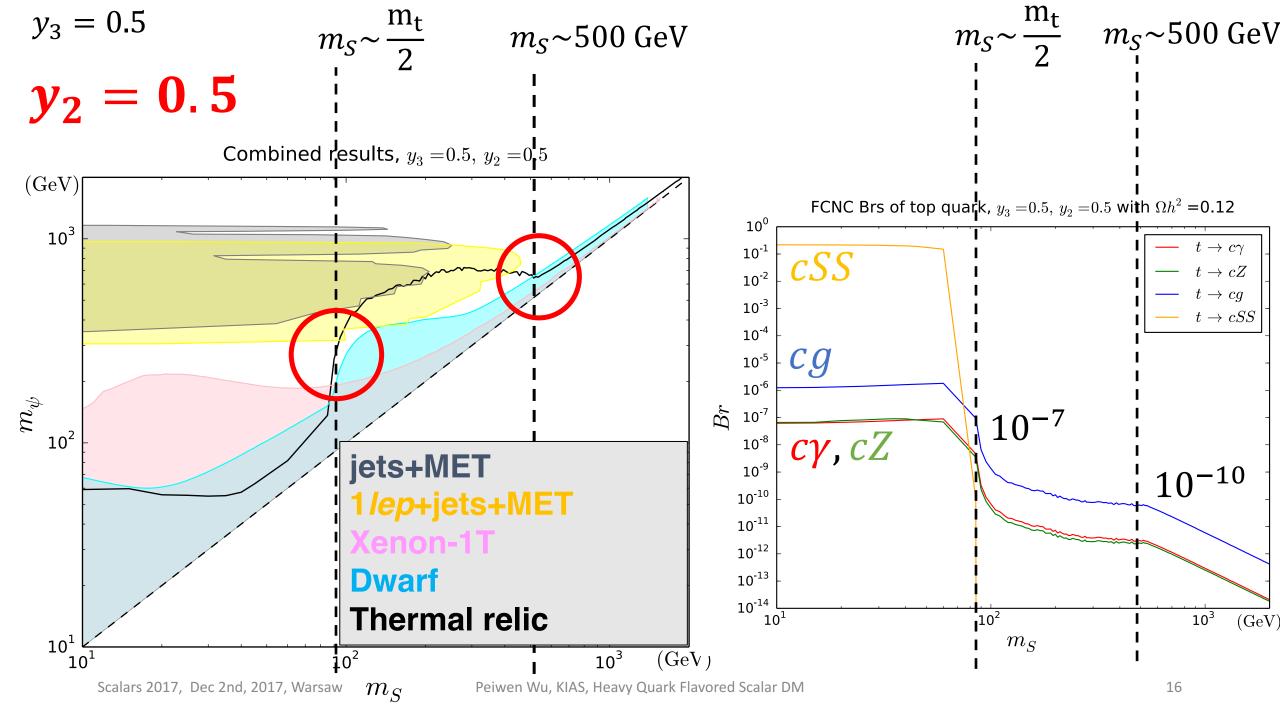
- FCNC of Top Quark $\overset{s}{,} \overset{s}{,} \overset{s}{,}$
- Collider search (ATLAS 36 fb^{-1} @ 13 TeV) $\leq_{V=\gamma,g,Z} pp \rightarrow \psi \overline{\psi} \rightarrow t \overline{t} / c \overline{c} + MET$

