

Triplet Explanation of the 95 GeV Excess

Sumit Banik

(In collaboration with A. Crivellin, G. Coloretti, B. Mellado, S. Ashanujjaman and A. Mulaudzi)

- Based on *arXiv.2306.15722*

September 15, 2023

1. Motivation

2. Scalar Triplet Model

3. Phenomenology

4. Conclusions

Motivation

- CMS, ATLAS and LEP hints for a new resonance decaying to $\gamma\gamma$, *bb* and $\tau\tau$ at 95 GeV.

Motivation

Why Triplet?

- Positive shift in the W mass as suggested by the experimental average (LEP+LHC+CDF II).
- Non-zero σ[pp → H → WW* → l⁺ ν̄ l⁻ ν] preferred: [arXiv:2302.07276] by G. Coloretti, A. Crivellin, S. Bhattacharya, B. Mellado.

• Triplet dominantly decays to WW.

Scalar Triplet Model

Scalar sector

• The Lagrangian of our model is

$$\begin{split} \mathsf{V} &= -\,\mu_{\Phi}^2 \Phi^{\dagger} \Phi + \frac{\lambda_{\Phi}}{4} \left(\Phi^{\dagger} \Phi \right)^2 - \mu_{\Delta}^2 \mathrm{Tr} \left(\Delta^{\dagger} \Delta \right) \\ &+ \frac{\lambda_{\Delta}}{4} \left[\mathrm{Tr} \left(\Delta^{\dagger} \Delta \right) \right]^2 + \mu \Phi^{\dagger} \Delta \Phi + \lambda_{\Phi \Delta} \Phi^{\dagger} \Phi \mathrm{Tr} \left(\Delta^{\dagger} \Delta \right), \end{split}$$

• We define

$$\Phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix}, \quad \Delta = \frac{1}{2} \begin{pmatrix} \delta^0 & \sqrt{2}\delta^+ \\ \sqrt{2}\delta^- & -\delta^0 \end{pmatrix},$$

- ϕ^0 and δ^0 acquire the VEVs: $\langle \sqrt{2}\phi^0 \rangle = v \approx 246 \text{ GeV}, \langle \delta^0 \rangle = v_\Delta$.
- Gauge bosons mass:

$$m_W^2 = \frac{g^2}{4}(v^2 + 4v_\Delta^2), \qquad m_Z^2 = \frac{g^2}{4\cos\theta_W^2}v^2.$$

• Preferred experimental values of v_{Δ} , (with and without CDF II) $v_{\Delta} = 4.60^{+0.58}_{-0.66} \text{ GeV}, \qquad v_{\Delta}^{(\text{w/o CDF II})} = 2.89^{+0.59}_{-0.75} \text{ GeV}.$

Scalar Triplet Model

Particles and parameters

- Particle content: Two CP-even scalars (h, H), one charged Higgs (H^{\pm}) .
- Four free parameters.
 - 1. α : *CP*-even mixing angle.
 - 2. m_H and m_H^{\pm} : mass of *CP*-even and charged Higgses.
 - 3. v_{Δ} : VEV of the triplet.
- \cdot The mass-splitting, $\Delta_m = m_{H^\pm} m_{H}$, is small

$$m_{H^{\pm}}^2 - m_H^2 \simeq O(v_{\Delta})$$

for small v_{Δ} .

Theoretical constraints

• Vacuum stability conditions (BFB):

$$\lambda_\Phi>0,\quad \lambda_\Delta>0,\quad \sqrt{2}\lambda_{\Phi\Delta}+\sqrt{\lambda_\Phi\lambda_\Delta}>0$$

Perturbative unitarity conditions:

$$\begin{aligned} |\lambda_{\Phi}| &\leq 2\kappa\pi, \quad |\lambda_{\Delta}| \leq 2\kappa\pi, \quad |\lambda_{\Phi\Delta}| \leq \kappa\pi, \\ |6\lambda_{\Phi} + 5\lambda_{\Delta} \pm \sqrt{(6\lambda_{\Phi} - 5\lambda_{\Delta})^2 + 192\lambda_{\Phi\Delta}^2}| \leq 8\kappa\pi, \end{aligned}$$

with $\kappa = 16$.

• All trilinear and quartic couplings are taken to be smaller than 4π .

H production:

- GF and VBF proportional to α^2 .
- DY production via $pp \rightarrow W^* \rightarrow H^{\pm}H$

H decay to $\gamma\gamma$:

- Mixing induced: $\alpha^2 {\Gamma}[{\cal H} \to \gamma \gamma]_{\rm SM}$.
- Modification by WW and H^{\pm} loops (depending on Δ_m).

Phenomenology

- Vacuum stability and perturbative unitarity constraints imposed.
- SM signal strength of $h \rightarrow \gamma \gamma$ is modified by H^{\pm} loop.
- Higgs signal strength of $h \rightarrow ZZ^*$ further constraints α .
- Zbb and $H \rightarrow \gamma \gamma$ can be explained.

Phenomenology

Bounds on H^{\pm} production and decay:

• H^{\pm} dominantly decays to $\tau \nu$.

- It produces a collider signature similar to super-symmetric tau partners searched by CMS and ATLAS.
- Our predicted cross-section is **borderline allowed**.
- To eliminate the tension a lower $Br[H^{\pm} \rightarrow \tau \nu]$ can be achieved by increasing $Br[H^{\pm} \rightarrow HW^*]$ that requires sizable Δ_m .

Phenomenology

• Sizable Δ_m is possible for low v_{Δ} .

• Vacuum stability and perturbative unitarity conditions give the relation $\Delta_m \approx 22\alpha - 3.75$ GeV.

- SU(2)_L triplet with Y=0 can explain several excesses at 95 GeV.
- Predicts positive shift in W-mass.
- Charged Higgs with a mass \approx 95 GeV.
- Predicts stau-like excess in LHC Run 3 data.
- *H* is produced in association with jets and au leptons.