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Beyond the Standard Model (SM)

• Theoretical issues of the SM

- Strong CP
- EW naturalness 
- Cosmological constant
- Landau poles / triviality
- …

- Neutrino oscillations
- Dark Matter
- Baryon asymmetry
- Gravity
- …
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• Experimental evidence for physics beyond the SM



- Strong CP
- EW naturalness 
- Cosmological constant

- …

- Neutrino oscillations
- Dark Matter
- Baryon asymmetry
- Gravity
- … A simple scalar extension of the SM 

may account for all these issues

• Experimental evidence for physics beyond the SM

Beyond the Standard Model (SM)
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• Theoretical issues of the SM

- Landau poles / triviality



Neutrino masses
• Realizations of neutrino masses in scalar extensions of the SM

[Schechter, Valle (1980), 
Cheng, Li (1980), 
Lazarides, Shafi, Wetterich (1981), 
Mohapatra, Senjanovic (1981)]
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FIG. 1. Sample diagrams leading to the �L = 2 Weinberg operator at the tree level (a), one loop (b) and two loops (c) in the
type-II seesaw, Zee and Zee-Babu models, respectively.

TeV scale and lead to testable signals at the available
energy and foreseen intensity facilities. There is one in-
herent large scale involved that is linked to the presence
of a spontaneously broken Peccei-Quinn (PQ) symme-
try [22, 23] and the related axion [24, 25]. As we shall
discuss, it is noteworthy that the presence of such a large
scale (above 109 GeV) does not endanger the radiative
stability of the setup. While the anomalous U(1)PQ gives
an elegant solution to the so-called strong CP problem
in QCD [26–30], the axion provides a viable dark mat-
ter candidate (see [31] for a recent review). We find it
appealing and intriguing that a simple renormalizable
framework can be conceived where the origin of neutrino
masses and the solution of the strong CP problem are
fundamentally related and where the requirement of nat-
uralness and stability of the scalar sector is tightly linked
to the light neutrino scale.

The idea of connecting massive neutrinos with the
presence of a spontaneously broken U(1)PQ comes a long
way [32–48]. Considering only scalar extensions of the
SM a simple setup based on the Zee model for radiative
neutrino masses was discussed in [39, 40]. The model fea-
tures a Dine, Fischler, Srednicki, and Zhitnitsky (DFSZ)1

invisible axion [51, 52], with a tiny coupling to neutrinos.
The need for two di↵erent Higgs doublets and the role
of the related Z2 symmetry are there a free benefit of
the minimal implementation of the anomalous PQ sym-
metry. Two additional neutral and two singly charged
scalars remain naturally light (TeV scale). In spite of
the presence of the large PQ scale the model is shown to
exhibit a radiatively stable hierarchy. In all analogy with
the Zee model, a simple Majorana neutrino mass matrix
with vanishing diagonal entries arises at one-loop, whose
structure is determined by three parameters. As already
mentioned such a structure is shown to exhibit nearly bi-
maximal mixing and it is ruled out by oscillation data.

In this paper we show how this setup can work in

1 No extension of the matter sector is needed at variance with
the class of invisible axion models proposed by Kim, Shifman,
Vainshtein and Zakharov [49, 50] (KSVZ) that feature a vector-
like quark.

general. We discuss three explicit viable schemes: the
paradigmatic low-scale type-II seesaw (TII), the one-loop
BJ model and the two-loop ZB model. In the extended
BJ model a lepton-family-dependent PQ symmetry plays
the role of the original Z4 symmetry. In all cases one
obtains a DFSZ invisible axion with a tiny coupling to
neutrinos. In the BJ case the axion exhibits flavour vi-
olating couplings to the leptons of the same size of the
diagonal ones. Such flavour violating couplings are not
directly constrained by astrophysical processes and fu-
ture laboratory tests of LFV might even provide com-
petitive bounds on the PQ scale [53]. In addition to a
heavy neutral scalar (mainly) singlet the physical scalar
spectrum exhibits in the three models two singly-charged
and two additional neutral states. In the case of TII and
ZB a doubly charged scalar is present as well with a dis-
tinctive role in LFV phenomenology.

Stability of the scalar sector demands tiny interactions
between the PQ heavy state and the remaining scalars.
Due to an enhanced symmetry in the vanishing inter-
action limit, the smallness of the relevant couplings is
preserved at higher orders. Remarkably, such a setup
allows for naturally light neutrinos together with a rich
scalar spectrum at the TeV scale . The possible presence
of an exotic TeV-scale scalar sector is not yet excluded
by collider searches and it is among the priorities in the
coming years.

A fringe benefit of such an extension of the standard
scalar sector is to improve the electroweak vacuum sta-
bility. On the other hand, the sizable interactions among
the “light” scalar states open a possibility for the realiza-
tion of a first-order electroweak phase transition. This is
one of the requirements for electroweak baryogenesis [54].
However, no new sources of CP violation arise from the
minimal scalar sectors featured in the considered setups.
We shall comment on the possibility of addressing baryo-
genesis within such a framework.

In the next three sections we detail the extended TII,
BJ and ZB setups and discuss their generic features and
shortcomings in Sect. V.

[Zee (1980), Wolfenstein (1980),
Balaji, Grimus, Schwetz (2001),
Babu, Julio (2014)]

[Zee (1986), Babu (1988)]
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The first LHC run has led to the discovery of a scalar
particle that looks much like the Higgs boson of the
SU(2)L ⌦U(1)Y electroweak standard model (SM). The
raising limits on exotic physics scales set a challenge to
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the popular issue of naturalness [1], a paradigm that has
guided much of the beyond the SM modelling in the last
decades. This notwithstanding, neutrino oscillations and
dark matter call for physics beyond the standard sce-
nario. Baryon asymmetry calls for it as well while elec-
troweak vacuum stability may not be an issue in min-
imally extended scenarios [2]. We aim at discussing a
class of minimal extensions of the SM that account for
the aforementioned open issues. To this end we choose
to maintain the fermionic SM content as it stands and
consider only extensions of the scalar sector. Advantages
of this choice will be clear in the following. According
to that, the only tree-level realization of the dimension-
5 Weinberg operator (LLHH)/M for Majorana neutrino
masses is via the mediation of an SU(2)L scalar triplet of
hypercharge one. This is commonly known as the type-II
seesaw [3–7], Fig. 1a.

At the radiative level an elegant and simple realiza-
tion of the same was provided long ago by Zee [8]; the
Weinberg operator is there obtained at one loop from
the dimension-7 e↵ective operator (LLLecH)/M3 [9–11]
when L and ec are connected by the H Yukawa cou-
pling (giving rise to a chiral suppression), as shown in
Fig. 1b. The model requires one additional weak doublet
and a weak scalar singlet of hypercharge one. In order to
avoid Higgs mediated flavor changing neutral currents a
Z2 symmetry is called for [12]. Such a model, however, is
not consistent with the neutrino oscillation data [13–15].
Recently, Babu and Julio (BJ) [16] presented a variant of
the Zee model with a Z4 discrete family symmetry that
restores consistency with the observed neutrino mixing
pattern. The model yields an inverted neutrino mass hi-
erarchy and is highly predictive for neutrinoless double
beta decay and lepton flavor violation (LFV).

At two loops, a popular realization of the Weinberg
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the popular issue of naturalness [1], a paradigm that has
guided much of the beyond the SM modelling in the last
decades. This notwithstanding, neutrino oscillations and
dark matter call for physics beyond the standard sce-
nario. Baryon asymmetry calls for it as well while elec-
troweak vacuum stability may not be an issue in min-
imally extended scenarios [2]. We aim at discussing a
class of minimal extensions of the SM that account for
the aforementioned open issues. To this end we choose
to maintain the fermionic SM content as it stands and
consider only extensions of the scalar sector. Advantages
of this choice will be clear in the following. According
to that, the only tree-level realization of the dimension-
5 Weinberg operator (LLHH)/M for Majorana neutrino
masses is via the mediation of an SU(2)L scalar triplet of
hypercharge one. This is commonly known as the type-II
seesaw [3–7], Fig. 1a.

At the radiative level an elegant and simple realiza-
tion of the same was provided long ago by Zee [8]; the
Weinberg operator is there obtained at one loop from
the dimension-7 e↵ective operator (LLLecH)/M3 [9–11]
when L and ec are connected by the H Yukawa cou-
pling (giving rise to a chiral suppression), as shown in
Fig. 1b. The model requires one additional weak doublet
and a weak scalar singlet of hypercharge one. In order to
avoid Higgs mediated flavor changing neutral currents a
Z2 symmetry is called for [12]. Such a model, however, is
not consistent with the neutrino oscillation data [13–15].
Recently, Babu and Julio (BJ) [16] presented a variant of
the Zee model with a Z4 discrete family symmetry that
restores consistency with the observed neutrino mixing
pattern. The model yields an inverted neutrino mass hi-
erarchy and is highly predictive for neutrinoless double
beta decay and lepton flavor violation (LFV).

At two loops, a popular realization of the Weinberg
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• Two sources of CP violation in QCD

- No neutron EDM                                                              
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Strong CP and the QCD Axion
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[Peccei, Quinn (1977), 
Weinberg (1978), Wilczek (1978)]

- axion: PGB of U(1)PQ 

• Spontaneously broken chiral (anomalous) global U(1)PQ 
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The first LHC run has led to the discovery of a scalar
particle that looks much like the Higgs boson of the
SU(2)L ⌦U(1)Y electroweak standard model (SM). The
raising limits on exotic physics scales set a challenge to
the popular issue of naturalness [1], a paradigm that has
guided much of the beyond the SM modelling in the last

decades. This notwithstanding, neutrino oscillations and
dark matter call for physics beyond the standard sce-
nario. Baryon asymmetry calls for it as well while elec-
troweak vacuum stability may not be an issue in min-
imally extended scenarios [2]. We aim at discussing a
class of minimal extensions of the SM that account for
the aforementioned open issues. To this end we choose
to maintain the fermionic SM content as it stands and
consider only extensions of the scalar sector. Advantages
of this choice will be clear in the following. According
to that, the only tree-level realization of the dimension-
5 Weinberg operator (LLHH)/M for Majorana neutrino
masses is via the mediation of an SU(2)L scalar triplet of
hypercharge one. This is commonly known as the type-II
seesaw [3–7], Fig. 1a.

At the radiative level an elegant and simple realiza-
tion of the same was provided long ago by Zee [8]; the
Weinberg operator is there obtained at one loop from
the dimension-7 e↵ective operator (LLLecH)/M3 [9–11]
when L and ec are connected by the H Yukawa cou-
pling (giving rise to a chiral suppression), as shown in
Fig. 1b. The model requires one additional weak doublet
and a weak scalar singlet of hypercharge one. In order to
avoid Higgs mediated flavor changing neutral currents a
Z2 symmetry is called for [12]. Such a model, however, is
not consistent with the neutrino oscillation data [13–15].
Recently, Babu and Julio (BJ) [16] presented a variant of
the Zee model with a Z4 discrete family symmetry that
restores consistency with the observed neutrino mixing
pattern. The model yields an inverted neutrino mass hi-
erarchy and is highly predictive for neutrinoless double
beta decay and lepton flavor violation (LFV).

At two loops, a popular realization of the Weinberg
operator is given by the Zee-Babu (ZB) model [17,
18]. In this setting, the neutrino mass matrix is ob-
tained by dressing the dimension-9 e↵ective operator
(LLLecLec)/M5 [10, 19] and it requires two weak scalar
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nomenology (for a recent reappraisal see [20, 21]).
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TeV scale and lead to testable signals at the available
energy and foreseen intensity facilities. There is one in-
herent large scale involved that is linked to the presence
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stability of the setup. While the anomalous U(1)PQ gives
an elegant solution to the so-called strong CP problem
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ter candidate (see [31] for a recent review). We find it
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framework can be conceived where the origin of neutrino
masses and the solution of the strong CP problem are
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5SISSA/ISAS, Via Bonomea 265, 34136 Trieste, Italy

We survey a few minimal scalar extensions of the standard electroweak model that provide a simple
setup for massive neutrinos in connection with an invisible axion. The presence of a chiral U(1)
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The first LHC run has led to the discovery of a scalar
particle that looks much like the Higgs boson of the
SU(2)L ⌦U(1)Y electroweak standard model (SM). The
raising limits on exotic physics scales set a challenge to
the popular issue of naturalness [1], a paradigm that has
guided much of the beyond the SM modelling in the last
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(```ec`ec)/⇤5 (8)

✓̄Gµ⌫G̃µ⌫ (D = 4) (9)

⇤2 H†H (D = 2) (10)

⇤4pg (D = 0) (11)

The first LHC run has led to the discovery of a scalar
particle that looks much like the Higgs boson of the
SU(2)L ⌦U(1)Y electroweak standard model (SM). The
raising limits on exotic physics scales set a challenge to
the popular issue of naturalness [1], a paradigm that has
guided much of the beyond the SM modelling in the last
decades. This notwithstanding, neutrino oscillations and
dark matter call for physics beyond the standard sce-
nario. Baryon asymmetry calls for it as well while elec-
troweak vacuum stability may not be an issue in min-
imally extended scenarios [2]. We aim at discussing a
class of minimal extensions of the SM that account for
the aforementioned open issues. To this end we choose
to maintain the fermionic SM content as it stands and
consider only extensions of the scalar sector. Advantages
of this choice will be clear in the following. According
to that, the only tree-level realization of the dimension-
5 Weinberg operator (LLHH)/M for Majorana neutrino
masses is via the mediation of an SU(2)L scalar triplet of
hypercharge one. This is commonly known as the type-II
seesaw [3–7], Fig. 1a.

- The   -term is washed out at the minimum by the axion

Strong CP and the QCD Axion
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• Two sources of CP violation in QCD

- No neutron EDM                                                              
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DFSZ invisible axion
• Simplest implementation of the PQ mechanism for scalar extensions of the SM

[Dine, Fischler, Srednicki (1981), Zhitnitsky (1980)]
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DFSZ invisible axion

[Dine, Fischler, Srednicki (1981), Zhitnitsky (1980)]

• Requires:

ii) a SM singlet which spontaneously break U(1)PQ at energies ≫ EW scale (invisible axion)
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- axion mass                   (              )

- axion couplings 
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Sezione di Genova, Via Dodecaneso 33, 16159 Genova, Italy
3Faculty of Nuclear Sciences and Physical Engineering,

Czech Technical University in Prague, Brehová 7, 115 19 Praha 1, Czech Republic
4Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics,
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à la Peccei-Quinn drives the pattern of Majorana neutrino masses while providing a dynamical
solution to the strong CP problem and an axion as a dark matter candidate. We paradigmatically
apply such a renormalizable framework to type-II seesaw and to two viable models for neutrino
oscillations where the neutrino masses arise at one and two loops, respectively. We comment on
the naturalness of the e↵ective setups as well as on their implications for vacuum stability and
electroweak baryogenesis.