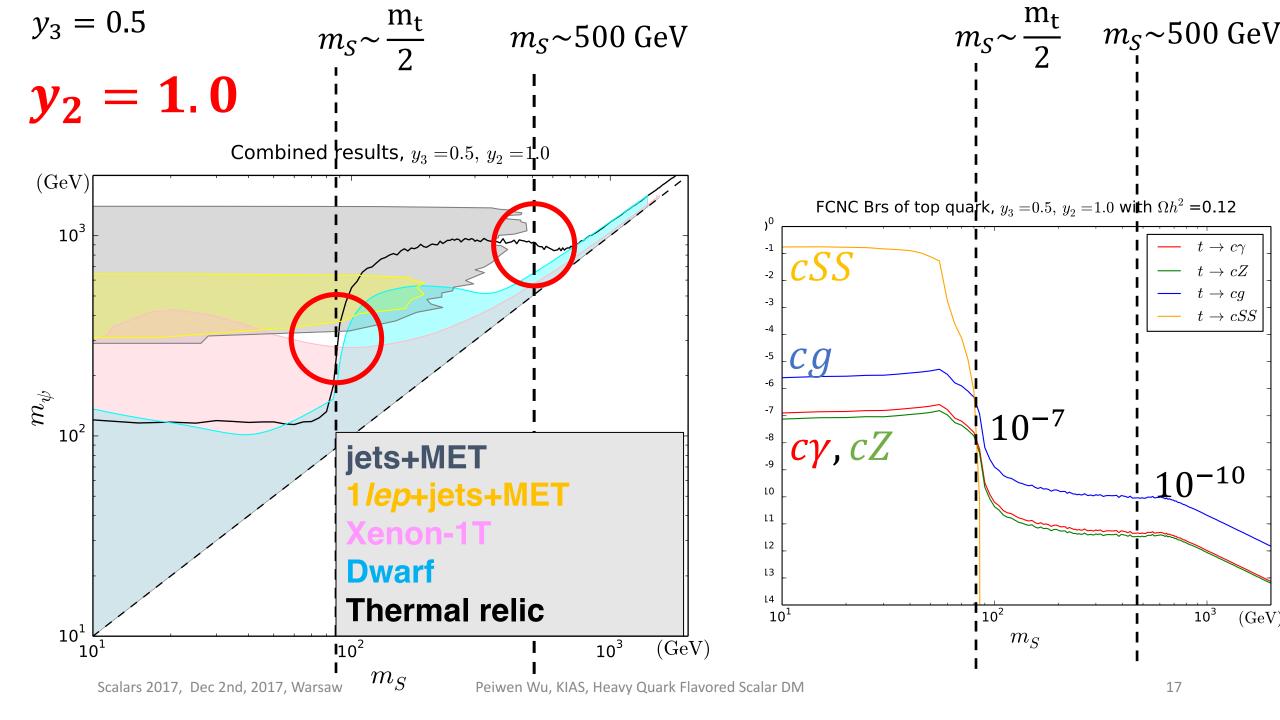
$$\sigma \left(pp \to \psi \overline{\psi} \to \not\!\!\!E_T + t\bar{t} \right) = \sigma \left(pp \to \psi \overline{\psi} \right) Br^2(\psi \to St)$$

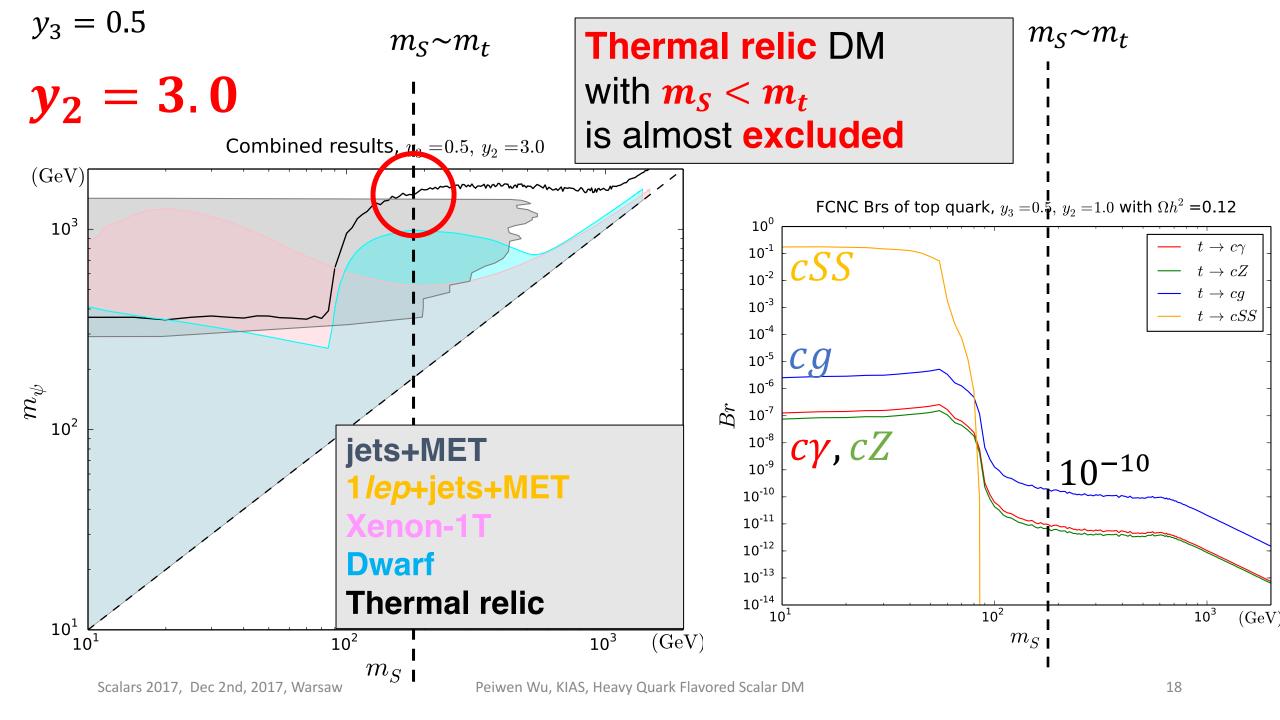
$$\sigma \left(pp \to \psi \overline{\psi} \to \not\!\!\!E_T + jj \right) = \sigma \left(pp \to \psi \overline{\psi} \right) Br^2(\psi \to Sc)$$

Combined results







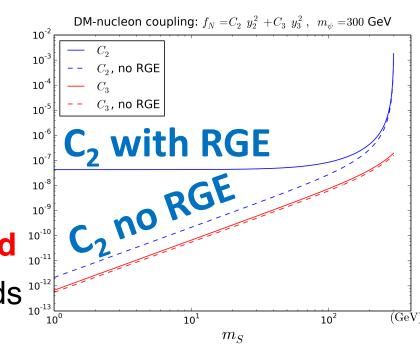


Summary

- No confirmed DD signal yet, DM may couple dominantly to heavy quarks
- We considered a *real scalar DM* coupling dominantly to right handed *top* and *charm* quark, via a colored *fermion mediator*.
- RGE are important in DM-nucleon scattering.

When $y_2, y_3 \sim O(1)$:

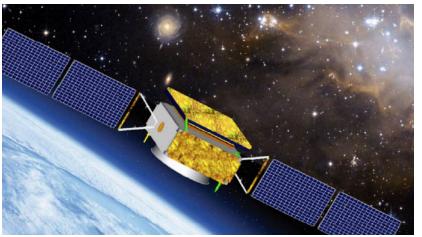
- Thermal relic DM with $m_S < m_t$ is almost excluded $\frac{1}{2}$
- Top FCNC **Brs** < 10^{-7} , still allowed in current bounds
- Future data would further test this model.



DA(ark) M(atter) P(article) E(xplorer) e^+e^- peak @ 1.4 TeV LETTER nature.com

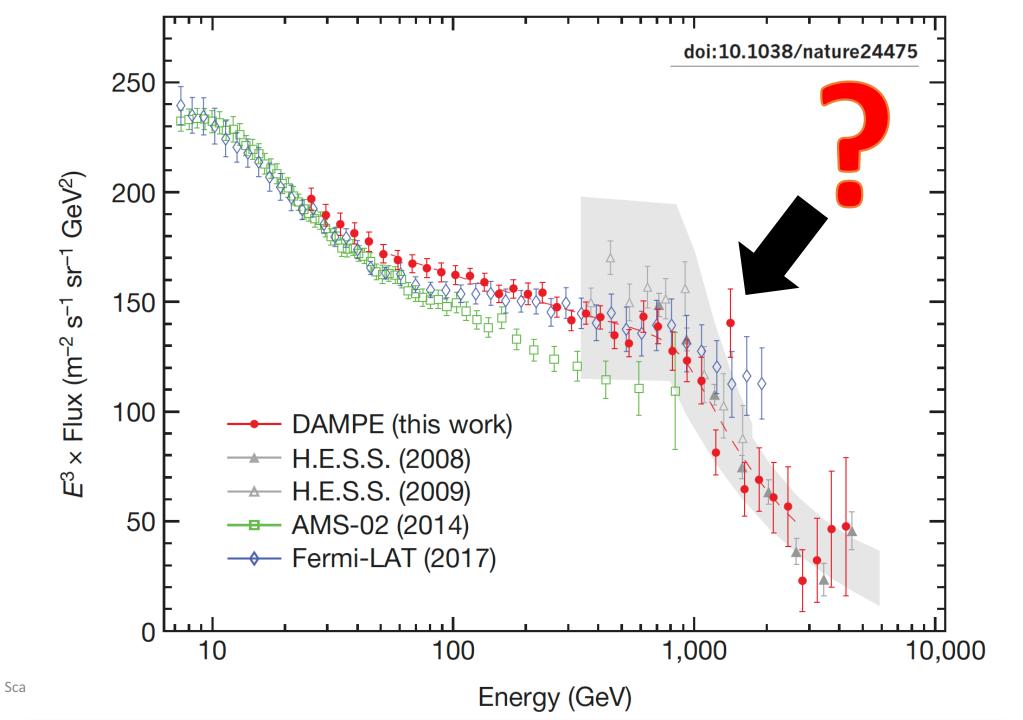
Direct detection of a break in the teraelectronvolt cosmic-ray spectrum of electrons and positrons