PACS numbers: 12.60.Fr,14.60.Pq,14.80.Va

I. INTRODUCTION

ma ⇠ f⇡m⇡

fa
(1)

axion couplings ⇠ 1/fa (2)

z = mu/md (3)

fa =
p
2V� (4)

(4⇡)2��H
=

�
12y2t � 3g02 � 9g2

�
�H � 6y4t +

3

8

⇥
2g4 + (g02 + g2)2

⇤
+ 23�2

H +
nX

2
�2
XH (5)

�Ve↵(�, T ) � �nXT

12⇡


⇧X(T ) +M2

X +
�XH

2
�2

�3/2
, (6)

V = VSM +M2
X |X2|+ �XH |X|2|H|2 + . . . (7)

|�| (8)

Abs� (9)

⇤ stefano.bertolini@sissa.it
† luca.di.luzio@ge.infn.it
‡ helena.kolesova@fjfi.cvut.cz

§ malinsky@ipnp.troja.m↵.cuni.cz

Massive neutrinos and invisible axion minimally connected

Stefano Bertolini,1, ⇤ Luca Di Luzio,2, † Helena Kolešová,3, 4, 5, ‡ and Michal Malinský4, §
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i) two Higgs doublets in order for U(1)PQ to be anomalous (Weinberg-Wilczek axion) 
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• Simplest implementation of the PQ mechanism for scalar extensions of the SM



DFSZ invisible axion

[Kim, Carosi (2009)]

- axion couplings 
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FIG. 15: A cartoon for the Fa bounds.

and the QA mass mq. We can parametrize the QA (φ)
potential as

V [φ] = λ4U(ξ), ξ =
φ

fq
. (98)

For ω = p/ρ < −1 + δ, we require fq >
√

(2 − δ)/6δ MP |U ′| where U ′ = dU/dξ [241, Kim,
Nilles (2003)]. Generically, one needs a Planckian scale
quintessential axion decay constant fq. So, the QA mass
is extremely small, ! 10−32 eV. As a result, there are two
problems to be resolved to achieve the QA idea: a large
decay constant and an extremely shallow QA potential.

It has long been believed that the MI axion has rather
a robust model independent prediction of its decay con-
stant [89, 343, Choi, Kim (1985), Svrcek, Witten (2006)].
Recently, however, it was shown that the MI axion may
not be model independent since the decay constant may
depend on the compactification scheme in warped inter-
nal space, ds2 = h2

wηµνdxµdxν + gmn(y)dymdyn [119,
Dasgupta, Firouzjahi, Gwyn (2008)],

Fa =

√

2

β

m2
s

MP
(99)

where β depends on the warping in the compact space
y ∈ K,

β =

∫

d6y
√

g(6)e
−φh−2

w
∫

d6y
√

g(6)h2
w

. (100)

Thus, the MI axion with a small β can be a QA if the
QCD axion decay constant can be in the intermediate
scale. This possibility may be realizable in some com-
posite axion models as recently suggested in [242, Kim,
Nilles (2009)].

V. AXION DETECTION EXPERIMENTS

There are currently a variety of experiments searching
for axions, whether they are left over from the big bang
or produced in stars or the laboratory. Though these
experiments search for axions at a variety of mass and
coupling scales they all rely on the Primakoff process for
which the following coupling, caγγ is given in Eq. (75),

L = caγγ
a

Fa
{FemF̃em}, caγγ ≃ c̄aγγ − 1.98 (101)

where c̄aγγ = TrQ2
em|E≫MZ .

A. Solar axion search

1. Axion Helioscopes

Axions produced in the nuclear core of the sun will
free-stream out and can possibly be detected on Earth
via an axion helioscope, first described in 1983 [333, 334,
Sikivie (1983, 1985)] and developed into a practical labo-
ratory detector in 1988 [355, van Bibber, McIntyre, Mor-
ris, Raffelt (1989)]. The technique relies on solar axions
converting into low energy X-rays as they pass through
a strong magnetic field. The flux of axions produced in
the sun is expected to follow a thermal distribution with
a mean energy of ⟨E⟩ = 4.2 keV. The integrated flux at
Earth is expected to be Φa = g2

103.67 × 1011 cm−2s−1

with g10 = (αem/2πFa)caγγ1010 GeV [380, Ziotas et al.
(2005)]. The probability of a solar axion converting into a
photon as it passes through a magnet with field strength
B and length L is given as:

P =

(

αemcaγγBL

4πFa

)2

2L2 1 − cos(qL)

(qL)2
. (102)

Here caγγ is defined as the coupling of the axion to two
photons as given in Eq. (101), while q is the momentum
difference between the axion and the photon, defined as
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4Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics,
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1INFN, Sezione di Trieste, SISSA, Via Bonomea 265, 34136 Trieste, Italy
2Dipartimento di Fisica, Università di Genova and INFN,
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FIG. 1. Sample diagrams leading to the �L = 2 Weinberg operator at the tree level (a), one loop (b) and two loops (c) in the
type-II seesaw, Zee and Zee-Babu models, respectively.

TeV scale and lead to testable signals at the available
energy and foreseen intensity facilities. There is one in-
herent large scale involved that is linked to the presence
of a spontaneously broken Peccei-Quinn (PQ) symme-
try [22, 23] and the related axion [24, 25]. As we shall
discuss, it is noteworthy that the presence of such a large
scale (above 109 GeV) does not endanger the radiative
stability of the setup. While the anomalous U(1)PQ gives
an elegant solution to the so-called strong CP problem
in QCD [26–30], the axion provides a viable dark mat-
ter candidate (see [31] for a recent review). We find it
appealing and intriguing that a simple renormalizable
framework can be conceived where the origin of neutrino
masses and the solution of the strong CP problem are
fundamentally related and where the requirement of nat-
uralness and stability of the scalar sector is tightly linked
to the light neutrino scale.

The idea of connecting massive neutrinos with the
presence of a spontaneously broken U(1)PQ comes a long
way [32–48]. Considering only scalar extensions of the
SM a simple setup based on the Zee model for radiative
neutrino masses was discussed in [39, 40]. The model fea-
tures a Dine, Fischler, Srednicki, and Zhitnitsky (DFSZ)1

invisible axion [51, 52], with a tiny coupling to neutrinos.
The need for two di↵erent Higgs doublets and the role
of the related Z2 symmetry are there a free benefit of
the minimal implementation of the anomalous PQ sym-
metry. Two additional neutral and two singly charged
scalars remain naturally light (TeV scale). In spite of
the presence of the large PQ scale the model is shown to
exhibit a radiatively stable hierarchy. In all analogy with
the Zee model, a simple Majorana neutrino mass matrix
with vanishing diagonal entries arises at one-loop, whose
structure is determined by three parameters. As already
mentioned such a structure is shown to exhibit nearly bi-
maximal mixing and it is ruled out by oscillation data.

In this paper we show how this setup can work in

1 No extension of the matter sector is needed at variance with
the class of invisible axion models proposed by Kim, Shifman,
Vainshtein and Zakharov [49, 50] (KSVZ) that feature a vector-
like quark.

general. We discuss three explicit viable schemes: the
paradigmatic low-scale type-II seesaw (TII), the one-loop
BJ model and the two-loop ZB model. In the extended
BJ model a lepton-family-dependent PQ symmetry plays
the role of the original Z4 symmetry. In all cases one
obtains a DFSZ invisible axion with a tiny coupling to
neutrinos. In the BJ case the axion exhibits flavour vi-
olating couplings to the leptons of the same size of the
diagonal ones. Such flavour violating couplings are not
directly constrained by astrophysical processes and fu-
ture laboratory tests of LFV might even provide com-
petitive bounds on the PQ scale [53]. In addition to a
heavy neutral scalar (mainly) singlet the physical scalar
spectrum exhibits in the three models two singly-charged
and two additional neutral states. In the case of TII and
ZB a doubly charged scalar is present as well with a dis-
tinctive role in LFV phenomenology.

Stability of the scalar sector demands tiny interactions
between the PQ heavy state and the remaining scalars.
Due to an enhanced symmetry in the vanishing inter-
action limit, the smallness of the relevant couplings is
preserved at higher orders. Remarkably, such a setup
allows for naturally light neutrinos together with a rich
scalar spectrum at the TeV scale . The possible presence
of an exotic TeV-scale scalar sector is not yet excluded
by collider searches and it is among the priorities in the
coming years.

A fringe benefit of such an extension of the standard
scalar sector is to improve the electroweak vacuum sta-
bility. On the other hand, the sizable interactions among
the “light” scalar states open a possibility for the realiza-
tion of a first-order electroweak phase transition. This is
one of the requirements for electroweak baryogenesis [54].
However, no new sources of CP violation arise from the
minimal scalar sectors featured in the considered setups.
We shall comment on the possibility of addressing baryo-
genesis within such a framework.

In the next three sections we detail the extended TII,
BJ and ZB setups and discuss their generic features and
shortcomings in Sect. V.

“Axionization’’ of neutrino masses
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B. PQ charges

The invariants in Eq. (10) and Eq. (12) enforce the
following constraints on the PQ charges:

�X` +Xe �Xd = 0 , (13)

2X` +X� = 0 , (14)

2X� �Xu �Xd = 0 , (15)

X� +Xu �X� �Xd = 0 . (16)

Solving in terms of Xu and Xd we get:

X` = �3Xu

4
+

Xd

4
, Xe = �3Xu

4
+

5Xd

4
,

X� =
3Xu

2
� Xd

2
, X� =

Xu

2
+

Xd

2
. (17)

Following [39, 52] we require the orthogonality of the hy-
percharge and axion currents. This leads to the relation

Xuv
2
u = Xdv

2
d , (18)

where vu = hHui and vd = hHdi. Adding this condition
to Eq. (17), we can determine all the PQ charges up to
an overall normalization. We choose this normalization
by the condition

X� = 1 . (19)

By defining x ⌘ vu/vd the remaining charges in Eq. (17)
read

Xu =
2

x2 + 1
, Xd =

2x2

x2 + 1
, X` =

x2 � 3

2(x2 + 1)
,

Xe =
5x2 � 3

2(x2 + 1)
, X� =

3� x2

x2 + 1
. (20)

C. Scalar spectrum

To compute the scalar spectrum we expand the scalar
fields around the chargeless and CP-conserving vacuum
configuration

Hu =

 
vu + h0

u+i⌘0
u

p

2

h�

u

!
, (21)

Hd =

 
h+
d

vd +
h0
d+i⌘0

d
p

2

!
, (22)

� =

 
�+
p

2
�++

v� + �0+i⌘0
�

p

2
� �+

p

2

!
, (23)

� = V� +
�0 + i⌘0�p

2
, (24)

with vu, vd, v� and V� denoting the relevant (real) vac-
uum expectation values (VEVs). 2

2 While it is assumed that there exists a region of the scalar po-
tential parameters for which the absolute minimum preserves the

νL νL

∆

<H >d
0<H >u

0

<σ>

FIG. 2. The tree-level “hug” diagram responsible for the
Majorana neutrino mass in the PQ extended type-II seesaw
model.

The scalar spectrum of the model is detailed in Ap-
pendix A and the main features are discussed in Sect. V.
Here we just anticipate that the model features a DFSZ
invisible axion, with a tiny coupling to neutrinos, and its
SM singlet companion with a PQ scale mass. By invoking
a technically natural ultraweak limit (see the discussion
in Sect. VA) such a heavy scalar is su�ciently decou-
pled from all the other physical scalar states that are
requested to live at the TeV scale thus preserving the ra-
diative stability of the light scalar spectrum. At the weak
scale the model allows for a SM-like Higgs boson; this,
together with a brief account of the relevant phenomeno-
logical constraints, shall be discussed in Sect. VC.

D. Neutrino masses

In the TII model, the neutrino masses are generated
through the tree-level diagram in Fig. 2.

Their expression is conveniently obtained by comput-
ing the (induced) VEV of the triplet. Let us hence con-
sider the projection of the scalar potential along the neu-
tral VEV components of Eqs. (21)–(24)

hVTIIi =
�
µ2
� + ��3V

2
� + ��1v

2
u + (��2 + �8)v

2
d

�
v2�

+ 2�6V�vuvdv� +O �v4�
�
+ v�-indep. terms . (25)

Given the phenomenological hierarchy V� � vu,d � v�,
the stationary condition with respect to v� is well ap-
proximated by

2M2
�v� + 2�6V�vuvd ⇡ 0 , (26)

where we defined the e↵ective mass parameter

M2
� = µ2

� + ��3V
2
� + ��1v

2
u + (��2 + �8)v

2
d . (27)

electric charge, it can be shown (see Sect. VD) that the potential
of Eq. (12) does not lead to spontaneous CP violation.

6

B. PQ charges

The devised U(1)PQ invariance of the Lagrangian leads
to the following constraints on the PQ charges:

�X`2,3 +Xe �Xd = 0 , (34)

�X`1 +Xe +Xu = 0 , (35)

2X`2,3 +Xh = 0 , (36)

2X� �Xu �Xd = 0 , (37)

X� �Xh +Xu �Xd = 0 . (38)

Solving these in terms of Xu and Xd one obtains:

X`1 =
Xu

4
+

5Xd

4
, X`2,3 = �3Xu

4
+

Xd

4
,

Xe = �3Xu

4
+

5Xd

4
, Xh =

3Xu

2
� Xd

2
,

X� =
Xu

2
+

Xd

2
. (39)

As before, cf. Sect. II B, we require the orthogonality of
the hypercharge and axion currents and fix the overall
normalization of the charges by the condition X� = 1,
which yields

X`1 =
5x2 + 1

2(x2 + 1)
, X`23 =

x2 � 3

2(x2 + 1)
,

Xe =
5x2 � 3

2(x2 + 1)
, Xh =

3� x2

x2 + 1
. (40)

The Xu and Xd charges are identical to those of the TII
model and, as such, they are given in Eq. (20).

C. Neutrino masses

The radiatively induced neutrino mass matrix is found
to be [16]

MBJ
⌫ = 

⇣
f̂Mdiag

` Ŷ T + Ŷ Mdiag
` f̂T

⌘
, (41)

where Mdiag
` is the diagonal charged-lepton mass matrix

and f̂ and Ŷ are the Yukawa coupling matrices trans-
formed into the mass basis of the fields running in the
loop (cf. Fig. 3). The main di↵erence with respect to the
Z2-assisted Zee model [8, 12], is that Ŷ is non-diagonal,
so that the antisymmetric texture of f̂ is not transmit-
ted into the neutrino mass matrix. This allows for non-
vanishing diagonal entries at the leading order, a key fea-
ture for the consistency of the BJ model with the neu-
trino oscillation data. The overall factor  involves the
loop function and is given by [16]

 =
sin 2�

16⇡2
log

✓
M2

1

M2
2

◆
, (42)
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0

FIG. 3. Sample one-loop diagram responsible for the Majo-
rana neutrino mass in the PQ extended Babu-Julio model.
Due to the family dependence of the PQ charges both Higgs
doublets couple to the first leptonic family.

where M1,2 are the masses of the physical charged scalar
states and � denotes the mixing angle between h� and
H� obeying (cf. [39])

sin 2� =
2�6V�

p
v2u + v2d

M2
1 �M2

2

. (43)

Interestingly, the structure of the neutrino mass matrix in
Eq. (41) is very constrained. Albeit with non-vanishing
diagonal entries the mass matrix turns out to be trace-
less and real so that all the neutrino oscillation data can
be described in terms of four real parameters [16]. This
leads to several predictions: the neutrino mass hierarchy
is predicted to be inverted, the Dirac CP-violating phase
is fixed to �CP = ⇡ and, moreover, there is a relation
among the three mixing angles, namely |U⌧1| = |U⌧2|, al-
lowing one of them to be expressed in terms of the other
two. The consequences for neutrinoless double beta de-
cay and LFV processes have been systematically worked
out in Ref. [16].