DAMPE Collaboration*



Scalars 2017, Dec 2nd, 2017, Warsaw

Peiwen Wu, KIAS, Heavy Quark Flavored Scalar DM



DM fitting with $\sigma v \sim 3 \times 10^{-26} cm^3/s$

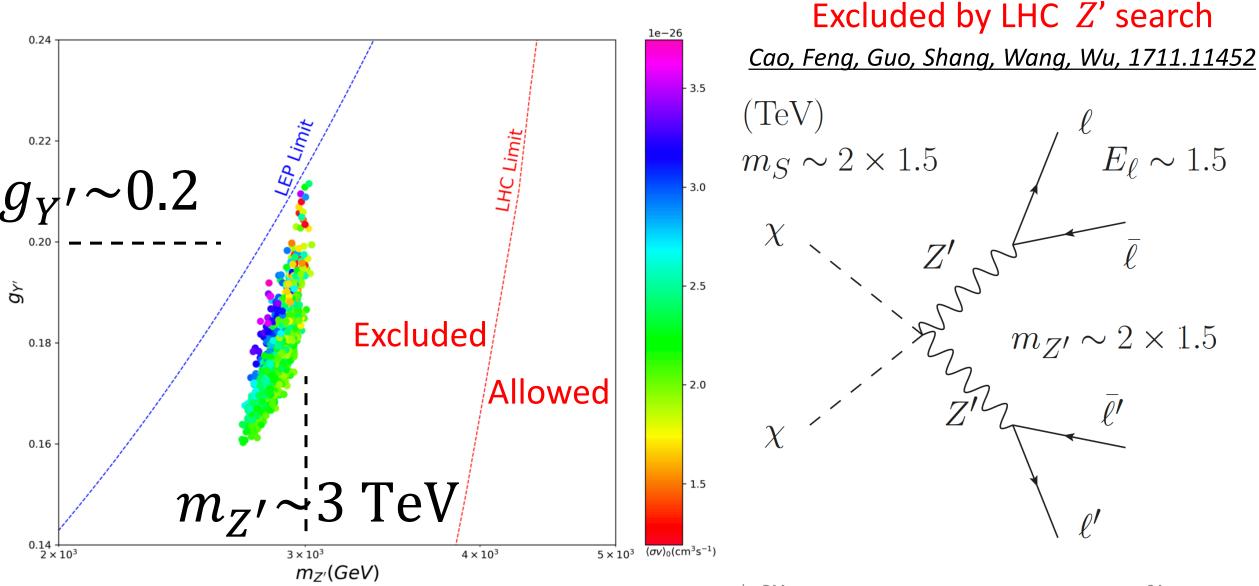
<u>Q. Yuan et al, 1711.10989</u>

channel		1.0 kp	c		0.3 kp	c		0.1 kpc	
	$m_{\chi}/{\rm TeV}$	$M_{ m sub}/ m M_{\odot}$	$\mathcal{L}/\text{GeV}^2\text{cm}^{-3}$	$m_{\chi}/{\rm TeV}$	$M_{ m sub}/ m M_{\odot}$	$\mathcal{L}/\text{GeV}^2\text{cm}^{-3}$	$m_{\chi}/{\rm TeV}$	$M_{ m sub}/ m M_{\odot}$	$\mathcal{L}/\text{GeV}^2\text{cm}^{-3}$
e^+e^-			1.0×10^{67}	1.5	8.0×10^{7}	3.8×10^{65}	1.5	5.0×10^{6}	3.5×10^{64}
εμτ	2.2	1.0×10^{10}	2.3×10^{67}	1.5	2.6×10^{8}	1.0×10^{66}	1.5	1.9×10^{7}	1.1×10^{65}

Scalar DM with $G_{SM} \times U(1)_{Y'}$

							<u>Cao, Feng, Guo, Shang, Wang, Wu, 1711.1145</u>
Name	Spin	Gen.	$SU(3)_C$	$SU(2)_L$	$U(1)_Y$	$U(1)_{Y'}$	(TeV)
Н	0	1	1	2	$-\frac{1}{2}$	0	
Q	1/2	3	3	2	$\frac{1}{6}$	$\frac{1}{3}$	$m_S \sim 2 \times 1.5$ / $E_\ell \sim 1.5$
d_R^*	1/2	3	$ar{3}$	1	$\frac{1}{3}$	$-\frac{1}{3}$	
u_R^*	1/2	3	$\bar{3}$	1	$-\frac{2}{3}$	$-\frac{1}{3}$	χ , Z' , $\bar{\ell}$
L_1	1/2	1	1	2	$-\frac{1}{2}$	3	
$L_{\{2,3\}}$	1/2	2	1	2	$-\frac{1}{2}$	-3	$\sum m_{Z'} \sim 2 \times 1.5$
$\ell^*_{R,1}$	1/2	1	1	1	1	-3	/ ~ / ~ Z ~ 1.0
$\ell^*_{R,\{2,3\}}$	1/2	2	1	1	1	3	
$ u_{R,1}^*$	1/2	1	1	1	0	-3	χ \sim \sim \sim
$ u^*_{R,\{2,3\}} $	1/2	2	1	1	0	3	
ϕ_s	0	1	1	1	0	6	$\setminus \ell'$
ϕ_{χ}	0	1	1	1	0	6	$\wedge k$

Scalar DM with $G_{SM} \times U(1)_{Y'}$



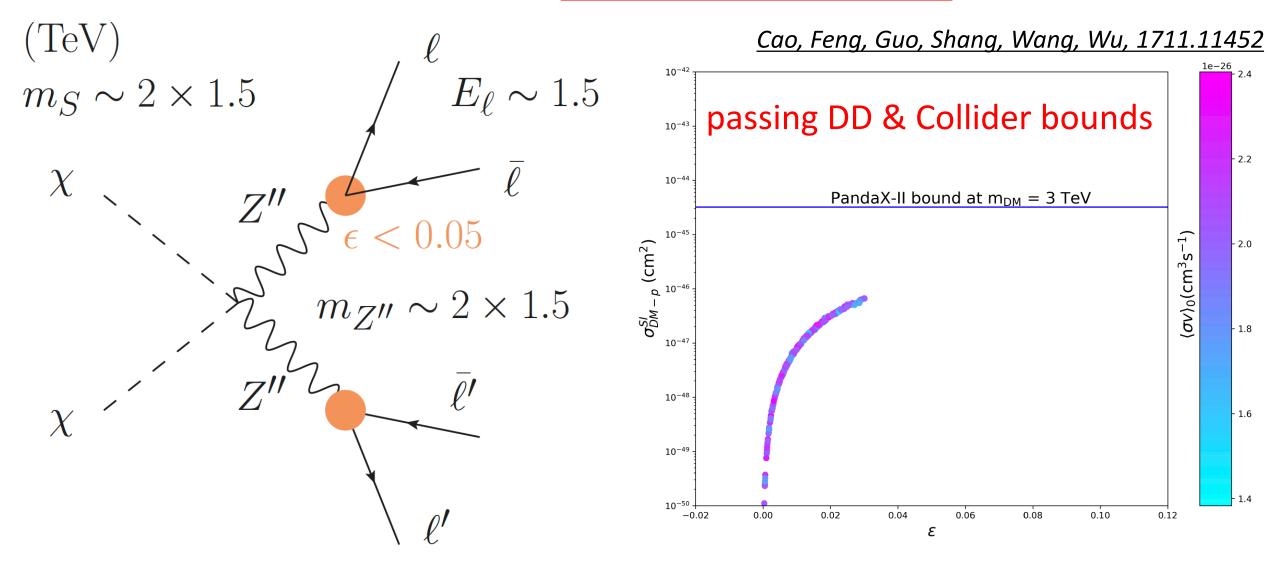
Scalar DM with $G_{SM} \times U(1)_{Y'} \times U(1)_{Y''}$

ΓeV 1.5 E_{I} $m_S \sim 2 \times 1.5$ χ $\times 1.5$ $m_{Z''}$ 01

Cao, Feng, Guo, Shang, Wang, Wu, 1711.11452

$$\mathcal{L} \supset -\frac{1}{4} |F'_{\mu\nu}|^2 - \frac{1}{4} |F''_{\mu\nu}|^2 - \frac{\epsilon}{2} F'^{\mu\nu} F''_{\mu\nu}$$
$$\mathcal{L} = [g_{Y''}Y''] - Z'' - [\epsilon] - (Z' - [g_{Y'}Y'] - SM)$$

Scalar DM with $G_{SM} \times U(1)_{Y'} \times U(1)_{Y''}$

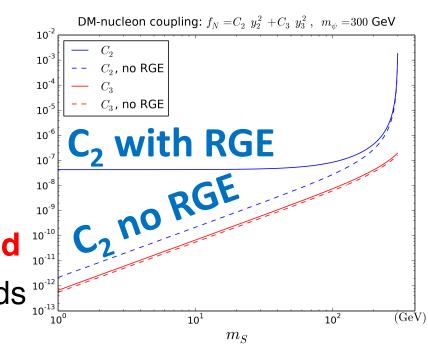


Summary

- No confirmed DD signal yet, DM may couple dominantly to heavy quarks
- We considered a *real scalar DM* coupling dominantly to right handed *top* and *charm* quark, via a colored *fermion mediator*.
- RGE are important in DM-nucleon scattering.

When $y_2, y_3 \sim O(1)$:

- Thermal relic DM with $m_S < m_t$ is almost excluded $\frac{1}{2}$
- Top FCNC **Brs** < 10^{-7} , still allowed in current bounds
- Future data would further test this model.