As in the TII case, the smallness of neutrino masses
can have di↵erent sources. If the charged scalar states
are not far from the electroweak scale, as suggested by
the naturalness arguments, the suppression must come
from the scalar potential coupling �6 and/or the Yukawa
matrices Ŷ and f̂ . Remarkably, the smallness of the cou-
pling �6 is a necessary condition for a technically natural
spectrum (see Sect. VA), while the Yukawa couplings
Ŷ and f̂ are sharply constrained by neutrino oscillation
data and LFV processes [16].

IV. PQ EXTENDED ZEE-BABU MODEL

The last case we are going to consider is the PQ ex-
tension of the ZB model. The field content and the PQ
charges are collected for convenience in Table III.
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FIG. 4. Two-loop diagram responsible for the neutrino Ma-
jorana mass in the PQ extended Zee-Babu model.

is antisymmetric, det f = 0 (for three generations) and,
hence, detMZB

⌫ = 0.

As in the previous cases (TII and BJ), the smallness of
neutrino masses can be due to di↵erent factors. Taking
into account the strong bounds on the Yukawa couplings
f and g coming from the LFV processes (see Sect. VC), it
turns out that the assumption �7 . 4⇡⇥O( v

V�
), tailored

to keep the non-singlet scalars at the electroweak scale,
ensures also the correct absolute neutrino mass scale [20].

Finally, we briefly comment on the case �6 6= 0. In
such a setting there is an extra one-loop contribution to
the neutrino masses, similar to the one in Fig. 3 (the rel-
evant expression can be found in Eqs. (25)-(26) of [39]).
As already mentioned, the original Zee model is excluded
by neutrino data and, in order to obtain a viable neutrino
texture, the size of such a one-loop diagram must be com-
parable with the two-loop expression in Eq. (61), thus in-
troducing a fine-tuning in the couplings. Let us also note
that �6 6= 0 introduces a tree-level mixing between the
charged SU(2)L-doublet and singlet scalars that a↵ects
Eq. (62). At variance with the ZB model, the lightest
neutrino is no longer massless. In this study, we will not
pursue the analysis of this hybrid model any further.

V. DISCUSSION

The three setups presented in the previous sections
share a number of common features which we shall briefly
summarize here. In particular, all three models contain
a DFSZ invisible axion with a tiny coupling to neutri-
nos [39, 40]. It is noticeable that, at variance with the
TII and ZB extended models, the axion in the BJ case
exhibits flavour violating couplings to the leptons of the

same order of the flavour-diagonal ones:
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that, up to a total derivative, can be written as
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(65)

where a denotes the axion field and fa =
p
2V�. The

mass eigenstates eiL, ⌫
i
L (i = 1, 2, 3) are connected to the

interaction basis e↵L, ⌫↵L (↵ = 1, 2, 3) via the relations
e↵L = (Ue

L)
↵ieiL and ⌫↵L = (U⌫

L)
↵i⌫iL. The equations of

motion for Weyl fermions with a Majorana mass term
are used and the axion neutrino couplings are written
in terms of the Majorana mass eigenstates [58]. Present
laboratory and astrophysical limits on flavor violating in-
teractions do not seem to imply any constraints on the
PQ scale stronger than those obtained from the diago-
nal interactions [53]. On the other hand, the presence
of lepton flavor violating interactions of the axion in the
extended BJ model deserves further detailed scrutiny.

The DFSZ invisible axion framework su↵ers from the
domain wall problem (the non-perturbative instanton po-
tential breaks the U(1)PQ explicitly to a ZNq discrete
symmetry where Nq is the number of quark flavors). The
standard cosmological solution is then the assumption of
a low reheating temperature (see [59] for a comprehensive
discussion).

A. Naturalness

An interesting feature of all the models considered in
this study is the fact that the hierarchy between the elec-
troweak and the PQ scales can be made technically nat-
ural and stable against radiative corrections. Let us con-
sider, for definiteness, the case of the PQ extended TII
model. At the tree level, the hierarchy between the PQ
and the electroweak scale can be obtained without fine-
tuning among the scalar potential parameters of Eq. (12)
by requiring the ultraweak limit

�i3,�5 ⇠ O
✓
v2

V 2
�

◆
and �6 ⇠ O

✓
v�
V�

◆
, (66)

[Bertolini, DL, Kolesova, Malinsky (2014)]
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preserved at higher orders. Remarkably, such a setup
allows for naturally light neutrinos together with a rich
scalar spectrum at the TeV scale . The possible presence
of an exotic TeV-scale scalar sector is not yet excluded
by collider searches and it is among the priorities in the
coming years.

A fringe benefit of such an extension of the standard
scalar sector is to improve the electroweak vacuum sta-
bility. On the other hand, the sizable interactions among
the “light” scalar states open a possibility for the realiza-
tion of a first-order electroweak phase transition. This is
one of the requirements for electroweak baryogenesis [54].
However, no new sources of CP violation arise from the
minimal scalar sectors featured in the considered setups.
We shall comment on the possibility of addressing baryo-
genesis within such a framework.

In the next three sections we detail the extended TII,
BJ and ZB setups and discuss their generic features and
shortcomings in Sect. V.

II. PQ EXTENDED TYPE-II SEESAW

On top of the usual SM field content, the scalar sec-
tor of the PQ extended Type-II seesaw model features
two Higgs doublets, an isospin triplet with hypercharge
one and a SM singlet (cf. Table I). The PQ charge as-
signments are displayed in Table I, where the presence
of Yukawa interactions for quarks is already taken into
account. Recall that the PQ current is axial, thus pro-
portional to the di↵erence between the charges of the
left- and right-handed (colored) fermions. Hence, with-
out loss of generality, we can always set Xq = 0. In this
way, the color anomaly of the PQ current is proportional
to Xu +Xd (see, e.g., [55]).

Field Spin SU(3)C SU(2)L U(1)Y U(1)PQ

qL
1
2 3 2 + 1

6 0

uR
1
2 3 1 + 2

3 Xu

dR
1
2 3 1 � 1

3 Xd

`L
1
2 1 2 � 1

2 X`

eR
1
2 1 1 �1 Xe

Hu 0 1 2 � 1
2 �Xu

Hd 0 1 2 + 1
2 �Xd

� 0 1 3 +1 X�

� 0 1 1 0 X�

TABLE I. Field content and charge assignment of the PQ
extended Type-II seesaw model.

A. Lagrangian

The only two sectors which are sensitive to the assign-
ment of the PQ charges are the Yukawa Lagrangian and

the scalar potential that we discuss in turn. The former
reads

� LTII
Y = Yu qLuRHu + Yd qLdRHd + Ye `LeRHd

+ 1
2Y� `TLCi⌧2�`L + h.c. , (10)

where the flavour contractions are understood (e.g. Y T
� =

Y�), C is the charge conjugation matrix in the spinor
space, and

� ⌘ ~⌧ · ~�p
2

=

 
�+
p

2
�++

�0 ��+
p

2

!
. (11)

In Eq. (11), ~⌧ = (⌧1, ⌧2, ⌧3) are the Pauli matrices and
~� = (�1,�2,�3) are the SU(2)L components of the
scalar triplet. The electric charge eigenstates are ob-
tained by the action of Q = T3 + Y on Eq. (11).

The scalar potential can be written as [39, 56]

VTII = �µ2
1 |Hu|2 + �1 |Hu|4 � µ2

2 |Hd|2 + �2 |Hd|4

+ �12 |Hu|2 |Hd|2 + �4

��H†

uHd

��2

� µ2
3 |�|2 + �3 |�|4 + �13 |�|2 |Hu|2 + �23 |�|2 |Hd|2

+Tr(�†�)
h
µ2
� + ��1 |Hu|2 + ��2 |Hd|2

+ ��3 |�|2 + ��4Tr(�
†�)

i

+ �7H
†

u��†Hu + �8H
†

d��†Hd + �9Tr(�
†�)2

+
⇣
�5�

2H̃†

uHd + �6�H
†

u�
†Hd + h.c.

⌘
, (12)

where we employed the notation H̃u = i⌧2H
⇤

u. Notice
that terms like H̃†

uHdTr(�†�) or H̃†

u��†Hd are not al-
lowed since the QCD anomaly of the PQ current requires
Xu + Xd 6= 0. Moreover, H†

u,d

�
�†�+��†

�
Hu,d =

|Hu,d|2Tr(�†�), so that only two invariants out of three
are linearly independent.

The terms �5 �
2H̃†

uHd and �6 �H
†

u�
†Hd are needed

in order to assign a non-vanishing PQ charge to the sin-
glet � and to generate neutrino masses. Notice that
the simultaneous presence of �5, �6 and Y� is needed
to explicitly break lepton number. If any of the cou-
plings is missing, either lepton number is exact and neu-
trinos are massless or lepton number is spontaneously
broken and the vacuum exhibits a majoron together with
a Wilczek-Weinberg axion [39]. As shown next, the po-
tential in Eq. (12) corresponds to a unique PQ charge
assignment that forbids among else the presence of tri-
linear interaction terms. The absence of cubic scalar in-
teractions, which characterizes the three models here dis-
cussed, paves the way to their embedding in a classically
scale invariant setup dynamically broken a la Coleman-
Weinberg. We shall comment on that in Sect. VI.

Finally, the couplings �5 and �6 can be set real by two
independent rephasings of the fields.

Extended scalar sector
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VTII = �µ2
1 |Hu|2 + �1 |Hu|4 � µ2

2 |Hd|2 + �2 |Hd|4 + �12 |Hu|2 |Hd|2 + �4

��H†

uHd

��2

� µ2
3 |�|2 + �3 |�|4 + �13 |�|2 |Hu|2 + �23 |�|2 |Hd|2

+Tr(�†�)
h
µ2
� + ��1 |Hu|2 + ��2 |Hd|2 + ��3 |�|2 + ��4Tr(�

†�)
i

+ �7H
†

u��†Hu + �8H
†

d��†Hd + �9Tr(�
†�)2 +

⇣
�5�

2H̃†

uHd + �6�H
†

u�
†Hd + h.c.

⌘
, (14)

VTII = moduli terms +
⇣
�5�

2H̃†

uHd + �6�H
†

u�
†Hd + h.c.

⌘
, (15)

where we employed the notation H̃u = i⌧2H
⇤

u. Notice
that terms like H̃†

uHdTr(�†�) or H̃†

u��†Hd are not al-
lowed since the QCD anomaly of the PQ current requires
Xu + Xd 6= 0. Moreover, H†

u,d

�
�†�+��†

�
Hu,d =

|Hu,d|2Tr(�†�), so that only two invariants out of three
are linearly independent.

The terms
�5 �

2H̃†

uHd

and
�6 �H

†

u�
†Hd

are needed in order to assign a non-vanishing PQ
charge to the singlet � and to generate neutrino masses.
Notice that the simultaneous presence of �5, �6 and Y�

is needed to explicitly break lepton number. If any of the
couplings is missing, either lepton number is exact and
neutrinos are massless or lepton number is spontaneously
broken and the vacuum exhibits a majoron together with
a Wilczek-Weinberg axion [39]. As shown next, the po-
tential in Eq. (15) corresponds to a unique PQ charge
assignment that forbids among else the presence of tri-
linear interaction terms. The absence of cubic scalar in-
teractions, which characterizes the three models here dis-
cussed, paves the way to their embedding in a classically
scale invariant setup dynamically broken a la Coleman-
Weinberg. We shall comment on that in Sect. VI.

Finally, the couplings �5 and �6 can be set real by two
independent rephasings of the fields.

B. PQ charges

The invariants in Eq. (11) and Eq. (15) enforce the
following constraints on the PQ charges:

�X` +Xe �Xd = 0 , (16)

2X` +X� = 0 , (17)

2X� �Xu �Xd = 0 , (18)

X� +Xu �X� �Xd = 0 . (19)

Solving in terms of Xu and Xd we get:

X` = �3Xu

4
+

Xd

4
, Xe = �3Xu

4
+

5Xd

4
,

X� =
3Xu

2
� Xd

2
, X� =

Xu

2
+

Xd

2
. (20)

Following [39, 52] we require the orthogonality of the hy-
percharge and axion currents. This leads to the relation

Xuv
2
u = Xdv

2
d , (21)

where vu = hHui and vd = hHdi. Adding this condition
to Eq. (20), we can determine all the PQ charges up to
an overall normalization. We choose this normalization
by the condition

X� = 1 . (22)

By defining x ⌘ vu/vd the remaining charges in Eq. (20)
read

Xu =
2

x2 + 1
, Xd =

2x2

x2 + 1
, X` =

x2 � 3

2(x2 + 1)
,

Xe =
5x2 � 3

2(x2 + 1)
, X� =

3� x2

x2 + 1
. (23)

C. Scalar spectrum

To compute the scalar spectrum we expand the scalar
fields around the chargeless and CP-conserving vacuum
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Obtaining a realistic scenario in such a context requires as well an extension of the standard Higgs sector. The
embedding of the DFSZ invisible axion model in a classically scale-invariant setup has been recently discussed in [29].
As an archetypical implementation of the scale invariant framework to the neutrino mass models considered in [1], we
focus our analysis on the PQ extended Type-II sewsaw model. The PQ scale, induced via dimensional transmutation,
triggers in turn the electroweak symmetry breaking. The hierarchy between the two scales is set and stabilized by the
ultraweak limit of the singlet scalar couplings. Attention is paid to the analysis of the scalar spectrum, aiming at a
realistic fit of the present LHC data.

The simultaneous presence of the PQ and classical scale symmetries sharply constrain the scalar potential of the
theory. All but two of the ultraweak couplings are determined by the minimization conditions in terms of the other
quartic couplings. We show that a natural (i.e., not fine-tuned) and radiatively stable decoupling limit is feasible; in
such a case the lightest Higgs boson is fully compatible with the data (that require moderate tan� values), while all
other physical scalars satisfy the present collider bounds. The needed decoupling and alignment limits of the extra
doublet Higgs states are controlled by just one of the two independent ultraweak couplings, while the second one
drives both the neutrino mass as well as the decoupling of the scalar triplet states. All this is achieved within a stable
and a fully perturbative setup.

The model exhibits an invisible axion and a very light neutral scalar that plays the role of a pseudo-dilaton,
both with tiny couplings to neutrinos that bear no relevance for today’s astrophysical and cosmological data (the
cosmology of the ultralight pseudo-dilaton is thoroughly discussed in [29]). The smallness of the pseudo-dilaton mass
is due to quantum e↵ects which require a tiny quartic self interaction. This is a characteristic feature of the scale-
invariant embedding, at variance with the setups discussed in [1], where the strength of the singlet self interaction is
unconstrained and a heavy singlet scalar state is allowed.

In summary, a relatively simple extension of the standard Higgs sector gives rise to a renormalizable and perturba-
tively stable scenario where a number of observational and theoretical issues of the SM find a correlated and natural
explanation. Were perturbative naturalness a “fundamental” principle rather than a theorist prejudice, a plethora of
new scalar states could be well within the LHC reach.

The study is organised as follows. In the first part of the paper we introduce the model and study the minimization
of the one-loop e↵ective potential. In the second part we analyze the pattern and phenomenology of the extended
scalar sector and discuss the conditions for vacuum stability. Detailed aspects of the analysis are summarized in the
appendices.

II. PQ EXTENDED TYPE-II SEESAW

The field content and the charge assignment of the PQ extended Type-II seesaw model was worked out in [1] and
it is displayed for convenience in Table I. On top of the usual SM field content, the scalar sector includes two Higgs
doublets, one isospin triplet with a unit hypercharge and one complex SM singlet. Since the PQ current is axial, it
is proportional to the di↵erence between the charges of the left- and right-handed fermions. Hence, without loss of
generality, we may set the PQ charge of the quark doublets Xq = 0 such that the color anomaly of the PQ current
turns out to be proportional to Xu +Xd 6= 0 [30].

A. Lagrangian

The only two sectors which are sensitive to the assignment of the PQ charges are the Yukawa Lagrangian and the
scalar potential that we discuss in turn. The former reads

� LTII
Y = Yu qLuRHu + Yd qLdRHd + Ye `LeRHd +

1
2Y� `TLCi⌧2� `L + h.c. (3)
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VTII = �µ2
1 |Hu|2 + �1 |Hu|4 � µ2

2 |Hd|2 + �2 |Hd|4 + �12 |Hu|2 |Hd|2 + �4

��H†

uHd

��2

� µ2
3 |�|2 + �3 |�|4 + �13 |�|2 |Hu|2 + �23 |�|2 |Hd|2

+Tr(�†�)
h
µ2
� + ��1 |Hu|2 + ��2 |Hd|2 + ��3 |�|2 + ��4Tr(�

†�)
i

+ �7H
†

u��†Hu + �8H
†

d��†Hd + �9Tr(�
†�)2 +

⇣
�5�

2H̃†

uHd + �6�H
†

u�
†Hd + h.c.

⌘
, (14)

where we employed the notation H̃u = i⌧2H
⇤

u. Notice
that terms like H̃†

uHdTr(�†�) or H̃†

u��†Hd are not al-
lowed since the QCD anomaly of the PQ current requires
Xu + Xd 6= 0. Moreover, H†

u,d

�
�†�+��†

�
Hu,d =

|Hu,d|2Tr(�†�), so that only two invariants out of three
are linearly independent.

The terms
�5 �

2H̃†

uHd

and
�6 �H

†

u�
†Hd

are needed in order to assign a non-vanishing PQ
charge to the singlet � and to generate neutrino masses.
Notice that the simultaneous presence of �5, �6 and Y�

is needed to explicitly break lepton number. If any of the
couplings is missing, either lepton number is exact and
neutrinos are massless or lepton number is spontaneously
broken and the vacuum exhibits a majoron together with
a Wilczek-Weinberg axion [39]. As shown next, the po-
tential in Eq. (14) corresponds to a unique PQ charge
assignment that forbids among else the presence of tri-
linear interaction terms. The absence of cubic scalar in-
teractions, which characterizes the three models here dis-
cussed, paves the way to their embedding in a classically
scale invariant setup dynamically broken a la Coleman-
Weinberg. We shall comment on that in Sect. VI.

Finally, the couplings �5 and �6 can be set real by two
independent rephasings of the fields.

B. PQ charges

The invariants in Eq. (11) and Eq. (14) enforce the
following constraints on the PQ charges:

�X` +Xe �Xd = 0 , (15)

2X` +X� = 0 , (16)

2X� �Xu �Xd = 0 , (17)

X� +Xu �X� �Xd = 0 . (18)

Solving in terms of Xu and Xd we get:

X` = �3Xu

4
+

Xd

4
, Xe = �3Xu

4
+

5Xd

4
,

X� =
3Xu

2
� Xd

2
, X� =

Xu

2
+

Xd

2
. (19)

Following [39, 52] we require the orthogonality of the hy-
percharge and axion currents. This leads to the relation

Xuv
2
u = Xdv

2
d , (20)

where vu = hHui and vd = hHdi. Adding this condition
to Eq. (19), we can determine all the PQ charges up to
an overall normalization. We choose this normalization
by the condition

X� = 1 . (21)

By defining x ⌘ vu/vd the remaining charges in Eq. (19)
read

Xu =
2

x2 + 1
, Xd =

2x2

x2 + 1
, X` =

x2 � 3

2(x2 + 1)
,

Xe =
5x2 � 3

2(x2 + 1)
, X� =

3� x2

x2 + 1
. (22)

C. Scalar spectrum

To compute the scalar spectrum we expand the scalar
fields around the chargeless and CP-conserving vacuum
configuration

Hu =

 
vu + h0

u+i⌘0
u

p

2

h�

u

!
, (23)

Hd =
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d
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h0
d+i⌘0

d
p
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!
, (24)
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2
�++
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�

p

2
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p

2

!
, (25)

� = V� +
�0 + i⌘0�p

2
, (26)

with vu, vd, v� and V� denoting the relevant (real) vac-
uum expectation values (VEVs). 2

2 While it is assumed that there exists a region of the scalar po-
tential parameters for which the absolute minimum preserves the
electric charge, it can be shown (see Sect. VD) that the potential
of Eq. (14) does not lead to spontaneous CP violation.

4

VTII = �µ2
1 |Hu|2 + �1 |Hu|4 � µ2

2 |Hd|2 + �2 |Hd|4 + �12 |Hu|2 |Hd|2 + �4

��H†

uHd

��2

� µ2
3 |�|2 + �3 |�|4 + �13 |�|2 |Hu|2 + �23 |�|2 |Hd|2

+Tr(�†�)
h
µ2
� + ��1 |Hu|2 + ��2 |Hd|2 + ��3 |�|2 + ��4Tr(�

†�)
i

+ �7H
†

u��†Hu + �8H
†

d��†Hd + �9Tr(�
†�)2 +

⇣
�5�

2H̃†

uHd + �6�H
†

u�
†Hd + h.c.

⌘
, (14)

where we employed the notation H̃u = i⌧2H
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u. Notice
that terms like H̃†

uHdTr(�†�) or H̃†
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lowed since the QCD anomaly of the PQ current requires
Xu + Xd 6= 0. Moreover, H†
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|Hu,d|2Tr(�†�), so that only two invariants out of three
are linearly independent.

The terms
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and
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†Hd

are needed in order to assign a non-vanishing PQ
charge to the singlet � and to generate neutrino masses.
Notice that the simultaneous presence of �5, �6 and Y�

is needed to explicitly break lepton number. If any of the
couplings is missing, either lepton number is exact and
neutrinos are massless or lepton number is spontaneously
broken and the vacuum exhibits a majoron together with
a Wilczek-Weinberg axion [39]. As shown next, the po-
tential in Eq. (14) corresponds to a unique PQ charge
assignment that forbids among else the presence of tri-
linear interaction terms. The absence of cubic scalar in-
teractions, which characterizes the three models here dis-
cussed, paves the way to their embedding in a classically
scale invariant setup dynamically broken a la Coleman-
Weinberg. We shall comment on that in Sect. VI.

Finally, the couplings �5 and �6 can be set real by two
independent rephasings of the fields.

B. PQ charges

The invariants in Eq. (11) and Eq. (14) enforce the
following constraints on the PQ charges:

�X` +Xe �Xd = 0 , (15)

2X` +X� = 0 , (16)

2X� �Xu �Xd = 0 , (17)

X� +Xu �X� �Xd = 0 . (18)

Solving in terms of Xu and Xd we get:
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Following [39, 52] we require the orthogonality of the hy-
percharge and axion currents. This leads to the relation

Xuv
2
u = Xdv

2
d , (20)

where vu = hHui and vd = hHdi. Adding this condition
to Eq. (19), we can determine all the PQ charges up to
an overall normalization. We choose this normalization
by the condition

X� = 1 . (21)

By defining x ⌘ vu/vd the remaining charges in Eq. (19)
read

Xu =
2

x2 + 1
, Xd =
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C. Scalar spectrum

To compute the scalar spectrum we expand the scalar
fields around the chargeless and CP-conserving vacuum
configuration

Hu =

 
vu + h0

u+i⌘0
u

p

2

h�

u

!
, (23)

Hd =

 
h+
d

vd +
h0
d+i⌘0

d
p

2

!
, (24)

� =

 
�+
p

2
�++

v� + �0+i⌘0
�

p

2
� �+

p

2

!
, (25)

� = V� +
�0 + i⌘0�p

2
, (26)

with vu, vd, v� and V� denoting the relevant (real) vac-
uum expectation values (VEVs). 2

2 While it is assumed that there exists a region of the scalar po-
tential parameters for which the absolute minimum preserves the
electric charge, it can be shown (see Sect. VD) that the potential
of Eq. (14) does not lead to spontaneous CP violation.
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preserved at higher orders. Remarkably, such a setup
allows for naturally light neutrinos together with a rich
scalar spectrum at the TeV scale . The possible presence
of an exotic TeV-scale scalar sector is not yet excluded
by collider searches and it is among the priorities in the
coming years.

A fringe benefit of such an extension of the standard
scalar sector is to improve the electroweak vacuum sta-
bility. On the other hand, the sizable interactions among
the “light” scalar states open a possibility for the realiza-
tion of a first-order electroweak phase transition. This is
one of the requirements for electroweak baryogenesis [54].
However, no new sources of CP violation arise from the
minimal scalar sectors featured in the considered setups.
We shall comment on the possibility of addressing baryo-
genesis within such a framework.

In the next three sections we detail the extended TII,
BJ and ZB setups and discuss their generic features and
shortcomings in Sect. V.

II. PQ EXTENDED TYPE-II SEESAW

On top of the usual SM field content, the scalar sec-
tor of the PQ extended Type-II seesaw model features
two Higgs doublets, an isospin triplet with hypercharge
one and a SM singlet (cf. Table I). The PQ charge as-
signments are displayed in Table I, where the presence
of Yukawa interactions for quarks is already taken into

account. Recall that the PQ current is axial, thus pro-
portional to the di↵erence between the charges of the
left- and right-handed (colored) fermions. Hence, with-
out loss of generality, we can always set Xq = 0. In this
way, the color anomaly of the PQ current is proportional
to Xu +Xd (see, e.g., [55]).

Field Spin SU(3)C SU(2)L U(1)Y U(1)PQ

qL
1
2 3 2 + 1

6 0

uR
1
2 3 1 + 2

3 Xu

dR
1
2 3 1 � 1

3 Xd

`L
1
2 1 2 � 1

2 X`

eR
1
2 1 1 �1 Xe

Hu 0 1 2 � 1
2 �Xu

Hd 0 1 2 + 1
2 �Xd

� 0 1 3 +1 X�

� 0 1 1 0 X�

TABLE I. Field content and charge assignment of the PQ
extended Type-II seesaw model.

A. Lagrangian

The only two sectors which are sensitive to the assign-
ment of the PQ charges are the Yukawa Lagrangian and
the scalar potential that we discuss in turn. The former
reads

� LTII
Y = Yu qLuRHu + Yd qLdRHd + Ye `LeRHd +

1
2Y� `TLCi⌧2�`L + h.c. , (10)

� LTII
Y = Yu qLuRHu + Yd qLdRHd + Ye `LeRHd

+ 1
2Y� `TLCi⌧2�`L + h.c. , (11)

where the flavour contractions are understood (e.g. Y T
� =

Y�), C is the charge conjugation matrix in the spinor
space, and

� ⌘ ~⌧ · ~�p
2

=

 
�+
p

2
�++

�0 ��+
p

2

!
. (12)

In Eq. (12), ~⌧ = (⌧1, ⌧2, ⌧3) are the Pauli matrices and
~� = (�1,�2,�3) are the SU(2)L components of the

scalar triplet. The electric charge eigenstates are ob-
tained by the action of Q = T3 + Y on Eq. (12).

The scalar potential can be written as [39, 56]
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VTII = moduli terms +
⇣
�5�
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uHd + �6�H
†

u�
†Hd + h.c.

⌘
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where we employed the notation H̃u = i⌧2H
⇤

u. Notice
that terms like H̃†

uHdTr(�†�) or H̃†

u��†Hd are not al-
lowed since the QCD anomaly of the PQ current requires
Xu + Xd 6= 0. Moreover, H†

u,d

�
�†�+��†

�
Hu,d =

|Hu,d|2Tr(�†�), so that only two invariants out of three
are linearly independent.

The terms
�5 �

2H̃†

uHd

and
�6 �H

†

u�
†Hd

are needed in order to assign a non-vanishing PQ
charge to the singlet � and to generate neutrino masses.
Notice that the simultaneous presence of �5, �6 and Y�

is needed to explicitly break lepton number. If any of the
couplings is missing, either lepton number is exact and
neutrinos are massless or lepton number is spontaneously
broken and the vacuum exhibits a majoron together with
a Wilczek-Weinberg axion [39]. As shown next, the po-
tential in Eq. (15) corresponds to a unique PQ charge
assignment that forbids among else the presence of tri-
linear interaction terms. The absence of cubic scalar in-
teractions, which characterizes the three models here dis-
cussed, paves the way to their embedding in a classically
scale invariant setup dynamically broken a la Coleman-
Weinberg. We shall comment on that in Sect. VI.

Finally, the couplings �5 and �6 can be set real by two
independent rephasings of the fields.

B. PQ charges

The invariants in Eq. (11) and Eq. (15) enforce the
following constraints on the PQ charges:

�X` +Xe �Xd = 0 , (16)

2X` +X� = 0 , (17)

2X� �Xu �Xd = 0 , (18)

X� +Xu �X� �Xd = 0 . (19)

Solving in terms of Xu and Xd we get:

X` = �3Xu

4
+

Xd

4
, Xe = �3Xu

4
+

5Xd

4
,

X� =
3Xu

2
� Xd

2
, X� =

Xu

2
+

Xd

2
. (20)

Following [39, 52] we require the orthogonality of the hy-
percharge and axion currents. This leads to the relation

Xuv
2
u = Xdv

2
d , (21)

where vu = hHui and vd = hHdi. Adding this condition
to Eq. (20), we can determine all the PQ charges up to
an overall normalization. We choose this normalization
by the condition

X� = 1 . (22)

By defining x ⌘ vu/vd the remaining charges in Eq. (20)
read

Xu =
2

x2 + 1
, Xd =

2x2

x2 + 1
, X` =

x2 � 3

2(x2 + 1)
,

Xe =
5x2 � 3

2(x2 + 1)
, X� =

3� x2

x2 + 1
. (23)

C. Scalar spectrum

To compute the scalar spectrum we expand the scalar
fields around the chargeless and CP-conserving vacuum
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B. PQ charges

The invariants in Eq. (10) and Eq. (12) enforce the
following constraints on the PQ charges:

�X` +Xe �Xd = 0 , (13)

2X` +X� = 0 , (14)

2X� �Xu �Xd = 0 , (15)

X� +Xu �X� �Xd = 0 . (16)
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Following [39, 52] we require the orthogonality of the hy-
percharge and axion currents. This leads to the relation

Xuv
2
u = Xdv

2
d , (18)

where vu = hHui and vd = hHdi. Adding this condition
to Eq. (17), we can determine all the PQ charges up to
an overall normalization. We choose this normalization
by the condition

X� = 1 . (19)

By defining x ⌘ vu/vd the remaining charges in Eq. (17)
read

Xu =
2
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,
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. (20)

C. Scalar spectrum

To compute the scalar spectrum we expand the scalar
fields around the chargeless and CP-conserving vacuum
configuration

Hu =
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u
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with vu, vd, v� and V� denoting the relevant (real) vac-
uum expectation values (VEVs). 2

2 While it is assumed that there exists a region of the scalar po-
tential parameters for which the absolute minimum preserves the
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FIG. 2. The tree-level “hug” diagram responsible for the
Majorana neutrino mass in the PQ extended type-II seesaw
model.