Thank you for your attention

Back up slides

SUSY case $\mathcal{O}_{S}^{g} \equiv \frac{\alpha_{s}}{\pi} \overline{\widetilde{\chi}^{0}} \widetilde{\chi}^{0} G_{\mu\nu}^{A} G^{A\mu\nu}$

$$\mathcal{L} = \bar{q}(a_q + b_q \gamma_5) \tilde{\chi} \tilde{q} + \text{h.c.}$$
$$f_G = \sum_{q=\text{all}} f_G^{\text{SD}}|_q + \sum_{Q=c,b,t} f_G^{\text{LD}}|_Q$$

$$f_{G}^{\rm SD}|_{q} = \frac{\alpha_{s}}{4\pi} \left(\frac{a_{q}^{2} + b_{q}^{2}}{4} M f_{+}^{s} + \frac{a_{q}^{2} - b_{q}^{2}}{4} m_{q} f_{-}^{s} \right)$$
$$f_{G}^{\rm LD}|_{q} = \frac{\alpha_{s}}{4\pi} \left(\frac{a_{q}^{2} + b_{q}^{2}}{4} M f_{+}^{l} + \frac{a_{q}^{2} - b_{q}^{2}}{4} m_{q} f_{-}^{l} \right)$$

SD is characterized by $q_{loop} \sim m_{\tilde{q}}$ LD is characterized by $q_{loop} \sim m_q$

(d) (C) $= m_{\tilde{q}}^2 \left(B_0^{(1,4)} + B_1^{(1,4)} \right)$ $f_{-}^{s} = m_{\tilde{q}}^{2} B_{0}^{(1,4)}$ $f^l_+ = m^2_a \left(B^{(4,1)}_0 + B^{(4,1)}_1 \right) ,$ $f_{-}^{l} = B_{0}^{(3,1)} + m_{a}^{2} B_{0}^{(4,1)}$ $\frac{d^4q}{i\pi^2} \frac{1}{((p+q)^2 - m_q^2)^n (q^2 - m_{\tilde{q}}^2)^m}$ -(n,m) $\frac{d^4q}{i\pi^2} \frac{q_{\mu}}{((p+q)^2 - m_q^2)^n (q^2 - m_{\tilde{q}}^2)^m}$ $\equiv p_{\mu}B_1^{(n,m)}$

ggg

(a)

q/Q

g

higher energy

shorter distance

(b)

Q

<u>**Perturbative</u>** QCD requires $q_{loop} > \Lambda_{QCD}$ </u>

• SD $(p \sim m_{\tilde{q}})$ is integrated out into f_G , since $m_{\tilde{q}} \sim \mu_{EFT} \sim m_Z$

$$f_G = \sum_{q=\text{all}} f_G^{\text{SD}} + \sum_{Q=c,b,t} f_G^{\text{LD}} Q$$

• LD
$$(q_{loop} \sim m_q)$$
 of $q = \{u, d, s\}$

- **<u>non-perturbative</u>** QCD, must <u>**NOT**</u> be included in f_G
- belongs to quark mass fractions in nucleons $f_{Tq} = \langle N | m_q \bar{q} q | N \rangle / m_N$
- LD $(q_{loop} \sim m_Q)$ of $Q = \{c, b, t\}$
 - if $m_Q > \mu_{EFT}$, integrated out into f_G
 - if $m_Q < \mu_{EFT}$, Q is active d.o.f,

LD of Heavy Quark in DM-Gluon $f_G^{LD}|_Q$ is used to calculate **DM-Heavy Quark coupling** f_0

q/Q

LD of Heavy Quark in DM-Gluon $f_G^{LD}|_Q$ is used to calculate **DM-Heavy Quark coupling** f_Q

 $\widetilde{\chi}^0$

f_Q Pole removal

• Tree-level matching of f_Q contains pole at $m_{\tilde{Q}} = m_{\chi} + m_Q$

[Gondolo et al, 1307.4481]

$$f_Q = -\frac{1}{4m_q} \frac{a_q^2 - b_q^2}{m_{\tilde{q}}^2 - (m_\chi + m_q)^2} + \frac{m_\chi}{8} \frac{a_q^2 + b_q^2}{[m_{\tilde{q}}^2 - (m_\chi + m_q)^2]^2}$$