The scalar spectrum of the model is detailed in Ap-
pendix A and the main features are discussed in Sect. V.
Here we just anticipate that the model features a DFSZ
invisible axion, with a tiny coupling to neutrinos, and its
SM singlet companion with a PQ scale mass. By invoking
a technically natural ultraweak limit (see the discussion
in Sect. VA) such a heavy scalar is su�ciently decou-
pled from all the other physical scalar states that are
requested to live at the TeV scale thus preserving the ra-
diative stability of the light scalar spectrum. At the weak
scale the model allows for a SM-like Higgs boson; this,
together with a brief account of the relevant phenomeno-
logical constraints, shall be discussed in Sect. VC.

D. Neutrino masses

In the TII model, the neutrino masses are generated
through the tree-level diagram in Fig. 2.

Their expression is conveniently obtained by comput-
ing the (induced) VEV of the triplet. Let us hence con-
sider the projection of the scalar potential along the neu-
tral VEV components of Eqs. (21)–(24)

hVTIIi =
�
µ2
� + ��3V

2
� + ��1v

2
u + (��2 + �8)v

2
d

�
v2�

+ 2�6V�vuvdv� +O �v4�
�
+ v�-indep. terms . (25)

Given the phenomenological hierarchy V� � vu,d � v�,
the stationary condition with respect to v� is well ap-
proximated by

2M2
�v� + 2�6V�vuvd ⇡ 0 , (26)

where we defined the e↵ective mass parameter

M2
� = µ2

� + ��3V
2
� + ��1v

2
u + (��2 + �8)v

2
d . (27)

electric charge, it can be shown (see Sect. VD) that the potential
of Eq. (12) does not lead to spontaneous CP violation.

• Paradigmatic example: type-II seesaw
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FIG. 2. The tree-level “hug” diagram responsible for the Majorana neutrino mass in the PQ extended type-II seesaw model.

Finally, from the Yukawa Lagrangian in Eq. (89) we obtain

MTII
⌫ = Y�v� ⇡ �Y��6V�vuvd

M2
�

, (111)

as diagrammatically represented by the graph in Fig. 2, and the bound on the heaviest neutrino m⌫3 . 1 eV translates
into the constraint

�6Y� . 10�18

✓
109 GeV

V�

◆✓
M2

�

vuvd

◆
. (112)

The smallness of the absolute neutrino mass scale may have di↵erent sources. In this paper we take the point of
view of building low-energy renormalizable setups that are technically natural. In this respect, the lightness of M�

(in the vicinity of the electroweak scale) and the smallness of the couplings of the SM-singlet � with the doublet and
triplet states (among which is �6) are a required prerequisite (see Sect. VA). The triplet Yukawa coupling Y� is also
constrained by tree-level LFV (see Sect. VC).

III. PQ EXTENDED BABU-JULIO MODEL

We shall here introduce a simple PQ extension of the model of Ref. [16], which is a special case of the general Zee
model [8]. For convenience, we display the field content and the relative PQ charges in Table II, where ↵ = 1, 2, 3
denotes the family index and Xu + Xd 6= 0 in order to obtain a non-vanishing QCD anomaly. The non-universal
assignment of the PQ charges in the leptonic sector replaces the role of the Z4 symmetry employed in [16].

3

Obtaining a realistic scenario in such a context requires as well an extension of the standard Higgs sector. The
embedding of the DFSZ invisible axion model in a classically scale-invariant setup has been recently discussed in [29].
As an archetypical implementation of the scale invariant framework to the neutrino mass models considered in [1], we
focus our analysis on the PQ extended Type-II sewsaw model. The PQ scale, induced via dimensional transmutation,
triggers in turn the electroweak symmetry breaking. The hierarchy between the two scales is set and stabilized by the
ultraweak limit of the singlet scalar couplings. Attention is paid to the analysis of the scalar spectrum, aiming at a
realistic fit of the present LHC data.

The simultaneous presence of the PQ and classical scale symmetries sharply constrain the scalar potential of the
theory. All but two of the ultraweak couplings are determined by the minimization conditions in terms of the other
quartic couplings. We show that a natural (i.e., not fine-tuned) and radiatively stable decoupling limit is feasible; in
such a case the lightest Higgs boson is fully compatible with the data (that require moderate tan� values), while all
other physical scalars satisfy the present collider bounds. The needed decoupling and alignment limits of the extra
doublet Higgs states are controlled by just one of the two independent ultraweak couplings, while the second one
drives both the neutrino mass as well as the decoupling of the scalar triplet states. All this is achieved within a stable
and a fully perturbative setup.

The model exhibits an invisible axion and a very light neutral scalar that plays the role of a pseudo-dilaton,
both with tiny couplings to neutrinos that bear no relevance for today’s astrophysical and cosmological data (the
cosmology of the ultralight pseudo-dilaton is thoroughly discussed in [29]). The smallness of the pseudo-dilaton mass
is due to quantum e↵ects which require a tiny quartic self interaction. This is a characteristic feature of the scale-
invariant embedding, at variance with the setups discussed in [1], where the strength of the singlet self interaction is
unconstrained and a heavy singlet scalar state is allowed.

In summary, a relatively simple extension of the standard Higgs sector gives rise to a renormalizable and perturba-
tively stable scenario where a number of observational and theoretical issues of the SM find a correlated and natural
explanation. Were perturbative naturalness a “fundamental” principle rather than a theorist prejudice, a plethora of
new scalar states could be well within the LHC reach.

The study is organised as follows. In the first part of the paper we introduce the model and study the minimization
of the one-loop e↵ective potential. In the second part we analyze the pattern and phenomenology of the extended
scalar sector and discuss the conditions for vacuum stability. Detailed aspects of the analysis are summarized in the
appendices.

II. PQ EXTENDED TYPE-II SEESAW

The field content and the charge assignment of the PQ extended Type-II seesaw model was worked out in [1] and
it is displayed for convenience in Table I. On top of the usual SM field content, the scalar sector includes two Higgs
doublets, one isospin triplet with a unit hypercharge and one complex SM singlet. Since the PQ current is axial, it
is proportional to the di↵erence between the charges of the left- and right-handed fermions. Hence, without loss of
generality, we may set the PQ charge of the quark doublets Xq = 0 such that the color anomaly of the PQ current
turns out to be proportional to Xu +Xd 6= 0 [30].

A. Lagrangian

The only two sectors which are sensitive to the assignment of the PQ charges are the Yukawa Lagrangian and the
scalar potential that we discuss in turn. The former reads

� LTII
Y = Yu qLuRHu + Yd qLdRHd + Ye `LeRHd +

1
2Y� `TLCi⌧2� `L + h.c. (3)

PQ charges fixed up to a normalization (as in DFSZ + tiny coupling axion-nu)
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1 |Hu|2 + �1 |Hu|4 � µ2
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⌘
, (13)

where we employed the notation H̃u = i⌧2H
⇤

u. Notice
that terms like H̃†

uHdTr(�†�) or H̃†

u��†Hd are not al-
lowed since the QCD anomaly of the PQ current requires
Xu + Xd 6= 0. Moreover, H†

u,d

�
�†�+��†

�
Hu,d =

|Hu,d|2Tr(�†�), so that only two invariants out of three
are linearly independent.

The terms �5 �
2H̃†

uHd and �6 �H
†

u�
†Hd are needed

in order to assign a non-vanishing PQ charge to the sin-
glet � and to generate neutrino masses. Notice that
the simultaneous presence of �5, �6 and Y� is needed
to explicitly break lepton number. If any of the cou-
plings is missing, either lepton number is exact and neu-
trinos are massless or lepton number is spontaneously
broken and the vacuum exhibits a majoron together with
a Wilczek-Weinberg axion [39]. As shown next, the po-
tential in Eq. (13) corresponds to a unique PQ charge
assignment that forbids among else the presence of tri-
linear interaction terms. The absence of cubic scalar in-
teractions, which characterizes the three models here dis-
cussed, paves the way to their embedding in a classically
scale invariant setup dynamically broken a la Coleman-
Weinberg. We shall comment on that in Sect. VI.

Finally, the couplings �5 and �6 can be set real by two
independent rephasings of the fields.

B. PQ charges

The invariants in Eq. (10) and Eq. (13) enforce the
following constraints on the PQ charges:

�X` +Xe �Xd = 0 , (14)

2X` +X� = 0 , (15)

2X� �Xu �Xd = 0 , (16)

X� +Xu �X� �Xd = 0 . (17)

Solving in terms of Xu and Xd we get:

X` = �3Xu

4
+

Xd

4
, Xe = �3Xu

4
+

5Xd

4
,

X� =
3Xu

2
� Xd

2
, X� =

Xu

2
+

Xd

2
. (18)

Following [39, 52] we require the orthogonality of the hy-
percharge and axion currents. This leads to the relation

Xuv
2
u = Xdv

2
d , (19)

where vu = hHui and vd = hHdi. Adding this condition
to Eq. (18), we can determine all the PQ charges up to
an overall normalization. We choose this normalization
by the condition

X� = 1 . (20)

By defining x ⌘ vu/vd the remaining charges in Eq. (18)
read

Xu =
2

x2 + 1
, Xd =

2x2

x2 + 1
, X` =

x2 � 3

2(x2 + 1)
,

Xe =
5x2 � 3

2(x2 + 1)
, X� =

3� x2

x2 + 1
. (21)

C. Scalar spectrum

To compute the scalar spectrum we expand the scalar
fields around the chargeless and CP-conserving vacuum
configuration

Hu =

 
vu + h0

u+i⌘0
u

p

2

h�

u

!
, (22)

Hd =
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d
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, (24)

� = V� +
�0 + i⌘0�p

2
, (25)

with vu, vd, v� and V� denoting the relevant (real) vac-
uum expectation values (VEVs). 2

The scalar spectrum of the model is detailed in Ap-
pendix A and the main features are discussed in Sect. V.
Here we just anticipate that the model features a DFSZ
invisible axion, with a tiny coupling to neutrinos, and its
SM singlet companion with a PQ scale mass. By invoking

2 While it is assumed that there exists a region of the scalar po-
tential parameters for which the absolute minimum preserves the
electric charge, it can be shown (see Sect. VD) that the potential
of Eq. (13) does not lead to spontaneous CP violation.

A closer look at the scalar potential
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in order to assign a non-vanishing PQ charge to the sin-
glet � and to generate neutrino masses. Notice that
the simultaneous presence of �5, �6 and Y� is needed
to explicitly break lepton number. If any of the cou-
plings is missing, either lepton number is exact and neu-
trinos are massless or lepton number is spontaneously
broken and the vacuum exhibits a majoron together with
a Wilczek-Weinberg axion [39]. As shown next, the po-
tential in Eq. (13) corresponds to a unique PQ charge
assignment that forbids among else the presence of tri-
linear interaction terms. The absence of cubic scalar in-
teractions, which characterizes the three models here dis-
cussed, paves the way to their embedding in a classically
scale invariant setup dynamically broken a la Coleman-
Weinberg. We shall comment on that in Sect. VI.

Finally, the couplings �5 and �6 can be set real by two
independent rephasings of the fields.

B. PQ charges

The invariants in Eq. (10) and Eq. (13) enforce the
following constraints on the PQ charges:
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an overall normalization. We choose this normalization
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C. Scalar spectrum

To compute the scalar spectrum we expand the scalar
fields around the chargeless and CP-conserving vacuum
configuration
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with vu, vd, v� and V� denoting the relevant (real) vac-
uum expectation values (VEVs). 2

The scalar spectrum of the model is detailed in Ap-
pendix A and the main features are discussed in Sect. V.
Here we just anticipate that the model features a DFSZ
invisible axion, with a tiny coupling to neutrinos, and its
SM singlet companion with a PQ scale mass. By invoking

2 While it is assumed that there exists a region of the scalar po-
tential parameters for which the absolute minimum preserves the
electric charge, it can be shown (see Sect. VD) that the potential
of Eq. (13) does not lead to spontaneous CP violation.

A closer look at the scalar potential
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• Emerging symmetries in corners of parameter space
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glet � and to generate neutrino masses. Notice that
the simultaneous presence of �5, �6 and Y� is needed
to explicitly break lepton number. If any of the cou-
plings is missing, either lepton number is exact and neu-
trinos are massless or lepton number is spontaneously
broken and the vacuum exhibits a majoron together with
a Wilczek-Weinberg axion [39]. As shown next, the po-
tential in Eq. (13) corresponds to a unique PQ charge
assignment that forbids among else the presence of tri-
linear interaction terms. The absence of cubic scalar in-
teractions, which characterizes the three models here dis-
cussed, paves the way to their embedding in a classically
scale invariant setup dynamically broken a la Coleman-
Weinberg. We shall comment on that in Sect. VI.

Finally, the couplings �5 and �6 can be set real by two
independent rephasings of the fields.
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to Eq. (18), we can determine all the PQ charges up to
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C. Scalar spectrum

To compute the scalar spectrum we expand the scalar
fields around the chargeless and CP-conserving vacuum
configuration
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with vu, vd, v� and V� denoting the relevant (real) vac-
uum expectation values (VEVs). 2

The scalar spectrum of the model is detailed in Ap-
pendix A and the main features are discussed in Sect. V.
Here we just anticipate that the model features a DFSZ
invisible axion, with a tiny coupling to neutrinos, and its
SM singlet companion with a PQ scale mass. By invoking

2 While it is assumed that there exists a region of the scalar po-
tential parameters for which the absolute minimum preserves the
electric charge, it can be shown (see Sect. VD) that the potential
of Eq. (13) does not lead to spontaneous CP violation.

A closer look at the scalar potential
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4Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics,
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5SISSA/ISAS, Via Bonomea 265, 34136 Trieste, Italy

We survey a few minimal scalar extensions of the standard electroweak model that provide a simple
setup for massive neutrinos in connection with an invisible axion. The presence of a chiral U(1)
à la Peccei-Quinn drives the pattern of Majorana neutrino masses while providing a dynamical
solution to the strong CP problem and an axion as a dark matter candidate. We paradigmatically
apply such a renormalizable framework to type-II seesaw and to two viable models for neutrino
oscillations where the neutrino masses arise at one and two loops, respectively. We comment on
the naturalness of the e↵ective setups as well as on their implications for vacuum stability and
electroweak baryogenesis.

PACS numbers: 12.60.Fr,14.60.Pq,14.80.Va

I. INTRODUCTION

All � 6= 0 =) [U(1)PQ (1)

�6 = 0 =) [U(1)PQ ⌦ U(1)L (2)

�5 = 0 =) [U(1)PQ ⌦ [U(1)L (3)

h�i ⌘ V� � vu,d (4)

Hu ⇠ H⇤

d =) A = 0 (5)

A / XuR +XdR �XuL �XdL (6)

� Lquarks
Y = Yu qLuRHu + Yd qLdRHd + h.c. (7)

✓̄ = �⇠ hai
vPQ

(8)

Veff ⇠ cos

✓
✓̄ + ⇠

hai
vPQ

◆
(9)

a(x) ! a(x) + �↵ vPQ (10)

⇤ stefano.bertolini@sissa.it
† luca.di.luzio@ge.infn.it
‡ helena.kolesova@fjfi.cvut.cz
§ malinsky@ipnp.troja.m↵.cuni.cz

Leff = LSM+✓̄
g2

32⇡2
Gµ⌫

a G̃a
µ⌫+⇠

a

vPQ

g2

32⇡2
Gµ⌫

a G̃a
µ⌫�

1

2
@µa@µa+L(@µa, )
(11)

La⌫⌫ =
3� x2

2(x2 + 1)

m⌫

fa
a⌫i�5⌫ (12)

x = tan� ⌘ vu/vd (13)

✓̄ . 10�11 (14)

 L. Di Luzio (Genova U.) - An extended scalar sector for the known physics BSM        07/11



• Emerging symmetries in corners of parameter space
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in order to assign a non-vanishing PQ charge to the sin-
glet � and to generate neutrino masses. Notice that
the simultaneous presence of �5, �6 and Y� is needed
to explicitly break lepton number. If any of the cou-
plings is missing, either lepton number is exact and neu-
trinos are massless or lepton number is spontaneously
broken and the vacuum exhibits a majoron together with
a Wilczek-Weinberg axion [39]. As shown next, the po-
tential in Eq. (13) corresponds to a unique PQ charge
assignment that forbids among else the presence of tri-
linear interaction terms. The absence of cubic scalar in-
teractions, which characterizes the three models here dis-
cussed, paves the way to their embedding in a classically
scale invariant setup dynamically broken a la Coleman-
Weinberg. We shall comment on that in Sect. VI.
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with vu, vd, v� and V� denoting the relevant (real) vac-
uum expectation values (VEVs). 2

The scalar spectrum of the model is detailed in Ap-
pendix A and the main features are discussed in Sect. V.
Here we just anticipate that the model features a DFSZ
invisible axion, with a tiny coupling to neutrinos, and its
SM singlet companion with a PQ scale mass. By invoking

2 While it is assumed that there exists a region of the scalar po-
tential parameters for which the absolute minimum preserves the
electric charge, it can be shown (see Sect. VD) that the potential
of Eq. (13) does not lead to spontaneous CP violation.
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Sezione di Genova, Via Dodecaneso 33, 16159 Genova, Italy
3Faculty of Nuclear Sciences and Physical Engineering,

Czech Technical University in Prague, Brehová 7, 115 19 Praha 1, Czech Republic
4Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics,
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à la Peccei-Quinn drives the pattern of Majorana neutrino masses while providing a dynamical
solution to the strong CP problem and an axion as a dark matter candidate. We paradigmatically
apply such a renormalizable framework to type-II seesaw and to two viable models for neutrino
oscillations where the neutrino masses arise at one and two loops, respectively. We comment on
the naturalness of the e↵ective setups as well as on their implications for vacuum stability and
electroweak baryogenesis.

PACS numbers: 12.60.Fr,14.60.Pq,14.80.Va

I. INTRODUCTION

All � 6= 0 =) [U(1)PQ (1)

�6 = 0 =) U(1)PQ ⌦ U(1)L (2)

�5 = 0 =) U(1)PQ ⌦ U(1)0L (3)

h�i ⌘ V� � vu,d (4)

Hu ⇠ H⇤

d =) A = 0 (5)

A / XuR +XdR �XuL �XdL (6)

� Lquarks
Y = Yu qLuRHu + Yd qLdRHd + h.c. (7)

✓̄ = �⇠ hai
vPQ

(8)

Veff ⇠ cos

✓
✓̄ + ⇠

hai
vPQ

◆
(9)

a(x) ! a(x) + �↵ vPQ (10)

⇤ stefano.bertolini@sissa.it
† luca.di.luzio@ge.infn.it
‡ helena.kolesova@fjfi.cvut.cz
§ malinsky@ipnp.troja.m↵.cuni.cz

Leff = LSM+✓̄
g2

32⇡2
Gµ⌫

a G̃a
µ⌫+⇠

a

vPQ

g2

32⇡2
Gµ⌫

a G̃a
µ⌫�

1

2
@µa@µa+L(@µa, )
(11)

La⌫⌫ =
3� x2

2(x2 + 1)

m⌫

fa
a⌫i�5⌫ (12)

x = tan� ⌘ vu/vd (13)

✓̄ . 10�11 (14)

Massive neutrinos and invisible axion minimally connected

Stefano Bertolini,1, ⇤ Luca Di Luzio,2, † Helena Kolešová,3, 4, 5, ‡ and Michal Malinský4, §
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• Emerging symmetries in corners of parameter space

4
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where we employed the notation H̃u = i⌧2H
⇤

u. Notice
that terms like H̃†

uHdTr(�†�) or H̃†

u��†Hd are not al-
lowed since the QCD anomaly of the PQ current requires
Xu + Xd 6= 0. Moreover, H†

u,d

�
�†�+��†

�
Hu,d =

|Hu,d|2Tr(�†�), so that only two invariants out of three
are linearly independent.

The terms �5 �
2H̃†

uHd and �6 �H
†

u�
†Hd are needed

in order to assign a non-vanishing PQ charge to the sin-
glet � and to generate neutrino masses. Notice that
the simultaneous presence of �5, �6 and Y� is needed
to explicitly break lepton number. If any of the cou-
plings is missing, either lepton number is exact and neu-
trinos are massless or lepton number is spontaneously
broken and the vacuum exhibits a majoron together with
a Wilczek-Weinberg axion [39]. As shown next, the po-
tential in Eq. (13) corresponds to a unique PQ charge
assignment that forbids among else the presence of tri-
linear interaction terms. The absence of cubic scalar in-
teractions, which characterizes the three models here dis-
cussed, paves the way to their embedding in a classically
scale invariant setup dynamically broken a la Coleman-
Weinberg. We shall comment on that in Sect. VI.

Finally, the couplings �5 and �6 can be set real by two
independent rephasings of the fields.

B. PQ charges

The invariants in Eq. (10) and Eq. (13) enforce the
following constraints on the PQ charges:
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2X� �Xu �Xd = 0 , (16)
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2
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Following [39, 52] we require the orthogonality of the hy-
percharge and axion currents. This leads to the relation

Xuv
2
u = Xdv

2
d , (19)

where vu = hHui and vd = hHdi. Adding this condition
to Eq. (18), we can determine all the PQ charges up to
an overall normalization. We choose this normalization
by the condition

X� = 1 . (20)

By defining x ⌘ vu/vd the remaining charges in Eq. (18)
read
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C. Scalar spectrum

To compute the scalar spectrum we expand the scalar
fields around the chargeless and CP-conserving vacuum
configuration
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, (22)
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� �+
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!
, (24)

� = V� +
�0 + i⌘0�p

2
, (25)

with vu, vd, v� and V� denoting the relevant (real) vac-
uum expectation values (VEVs). 2

The scalar spectrum of the model is detailed in Ap-
pendix A and the main features are discussed in Sect. V.
Here we just anticipate that the model features a DFSZ
invisible axion, with a tiny coupling to neutrinos, and its
SM singlet companion with a PQ scale mass. By invoking

2 While it is assumed that there exists a region of the scalar po-
tential parameters for which the absolute minimum preserves the
electric charge, it can be shown (see Sect. VD) that the potential
of Eq. (13) does not lead to spontaneous CP violation.

A closer look at the scalar potential

-
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5SISSA/ISAS, Via Bonomea 265, 34136 Trieste, Italy

We survey a few minimal scalar extensions of the standard electroweak model that provide a simple
setup for massive neutrinos in connection with an invisible axion. The presence of a chiral U(1)
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Sezione di Genova, Via Dodecaneso 33, 16159 Genova, Italy
3Faculty of Nuclear Sciences and Physical Engineering,

Czech Technical University in Prague, Brehová 7, 115 19 Praha 1, Czech Republic
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1INFN, Sezione di Trieste, SISSA, Via Bonomea 265, 34136 Trieste, Italy
2Dipartimento di Fisica, Università di Genova and INFN,
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- the energy-momentum tensors are independently conserved in the two sectors* 
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is antisymmetric, det f = 0 (for three generations) and,
hence, detMZB

⌫ = 0.
As in the previous cases (TII and BJ), the smallness of

neutrino masses can be due to di↵erent factors. Taking
into account the strong bounds on the Yukawa couplings
f and g coming from the LFV processes (see Sect. VC), it
turns out that the assumption �7 . 4⇡⇥O( v

V�
), tailored

to keep the non-singlet scalars at the electroweak scale,
ensures also the correct absolute neutrino mass scale [20].

Finally, we briefly comment on the case �6 6= 0. In
such a setting there is an extra one-loop contribution to
the neutrino masses, similar to the one in Fig. 3 (the rel-
evant expression can be found in Eqs. (25)-(26) of [39]).
As already mentioned, the original Zee model is excluded
by neutrino data and, in order to obtain a viable neutrino
texture, the size of such a one-loop diagram must be com-
parable with the two-loop expression in Eq. (73), thus in-
troducing a fine-tuning in the couplings. Let us also note
that �6 6= 0 introduces a tree-level mixing between the
charged SU(2)L-doublet and singlet scalars that a↵ects
Eq. (74). At variance with the ZB model, the lightest
neutrino is no longer massless. In this study, we will not
pursue the analysis of this hybrid model any further.

V. DISCUSSION

The three setups presented in the previous sections
share a number of common features which we shall briefly
summarize here. In particular, all three models contain
a DFSZ invisible axion with a tiny coupling to neutri-
nos [39, 40]. It is noticeable that, at variance with the
TII and ZB extended models, the axion in the BJ case
exhibits flavour violating couplings to the leptons of the
same order of the flavour-diagonal ones:
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that, up to a total derivative, can be written as

La`` = i
a

fa

⇥�
Xe �X`2,3

�
me

i ei�5e
i �X`2,3m

⌫
i ⌫i�5⌫

i
⇤

� i
�
X`1 �X`2,3

� a

fa


(Ue†

L )i1(Ue
L)

1j ei
✓
me

j �me
i

2

+
me

j +me
i

2
�5

◆
ej

+ (U⌫†
L )i1(U⌫

L)
1j ⌫i

✓
m⌫

j �m⌫
i

2
+

m⌫
j +m⌫

i

2
�5

◆
⌫j
�
.

(78)

where a denotes the axion field and fa =
p
2V�. The

mass eigenstates eiL, ⌫
i
L (i = 1, 2, 3) are connected to the

interaction basis e↵L, ⌫↵L (↵ = 1, 2, 3) via the relations
e↵L = (Ue

L)
↵ieiL and ⌫↵L = (U⌫

L)
↵i⌫iL. The equations of

motion for Weyl fermions with a Majorana mass term
are used and the axion neutrino couplings are written
in terms of the Majorana mass eigenstates [58]. Present
laboratory and astrophysical limits on flavor violating in-
teractions do not seem to imply any constraints on the
PQ scale stronger than those obtained from the diago-
nal interactions [53]. On the other hand, the presence
of lepton flavor violating interactions of the axion in the
extended BJ model deserves further detailed scrutiny.

The DFSZ invisible axion framework su↵ers from the
domain wall problem (the non-perturbative instanton po-
tential breaks the U(1)PQ explicitly to a ZNq discrete
symmetry where Nq is the number of quark flavors). The
standard cosmological solution is then the assumption of
a low reheating temperature (see [59] for a comprehensive
discussion).

A. Naturalness

An interesting feature of all the models considered in
this study is the fact that the hierarchy between the elec-
troweak and the PQ scales can be made technically nat-
ural and stable against radiative corrections. Let us con-
sider, for definiteness, the case of the PQ extended TII
model. At the tree level, the hierarchy between the PQ
and the electroweak scale can be obtained without fine-
tuning among the scalar potential parameters of Eq. (24)
by requiring the ultraweak limit

�i3,�5 ⇠ O
✓
v2

V 2
�

◆
and �6 ⇠ O

✓
v�
V�

◆
, (79)

where the last equation is set by the stationarity condi-
tion (38) and i is running over all the scalar multiplets
but the SM singlet (all non-singlet mass parameters are
taken at the weak scale). As a matter of fact, this guar-
antees that the heavy (PQ-scale) neutral singlet decou-
ples from the rest of the spectrum (see Appendix A and
Sect. IVC). It is noteworthy that the ultraweak limit
�i3,�5,�6 ⌧ 1 is associated with the emergence of an ad-
ditional Poincaré symmetry of the action [39, 60] (see [61]
for a recent discussion) which makes this limit perturba-
tively stable. It is readily verified that the renormaliza-
tion of the couplings connecting the “light” and “heavy”
sectors is as a set multiplicative (the relevant beta func-
tions exhibit a fixed point for vanishing couplings). The
hierarchy among the ultraweak couplings in Eq. (78) is
stable since �2

6 ⌧ �i3. The couplings �5 and �6 are them-
selves multiplicatively renormalized since lepton number
is restored when one of them is vanishing. The natural-
ness requirement, together with the constraints coming
from the LFV phenomenology, allows us to reproduce in
all three setups above the correct neutrino mass scale to-

*again, ignoring gravity

Massive neutrinos and invisible axion minimally connected

Stefano Bertolini,1, ⇤ Luca Di Luzio,2, † Helena Kolešová,3, 4, 5, ‡ and Michal Malinský4, §
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4Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics,
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• A stable hierarchy b/w PQ and EW is automatically achieved by decoupling the singlet 
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in terms of the Majorana mass eigenstates [58]. Present
laboratory and astrophysical limits on flavor violating in-
teractions do not seem to imply any constraints on the
PQ scale stronger than those obtained from the diago-
nal interactions [53]. On the other hand, the presence
of lepton flavor violating interactions of the axion in the
extended BJ model deserves further detailed scrutiny.

The DFSZ invisible axion framework su↵ers from the
domain wall problem (the non-perturbative instanton po-
tential breaks the U(1)PQ explicitly to a ZNq discrete
symmetry where Nq is the number of quark flavors). The
standard cosmological solution is then the assumption of
a low reheating temperature (see [59] for a comprehensive
discussion).

A. Naturalness

An interesting feature of all the models considered in
this study is the fact that the hierarchy between the elec-
troweak and the PQ scales can be made technically nat-
ural and stable against radiative corrections. Let us con-
sider, for definiteness, the case of the PQ extended TII
model. At the tree level, the hierarchy between the PQ
and the electroweak scale can be obtained without fine-
tuning among the scalar potential parameters of Eq. (24)
by requiring the ultraweak limit
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V 2
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, (79)

where the last equation is set by the stationarity condi-
tion (38) and i is running over all the scalar multiplets
but the SM singlet (all non-singlet mass parameters are
taken at the weak scale). As a matter of fact, this guar-
antees that the heavy (PQ-scale) neutral singlet decou-
ples from the rest of the spectrum (see Appendix A and
Sect. IVC). It is noteworthy that the ultraweak limit
�i3,�5,�6 ⌧ 1 is associated with the emergence of an ad-
ditional Poincaré symmetry of the action [39, 60] (see [61]
for a recent discussion) which makes this limit perturba-
tively stable. It is readily verified that the renormaliza-
tion of the couplings connecting the “light” and “heavy”
sectors is as a set multiplicative (the relevant beta func-
tions exhibit a fixed point for vanishing couplings). The
hierarchy among the ultraweak couplings in Eq. (78) is
stable since �2

6 ⌧ �i3. The couplings �5 and �6 are them-
selves multiplicatively renormalized since lepton number
is restored when one of them is vanishing. The natural-
ness requirement, together with the constraints coming
from the LFV phenomenology, allows us to reproduce in
all three setups above the correct neutrino mass scale to-
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As in the previous cases (TII and BJ), the smallness of

neutrino masses can be due to di↵erent factors. Taking
into account the strong bounds on the Yukawa couplings
f and g coming from the LFV processes (see Sect. VC), it
turns out that the assumption �7 . 4⇡⇥O( v

V�
), tailored

to keep the non-singlet scalars at the electroweak scale,
ensures also the correct absolute neutrino mass scale [20].