 $\widetilde{\chi}^0$

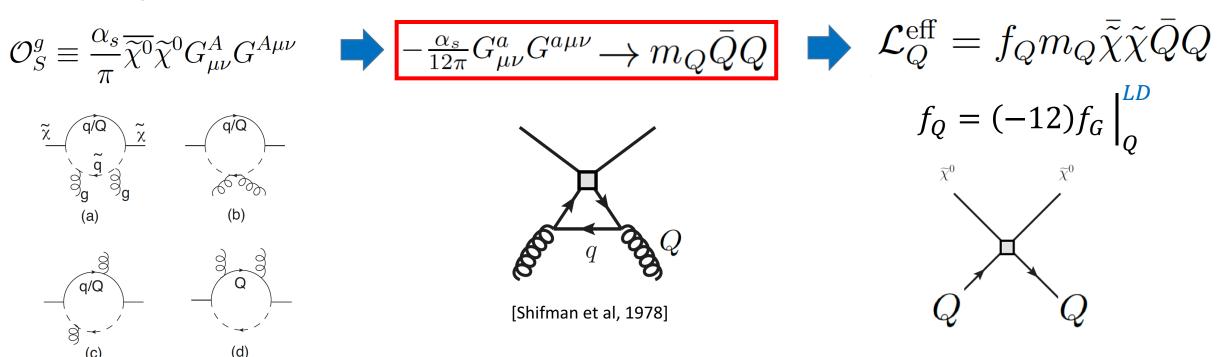
 $\widetilde{\chi}^0$

LD of Heavy Quark in DM-Gluon $f_G^{LD}|_Q$ is used to calculate **DM-Heavy Quark coupling** f_Q

f_Q Pole removal

[Gondolo et al, 1307.4481]

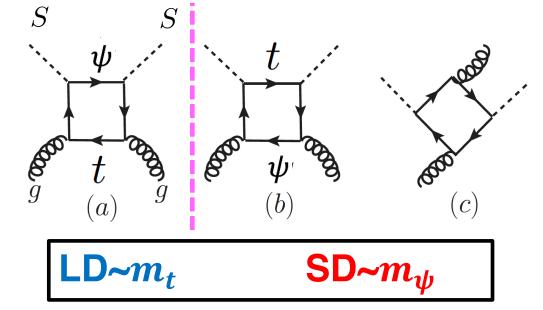
• One can use LD in f_G (loop calculation) to obtain f_Q , which is regular at $m_{\tilde{Q}} = m_{\chi} + m_Q$.



Scalar DM case

[Hisano et al, 1502.02244]

• Taking top loop as an example



$$\mathcal{L} = S\overline{\psi}(a_Q + b_Q\gamma^5)Q + h.c.$$

 $a_Q = b_Q = \frac{y_3}{2}$ in our model for top quark

$$C_{S}^{g}|_{t} = \frac{1}{4} \sum_{i=a,b,c} \left[(a_{Q}^{2} + b_{Q}^{2}) f_{+}^{(i)}(m_{S}; m_{Q}, m_{\psi}) + (a_{Q}^{2} - b_{Q}^{2}) f_{-}^{(i)}(m_{S}; m_{Q}, m_{\psi}) \right]$$

summation over {a,b,c} diagrams.
a: LD~m_t b,c: SD~m_{\psi}

Charm threshold matching

- Without RGE:
 - $C_S^g(\mu_c)|_{N_f=3} = \left(\frac{1}{4}\frac{y_2^2}{2}\right) \left(f_+^{(a)} + f_+^{(b)} + f_+^{(c)}\right) (m_S; m_c, m_\psi)$
 - <u>same</u> coefficients in front of f^a and $f^{\{b,c\}}$
 - LD/SD splitting of charm loop at $\mu_{EFT} \sim m_Z$ is recovered.
- With RGE:
 - running $\alpha_s(\mu)$, $\beta(\alpha_s)$, $\gamma_m(\alpha_s)$

residual terms appear

(COC)

top loop

- <u>different</u> coefficients in front of f^a and $f^{\{b,c\}}$
- LD/SD splitting at $\mu_{EFT} \sim m_Z$ is not fully recovered at $\mu_c \sim m_c$

 $-> \{O_{S}^{g}\}$

charm loop -> $\{O_{S}^{g}, O_{S}^{c}\}$

Loop function behavior

$$(f_{+}^{(a)} + f_{+}^{(b)} + f_{+}^{(c)})(m_S; m_c, m_{\psi})$$

• When $m_c \ll m_S, m_\psi$, i.e. $m_S \sim O(10)$ GeV

$$\begin{aligned} f_{+}^{(a)} \simeq & -\frac{2m_{\psi}^2 - m_{S}^2}{6(m_{\psi}^2 - m_{S}^2)^2} , \qquad f_{+}^{(b)} \simeq -\frac{1}{6(m_{\psi}^2 - m_{S}^2)} , \qquad f_{+}^{(c)} \simeq \frac{1}{2(m_{\psi}^2 - m_{S}^2)} , \\ & f_{+}^{(a)} + f_{+}^{(b)} + f_{+}^{(c)} \simeq -\frac{m_{S}^2}{2(m_{\psi}^2 - m_{S}^2)^2} , \end{aligned}$$

$$f_{+}^{(a)} + f_{+}^{(b)} + f_{+}^{(c)}$$

S

g g

U

(a)