Finally, we briefly comment on the case �6 6= 0. In
such a setting there is an extra one-loop contribution to
the neutrino masses, similar to the one in Fig. 3 (the rel-
evant expression can be found in Eqs. (25)-(26) of [39]).
As already mentioned, the original Zee model is excluded
by neutrino data and, in order to obtain a viable neutrino
texture, the size of such a one-loop diagram must be com-
parable with the two-loop expression in Eq. (73), thus in-
troducing a fine-tuning in the couplings. Let us also note
that �6 6= 0 introduces a tree-level mixing between the
charged SU(2)L-doublet and singlet scalars that a↵ects
Eq. (74). At variance with the ZB model, the lightest
neutrino is no longer massless. In this study, we will not
pursue the analysis of this hybrid model any further.

V. DISCUSSION

The three setups presented in the previous sections
share a number of common features which we shall briefly
summarize here. In particular, all three models contain
a DFSZ invisible axion with a tiny coupling to neutri-
nos [39, 40]. It is noticeable that, at variance with the
TII and ZB extended models, the axion in the BJ case
exhibits flavour violating couplings to the leptons of the
same order of the flavour-diagonal ones:

La`` = �X`2,3

@µa

fa

⇥
(eiL�

µeiL) + (⌫iL�
µ⌫iL)

⇤

�Xe
@µa

fa

⇥
(eiR�

µeiR)
⇤

� (X`1 �X`2,3)
@µa

fa

h
(eiL�

µ(Ue†
L )i1(Ue

L)
1jejL)

i

+ (⌫iL�
µ(U⌫†

L )i1(U⌫
L)

1j⌫jL)
i
, (77)

that, up to a total derivative, can be written as

La`` = i
a

fa

⇥�
Xe �X`2,3

�
me

i ei�5e
i �X`2,3m

⌫
i ⌫i�5⌫

i
⇤

� i
�
X`1 �X`2,3

� a

fa


(Ue†

L )i1(Ue
L)

1j ei
✓
me

j �me
i

2

+
me

j +me
i

2
�5

◆
ej

+ (U⌫†
L )i1(U⌫

L)
1j ⌫i

✓
m⌫

j �m⌫
i

2
+

m⌫
j +m⌫

i

2
�5

◆
⌫j
�
.

(78)

where a denotes the axion field and fa =
p
2V�. The

mass eigenstates eiL, ⌫
i
L (i = 1, 2, 3) are connected to the

interaction basis e↵L, ⌫↵L (↵ = 1, 2, 3) via the relations
e↵L = (Ue

L)
↵ieiL and ⌫↵L = (U⌫

L)
↵i⌫iL. The equations of

motion for Weyl fermions with a Majorana mass term
are used and the axion neutrino couplings are written
in terms of the Majorana mass eigenstates [58]. Present
laboratory and astrophysical limits on flavor violating in-
teractions do not seem to imply any constraints on the
PQ scale stronger than those obtained from the diago-
nal interactions [53]. On the other hand, the presence
of lepton flavor violating interactions of the axion in the
extended BJ model deserves further detailed scrutiny.

The DFSZ invisible axion framework su↵ers from the
domain wall problem (the non-perturbative instanton po-
tential breaks the U(1)PQ explicitly to a ZNq discrete
symmetry where Nq is the number of quark flavors). The
standard cosmological solution is then the assumption of
a low reheating temperature (see [59] for a comprehensive
discussion).

A. Naturalness

An interesting feature of all the models considered in
this study is the fact that the hierarchy between the elec-
troweak and the PQ scales can be made technically nat-
ural and stable against radiative corrections. Let us con-
sider, for definiteness, the case of the PQ extended TII
model. At the tree level, the hierarchy between the PQ
and the electroweak scale can be obtained without fine-
tuning among the scalar potential parameters of Eq. (24)
by requiring the ultraweak limit

�i3,�5 ⇠ O
✓
v2

V 2
�

◆
and �6 ⇠ O

✓
v�
V�

◆
, (79)

where the last equation is set by the stationarity condi-
tion (38) and i is running over all the scalar multiplets
but the SM singlet (all non-singlet mass parameters are
taken at the weak scale). As a matter of fact, this guar-
antees that the heavy (PQ-scale) neutral singlet decou-
ples from the rest of the spectrum (see Appendix A and
Sect. IVC). It is noteworthy that the ultraweak limit
�i3,�5,�6 ⌧ 1 is associated with the emergence of an ad-
ditional Poincaré symmetry of the action [39, 60] (see [61]
for a recent discussion) which makes this limit perturba-
tively stable. It is readily verified that the renormaliza-
tion of the couplings connecting the “light” and “heavy”
sectors is as a set multiplicative (the relevant beta func-
tions exhibit a fixed point for vanishing couplings). The
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• The ultraweak limit                     is technically natural (extended Poincare’ symmetry)

- Verified by inspecting the fixed-point structure of the RGEs
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4Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics,
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5SISSA/ISAS, Via Bonomea 265, 34136 Trieste, Italy

We survey a few minimal scalar extensions of the standard electroweak model that provide a simple
setup for massive neutrinos in connection with an invisible axion. The presence of a chiral U(1)
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*again, ignoring gravity

• A stable hierarchy b/w PQ and EW is automatically achieved by decoupling the singlet 
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is antisymmetric, det f = 0 (for three generations) and,
hence, detMZB

⌫ = 0.
As in the previous cases (TII and BJ), the smallness of

neutrino masses can be due to di↵erent factors. Taking
into account the strong bounds on the Yukawa couplings
f and g coming from the LFV processes (see Sect. VC), it
turns out that the assumption �7 . 4⇡⇥O( v

V�
), tailored

to keep the non-singlet scalars at the electroweak scale,
ensures also the correct absolute neutrino mass scale [20].

Finally, we briefly comment on the case �6 6= 0. In
such a setting there is an extra one-loop contribution to
the neutrino masses, similar to the one in Fig. 3 (the rel-
evant expression can be found in Eqs. (25)-(26) of [39]).
As already mentioned, the original Zee model is excluded
by neutrino data and, in order to obtain a viable neutrino
texture, the size of such a one-loop diagram must be com-
parable with the two-loop expression in Eq. (73), thus in-
troducing a fine-tuning in the couplings. Let us also note
that �6 6= 0 introduces a tree-level mixing between the
charged SU(2)L-doublet and singlet scalars that a↵ects
Eq. (74). At variance with the ZB model, the lightest
neutrino is no longer massless. In this study, we will not
pursue the analysis of this hybrid model any further.

V. DISCUSSION

The three setups presented in the previous sections
share a number of common features which we shall briefly
summarize here. In particular, all three models contain
a DFSZ invisible axion with a tiny coupling to neutri-
nos [39, 40]. It is noticeable that, at variance with the
TII and ZB extended models, the axion in the BJ case
exhibits flavour violating couplings to the leptons of the
same order of the flavour-diagonal ones:
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where a denotes the axion field and fa =
p
2V�. The

mass eigenstates eiL, ⌫
i
L (i = 1, 2, 3) are connected to the

interaction basis e↵L, ⌫↵L (↵ = 1, 2, 3) via the relations
e↵L = (Ue
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↵ieiL and ⌫↵L = (U⌫

L)
↵i⌫iL. The equations of

motion for Weyl fermions with a Majorana mass term
are used and the axion neutrino couplings are written
in terms of the Majorana mass eigenstates [58]. Present
laboratory and astrophysical limits on flavor violating in-
teractions do not seem to imply any constraints on the
PQ scale stronger than those obtained from the diago-
nal interactions [53]. On the other hand, the presence
of lepton flavor violating interactions of the axion in the
extended BJ model deserves further detailed scrutiny.

The DFSZ invisible axion framework su↵ers from the
domain wall problem (the non-perturbative instanton po-
tential breaks the U(1)PQ explicitly to a ZNq discrete
symmetry where Nq is the number of quark flavors). The
standard cosmological solution is then the assumption of
a low reheating temperature (see [59] for a comprehensive
discussion).

A. Naturalness

An interesting feature of all the models considered in
this study is the fact that the hierarchy between the elec-
troweak and the PQ scales can be made technically nat-
ural and stable against radiative corrections. Let us con-
sider, for definiteness, the case of the PQ extended TII
model. At the tree level, the hierarchy between the PQ
and the electroweak scale can be obtained without fine-
tuning among the scalar potential parameters of Eq. (24)
by requiring the ultraweak limit
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where the last equation is set by the stationarity condi-
tion (38) and i is running over all the scalar multiplets
but the SM singlet (all non-singlet mass parameters are
taken at the weak scale). As a matter of fact, this guar-
antees that the heavy (PQ-scale) neutral singlet decou-
ples from the rest of the spectrum (see Appendix A and
Sect. IVC). It is noteworthy that the ultraweak limit
�i3,�5,�6 ⌧ 1 is associated with the emergence of an ad-
ditional Poincaré symmetry of the action [39, 60] (see [61]
for a recent discussion) which makes this limit perturba-
tively stable. It is readily verified that the renormaliza-
tion of the couplings connecting the “light” and “heavy”
sectors is as a set multiplicative (the relevant beta func-
tions exhibit a fixed point for vanishing couplings). The
hierarchy among the ultraweak couplings in Eq. (78) is
stable since �2

6 ⌧ �i3. The couplings �5 and �6 are them-
selves multiplicatively renormalized since lepton number
is restored when one of them is vanishing. The natural-
ness requirement, together with the constraints coming
from the LFV phenomenology, allows us to reproduce in
all three setups above the correct neutrino mass scale to-
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taken at the weak scale). As a matter of fact, this guar-
antees that the heavy (PQ-scale) neutral singlet decou-
ples from the rest of the spectrum (see Appendix A and
Sect. IVC). It is noteworthy that the ultraweak limit
�i3,�5,�6 ⌧ 1 is associated with the emergence of an ad-
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for a recent discussion) which makes this limit perturba-
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sectors is as a set multiplicative (the relevant beta func-
tions exhibit a fixed point for vanishing couplings). The
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• The ultraweak limit                     is technically natural (extended Poincare’ symmetry)

• Non-singlet fields cannot be decoupled via ultraweak limit (2-loop gauge int.’s)

• A stable hierarchy b/w PQ and EW is automatically achieved by decoupling the singlet 

- A “fully natural” model requires an extended scalar sector below the TeV scale
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• PQ-EW hierarchy might arise radiatively à la Coleman-Weinberg [Allison, Hill, Ross (2014)]

(classical) scale invariance

[Hill (2014)]

 See talk by Lindner 

II. GENERAL THEORETICAL CONSIDERATIONS

A. Schematic Analysis

To get a feeling for how Coleman-Weinberg symmetry
breaking works, with particular emphasis upon the renorm-
alization group (RG), we consider aUð1ÞHiggs scalar field
potential 12 λðH

†HÞ2. This classical potential, for λ > 0 has
an uninteresting minimum at hHi ¼ v ¼ 0 as in Fig. 1.
A process with N Feynman loops is of order OðℏNÞ in

field theory. Quantum loops lead to the RG running of
couplings, such as λ, with scale, μ. Typically, we might
have a one-loop, OðℏÞ, solution to the RG equations as in
Fig. 2:

λðμÞ ≈ β lnðμ=MÞ (2)

where β ∝ ℏ. M simply parametrizes the particular RG
trajectory of the running λðμÞ; i.e., we would ask our
experimental colleagues to measure the dimensionless
quantity λ at some energy scale μ, and we would then
chooseM so that we fit their result as λexptðμÞ ¼ β lnðμ=MÞ.
With the running quartic coupling constant, the scale can

be set by the vacuum expectation value, hHi ¼ v, of the
fieldH itself. The resulting scalar potential, as a function of
v ¼ μ, is then:

VðvÞ ¼ 1

2
βv4 lnðv=MÞ (3)

This potential has a local minimum, as in Fig. 3, at
v0 ¼ Me−1=4. A stable minimum of the potential; i.e.,

one with a positive curvature at the minimum, or m2
h > 0,

occurs just below the zero-crossing of λðvÞ from a negative
to a positive value. Hence λmust be negative and β must be
positive at the minimum [we’ll see in Section V that there
are alternative solutions involving two loops in which the
situation is flipped; i.e., β (λ) can be negative (positive)].
If λðμÞ continues to run as ∝ β lnðμ=MÞ, we would see

that the ratio of the VEV, v0, to any other scale M0 is then

v0
M0 ∝ exp

!
−
λðM0Þ
β

"
: (4)

A large hierarchy between v0 and M0 can be exponentially
controlled by the ratio of dimensionless quantities,
λðM0Þ=β. With vweak ≡ v0, the ’t Hooft naturalness of
the “small ratio” of vweak=MPlanck, or vweak=MGUT, would
be, in analogy to QCD, associated with the limit β → 0,
which is again the limit of classical scale invariance, ℏ → 0.
Of course, the RG running of λðμÞ can be complicated over
a large range of μ.
β, which we have approximated as a constant above, is

the β function of λ which defines the Gell-Mann–Low
renormalization group equation [29]

dλ
d lnðμÞ

¼ βðλÞ: (5)

To see the structure of the CW potential in somewhat
greater detail we expand the potential of Eq. (3) in H about
a hypothetical vacuum expectation value v,

jHj ¼ vþ h=
ffiffiffi
2

p
; (6)

where h is a physical Higgs boson field, according to
λðjHjÞ ¼ β lnðjHj=MÞ,

λðvþ h=
ffiffiffi
2

p
Þ ¼ λðvÞ þ β lnð1þ h=
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FIG. 1. Classical ∼λv4 potential.

FIG. 3. Resulting CW potential, ∼βv4 lnðv=MÞ.

FIG. 2. Typical RG trajectory λ ∼ β lnðv=MÞ.
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II. GENERAL THEORETICAL CONSIDERATIONS

A. Schematic Analysis
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where we employed the notation H̃u = i⌧2H
⇤

u. Notice
that terms like H̃†

uHdTr(�†�) or H̃†

u��†Hd are not al-
lowed since the QCD anomaly of the PQ current requires
Xu + Xd 6= 0. Moreover, H†

u,d

�
�†�+��†

�
Hu,d =

|Hu,d|2Tr(�†�), so that only two invariants out of three
are linearly independent.

The terms �5 �
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uHd and �6 �H
†

u�
†Hd are needed

in order to assign a non-vanishing PQ charge to the sin-
glet � and to generate neutrino masses. Notice that
the simultaneous presence of �5, �6 and Y� is needed
to explicitly break lepton number. If any of the cou-
plings is missing, either lepton number is exact and neu-
trinos are massless or lepton number is spontaneously
broken and the vacuum exhibits a majoron together with
a Wilczek-Weinberg axion [39]. As shown next, the po-
tential in Eq. (13) corresponds to a unique PQ charge
assignment that forbids among else the presence of tri-
linear interaction terms. The absence of cubic scalar in-
teractions, which characterizes the three models here dis-
cussed, paves the way to their embedding in a classically
scale invariant setup dynamically broken a la Coleman-
Weinberg. We shall comment on that in Sect. VI.

Finally, the couplings �5 and �6 can be set real by two
independent rephasings of the fields.