 $LD \sim m_c$

q

(b)

top loop

600

3

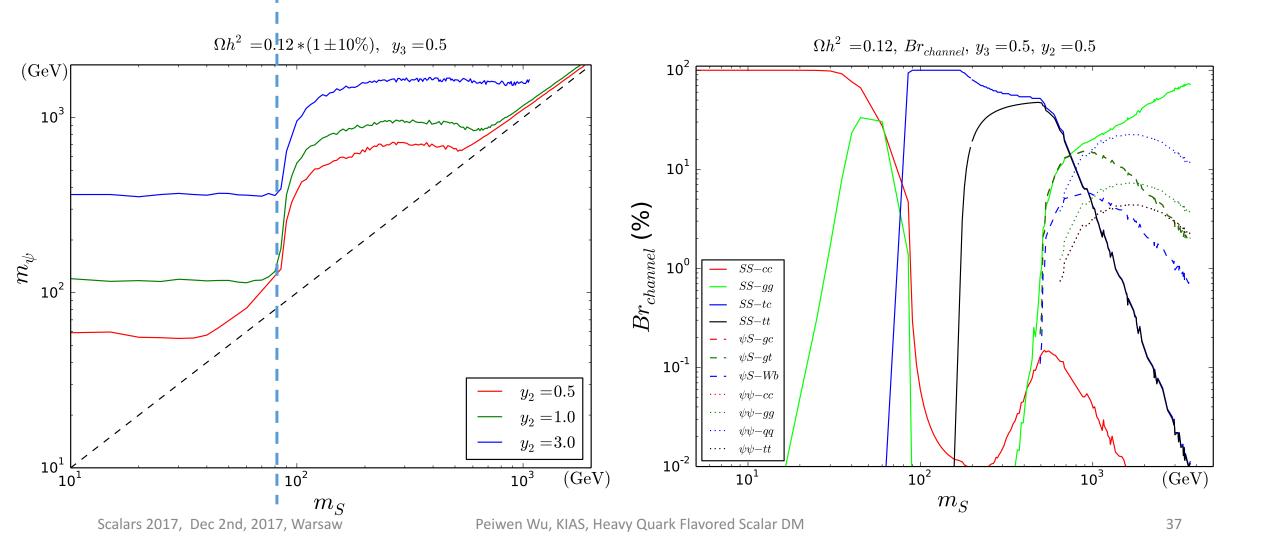
(c)

 $-> \{O_{S}^{g}\}$

 $SD \sim m_{\mu}$

charm loop -> $\{O_S^g, O_S^c\}$

Thermal Relic: $y_3 = 0.5$, $y_2 = \{0.5, 1, 3\}$



Scalar DM with $G_{SM} \times U(1)_{Y'} \times U(1)_{Y''}$

Name	Spin	Gen.	$SU(3)_C$	$SU(2)_L$	$U(1)_Y$	$U(1)_{Y'}$	$U(1)_{Y''}$	<u>Cao, Feng, Guo, Shang, Wang, Wu, 1711.11452</u>
Н	0	1	1	2	$-\frac{1}{2}$	0	0	$(\mathbf{T}_{\mathbf{a}}\mathbf{V})$
Q	1/2	3	3	2	$\frac{1}{6}$	$\frac{1}{3}$	0	(TeV) ℓ
d_R^*	1/2	3	$\bar{3}$	1	$\frac{1}{3}$	$-\frac{1}{3}$	0	$m_S \sim 2 \times 1.5$ / $E_\ell \sim 1.5$
u_R^*	1/2	3	$\bar{3}$	1	$-\frac{2}{3}$	$-\frac{1}{3}$	0	
L_1	1/2	1	1	2	$-\frac{1}{2}$	3	0	χ , $-\mu$ $\bar{\ell}$
$L_{\{2,3\}}$	1/2	2	1	2	$-\frac{1}{2}$	-3	0	
$\ell^*_{R,1}$	1/2	1	1	1	1	-3	0	$\tilde{\epsilon} < 0.05$
$\ell^*_{R,\{2,3\}}$	1/2	2	1	1	1	3	0	$\sum m_{Z''} \sim 2 \times 1.5$
$ u_{R,1}^* $	1/2	1	1	1	0	-3	0	
$ u_{R,\{2,3\}}^* $	1/2	2	1	1	0	3	0	$Z'' = \overline{\ell'}$
ϕ_s	0	1	1	1	0	6	0	χ $Z'' = \ell'$
ϕ_{χ}	0	1	1	1	0	0	$Y_{\phi_{\chi}}^{\prime\prime}$	
ϕ_d	0	1	1	1	0	0	$Y_{\chi_d}^{\prime\prime}$	
								$\wedge \ell'$