B. PQ charges

The invariants in Eq. (10) and Eq. (13) enforce the
following constraints on the PQ charges:

�X` +Xe �Xd = 0 , (14)

2X` +X� = 0 , (15)
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2
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Following [39, 52] we require the orthogonality of the hy-
percharge and axion currents. This leads to the relation

Xuv
2
u = Xdv

2
d , (19)

where vu = hHui and vd = hHdi. Adding this condition
to Eq. (18), we can determine all the PQ charges up to
an overall normalization. We choose this normalization
by the condition

X� = 1 . (20)

By defining x ⌘ vu/vd the remaining charges in Eq. (18)
read
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2
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C. Scalar spectrum

To compute the scalar spectrum we expand the scalar
fields around the chargeless and CP-conserving vacuum
configuration
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d+i⌘0

d
p

2

!
, (23)

� =

 
�+
p

2
�++

v� + �0+i⌘0
�

p

2
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!
, (24)

� = V� +
�0 + i⌘0�p

2
, (25)

with vu, vd, v� and V� denoting the relevant (real) vac-
uum expectation values (VEVs). 2

The scalar spectrum of the model is detailed in Ap-
pendix A and the main features are discussed in Sect. V.
Here we just anticipate that the model features a DFSZ
invisible axion, with a tiny coupling to neutrinos, and its
SM singlet companion with a PQ scale mass. By invoking

2 While it is assumed that there exists a region of the scalar po-
tential parameters for which the absolute minimum preserves the
electric charge, it can be shown (see Sect. VD) that the potential
of Eq. (13) does not lead to spontaneous CP violation.
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The scalar spectrum of the model is detailed in Ap-
pendix A and the main features are discussed in Sect. V.
Here we just anticipate that the model features a DFSZ
invisible axion, with a tiny coupling to neutrinos, and its
SM singlet companion with a PQ scale mass. By invoking

2 While it is assumed that there exists a region of the scalar po-
tential parameters for which the absolute minimum preserves the
electric charge, it can be shown (see Sect. VD) that the potential
of Eq. (13) does not lead to spontaneous CP violation.
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In spite of the fundamental importance for the understanding of the electroweak symmetry breaking, the discovery
of what appears to be the long-sought Higgs boson still leaves many issues of the Standard Model (SM) of particle
interactions unaddressed. Laboratory and astrophysical observations give us an extremely detailed picture of massive
neutrino and lepton mixing which clearly indicate the need for physics beyond the SM. Dark matter is required to
account for more than 20% of the mass of the Universe, where antimatter is a very rare component. From a theoretical
point of view, the absence of new particles at the TeV scale raises the issue of the stability of the electroweak scale in
the presence of hypothetical new heavy states associated to, e.g., grand unification or other high-scale dynamics (if
nothing else gravity does).

In a recent paper [1] we attempted to show that most of these issues can be organically addressed in a minimal
renormalizable framework that just extends the Higgs sector of the SM. While providing a structural connection
among di↵erent open questions, the model naturally o↵ers a stable spectrum of exotic scalar states at the TeV scale,
thus opening the possibility of a test at the LHC.

The proposal in [1] extends the model discussed in [2, 3] which provided a connection between an invisible axion
à la Dine-Fischler-Srednicki-Zhitnitsky (DFSZ) [4, 5] and the one-loop generation of neutrino masses à la Zee [6, 7].
As explicit and potentially realistic realizations of such a scheme we surveyed in [1] three setups where the neutrino
mass arises at di↵erent loop orders, namely, at the tree level via Type-II seesaw [8–12], at one loop as in [13], and at
two loops as in the Zee-Babu model [14, 15], respectively.

Regardless of the presence of the large Peccei-Quinn (PQ) scale, in all variants of the scheme discussed in [1],
a natural and stable electroweak setup is obtained by invoking a decoupling behaviour of the scalar singlet field
responsible for the PQ symmetry breaking. All its interactions in the scalar potential (besides the self-interaction)
are scaled down by powers of the electroweak over the PQ scales in such a way that all non-singlet states acquire
weak-scale masses. This “ultraweak” setting of the singlet scalar interactions is in fact technically stable since the
decoupling of the singlet corresponds to an extended Poincaré symmetry of the action [2, 16].1

The presence of the invisible axion requires at least two Higgs doublets and a complex singlet field. One or more
additional scalars are then responsible for the generation of Majorana neutrino masses. The scalar spectra obtained
in [1] are naturally compatible with one light SM-like Higgs (a general discussion on the decoupling and alignment
limits in a two Higgs doublet context is found in [18]). On top of that, perturbative naturalness implies that the new
scalars should be within the reach of the LHC. As a fringe benefit of the extension of the scalar sector the stability of
the electroweak vacuum is expected to be improved with respect to the SM [19, 20] (for a recent overview see [21]).

Hence, a stable renormalizable and realistic extension of the SM is obtained that not only addresses the origin of
the neutrino masses and mixings but, at the same time, connects them to the presence of an invisible axion, a viable
dark matter candidate (at variance with the DFSZ model, in the current setup the axion entertains tiny couplings to
the neutrinos). These models, in their minimal realizations, do not exhibit additional sources of CP violation, thus
fostering the dynamical solution of the strong CP problem via the PQ mechanism [22].

In the present paper we investigate the embedding of such a PQ related neutrino mass framework into a classically
scale-invariant setup, exploiting the intriguing idea [23] that mass scales in nature may originate from quantum e↵ects.
Classical scale symmetry is explicitly broken by the renormalization of dimension four interactions. The logarithmic
dependence on the mass scales allows for large hierarchies in terms of order one ratios of the dimensionless Lagrangian
parameters, thus naturally protecting the fundamental mass scale of the theory from any large scale.

The conjecture that classical scale symmetry may protect the electroweak scale from large perturbative e↵ects
was pioneered in [24] (see [25, 26] for a recent reappraisal). At variance with the QCD-like strong dynamics, scale
invariance is broken by perturbative quantum loops that contribute to the stress-tensor trace anomaly with terms
proportional to the beta-functions of the dimensionless couplings (a pedagogical introduction to scale invariance is
found in [27], while its relation with conformal invariance is reviewed in [28]).

1
Comments on the role of gravity in such a setting can be found in [17].
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In spite of the fundamental importance for the understanding of the electroweak symmetry breaking, the discovery
of what appears to be the long-sought Higgs boson still leaves many issues of the Standard Model (SM) of particle
interactions unaddressed. Laboratory and astrophysical observations give us an extremely detailed picture of massive
neutrino and lepton mixing which clearly indicate the need for physics beyond the SM. Dark matter is required to
account for more than 20% of the mass of the Universe, where antimatter is a very rare component. From a theoretical
point of view, the absence of new particles at the TeV scale raises the issue of the stability of the electroweak scale in
the presence of hypothetical new heavy states associated to, e.g., grand unification or other high-scale dynamics (if
nothing else gravity does).

In a recent paper [1] we attempted to show that most of these issues can be organically addressed in a minimal
renormalizable framework that just extends the Higgs sector of the SM. While providing a structural connection
among di↵erent open questions, the model naturally o↵ers a stable spectrum of exotic scalar states at the TeV scale,
thus opening the possibility of a test at the LHC.

The proposal in [1] extends the model discussed in [2, 3] which provided a connection between an invisible axion
à la Dine-Fischler-Srednicki-Zhitnitsky (DFSZ) [4, 5] and the one-loop generation of neutrino masses à la Zee [6, 7].
As explicit and potentially realistic realizations of such a scheme we surveyed in [1] three setups where the neutrino
mass arises at di↵erent loop orders, namely, at the tree level via Type-II seesaw [8–12], at one loop as in [13], and at
two loops as in the Zee-Babu model [14, 15], respectively.

Regardless of the presence of the large Peccei-Quinn (PQ) scale, in all variants of the scheme discussed in [1],
a natural and stable electroweak setup is obtained by invoking a decoupling behaviour of the scalar singlet field
responsible for the PQ symmetry breaking. All its interactions in the scalar potential (besides the self-interaction)
are scaled down by powers of the electroweak over the PQ scales in such a way that all non-singlet states acquire
weak-scale masses. This “ultraweak” setting of the singlet scalar interactions is in fact technically stable since the
decoupling of the singlet corresponds to an extended Poincaré symmetry of the action [2, 16].1

The presence of the invisible axion requires at least two Higgs doublets and a complex singlet field. One or more
additional scalars are then responsible for the generation of Majorana neutrino masses. The scalar spectra obtained
in [1] are naturally compatible with one light SM-like Higgs (a general discussion on the decoupling and alignment
limits in a two Higgs doublet context is found in [18]). On top of that, perturbative naturalness implies that the new
scalars should be within the reach of the LHC. As a fringe benefit of the extension of the scalar sector the stability of
the electroweak vacuum is expected to be improved with respect to the SM [19, 20] (for a recent overview see [21]).

Hence, a stable renormalizable and realistic extension of the SM is obtained that not only addresses the origin of
the neutrino masses and mixings but, at the same time, connects them to the presence of an invisible axion, a viable
dark matter candidate (at variance with the DFSZ model, in the current setup the axion entertains tiny couplings to
the neutrinos). These models, in their minimal realizations, do not exhibit additional sources of CP violation, thus
fostering the dynamical solution of the strong CP problem via the PQ mechanism [22].

In the present paper we investigate the embedding of such a PQ related neutrino mass framework into a classically
scale-invariant setup, exploiting the intriguing idea [23] that mass scales in nature may originate from quantum e↵ects.
Classical scale symmetry is explicitly broken by the renormalization of dimension four interactions. The logarithmic
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We survey a few minimal scalar extensions of the standard electroweak model that provide a simple
setup for massive neutrinos in connection with an invisible axion. The presence of a chiral U(1)
à la Peccei-Quinn drives the pattern of Majorana neutrino masses while providing a dynamical
solution to the strong CP problem and an axion as a dark matter candidate. We paradigmatically
apply such a renormalizable framework to type-II seesaw and to two viable models for neutrino
oscillations where the neutrino masses arise at one and two loops, respectively. We comment on
the naturalness of the e↵ective setups as well as on their implications for vacuum stability and
electroweak baryogenesis.
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1INFN, Sezione di Trieste, SISSA, Via Bonomea 265, 34136 Trieste, Italy
2Dipartimento di Fisica, Università di Genova and INFN,

Sezione di Genova, Via Dodecaneso 33, 16159 Genova, Italy
3Faculty of Nuclear Sciences and Physical Engineering,

Czech Technical University in Prague, Brehová 7, 115 19 Praha 1, Czech Republic
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In spite of the fundamental importance for the understanding of the electroweak symmetry breaking, the discovery
of what appears to be the long-sought Higgs boson still leaves many issues of the Standard Model (SM) of particle
interactions unaddressed. Laboratory and astrophysical observations give us an extremely detailed picture of massive
neutrino and lepton mixing which clearly indicate the need for physics beyond the SM. Dark matter is required to
account for more than 20% of the mass of the Universe, where antimatter is a very rare component. From a theoretical
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1INFN, Sezione di Trieste, SISSA, Via Bonomea 265, 34136 Trieste, Italy
2Dipartimento di Fisica, Università di Genova and INFN,
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• New extra scalars can easily improve the stability of the EW vacuum
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• EW baryogenesis [work in progress]

- Strong 1st order phase transition (enhanced cubic term in the Higgs background field)
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Many known working examples: Inert doublet [Chowdhury, Nemevsek, Senjanovic, Zhang (2012)] 
Type-II seesaw triplet [AbdusSalam, Chowdhury (2014)], …

Gifts from light scalars
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• EW baryogenesis [work in progress]

- Strong 1st order phase transition (enhanced cubic term in the Higgs background field)
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- None of our tree-level minimal PQ-extended potentials violates CP

non-minimal PQ extended models ? [Geng, Jiang, Ng (1988), He, Volkas (1988)]

use   -term ≠ 0 in the early universe ? [Servant (2014)]
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The first LHC run has led to the discovery of a scalar
particle that looks much like the Higgs boson of the
SU(2)L ⌦U(1)Y electroweak standard model (SM). The
raising limits on exotic physics scales set a challenge to
the popular issue of naturalness [1], a paradigm that has
guided much of the beyond the SM modelling in the last
decades. This notwithstanding, neutrino oscillations and
dark matter call for physics beyond the standard sce-
nario. Baryon asymmetry calls for it as well while elec-
troweak vacuum stability may not be an issue in min-
imally extended scenarios [2]. We aim at discussing a
class of minimal extensions of the SM that account for
the aforementioned open issues. To this end we choose
to maintain the fermionic SM content as it stands and
consider only extensions of the scalar sector. Advantages
of this choice will be clear in the following. According
to that, the only tree-level realization of the dimension-
5 Weinberg operator (LLHH)/M for Majorana neutrino
masses is via the mediation of an SU(2)L scalar triplet of
hypercharge one. This is commonly known as the type-II
seesaw [3–7], Fig. 1a.

Many known working examples: Inert doublet [Chowdhury, Nemevsek, Senjanovic, Zhang (2012)] 
Type-II seesaw triplet [AbdusSalam, Chowdhury (2014)], …

Gifts from light scalars
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1 Introduction

The strong CP problem is elegantly solved by promoting the θ̄ parameter1 of QCD to a dynamical

field known as the axion [1, 2, 3, 4]. This is accomplished by introducing an anomalous PQ

symmetry that is spontaneously broken, yielding a Nambu-Goldstone boson whose potential is

generated non-perturbatively by QCD instantons. When this axion dynamically relaxes to the

minimum of its potential, the θ̄ parameter is effectively set to zero.

In order for this mechanism to succeed, however, the axion must originate from a PQ sym-

metry which is of extraordinarily high quality [5, 6, 7]. In particular, if the PQ symmetry is

spontaneously broken by a field φ at a scale f , then there will in general exist explicit PQ

violating, dimension n operators of the form

O!PQ = k
φn

Λn−4

SSB
−→ |k|

fn

Λn−4
cos(na + arg k), (1)

which can easily displace2 the minimum of the axion potential by more than θ̄ = 10−10 and

effectively reintroduce the strong CP problem (see figure 1). In the most optimistic scenario,

Λ = mPl is taken to be the Planck scale while f = 109 GeV is taken to be as small as possible

consistent with supernova constraints [8]. Even so, if |k| is of order unity then one requires n ≥ 10

to successfully solve the strong CP problem. Conversely, if the leading irrelevant operator, n = 5,

is to be adequately suppressed, then it is necessary that |k| < 10−40. Of course, the situation is

even more dire if the axion decay constant is larger or if the fundamental gravity scale is low.

It has been argued that global symmetry violating operators of this kind should be induced at

the Planck scale by quantum gravitational effects [9, 10, 11, 12, 13]. For instance, a virtual black

hole produced from some initial state of definite global charge will readily Hawking evaporate

into a state of differing global charge—integrating out such processes yields Planck-suppressed,

global symmetry violating operators at low energies.

Because these results arise from quantum gravity, it is natural to consider string theoretic

constructions in which non-perturbative violations of global symmetries are actually calculable.

In certain cases, one can identify PQ symmetries which are exact up to stringy instanton correc-

tions of order |k| ∼ e−S, where S is the string action evaluated on some background [14]. This

effectively reduces an extreme tuning to the logarithm of an extreme tuning.

While the stringy approach to PQ symmetry protection has its merits, it is important that

we fully explore the limits of purely field theoretic alternatives. This is the starting point of

the present work. In particular, we adopt the philosophy of the effective field theorist, which is

1Throughout this work, θ̄ will denote the physically observable strong CP phase, which includes the overall
phase of the colored fermion mass matrix.

2It is conceivable that arg k = −nθ̄, in which case the axion minimum is not displaced, but this would require
an incredible fine-tuning.

1

- for              and                   :
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à la Peccei-Quinn drives the pattern of Majorana neutrino masses while providing a dynamical
solution to the strong CP problem and an axion as a dark matter candidate. We paradigmatically
apply such a renormalizable framework to type-II seesaw and to two viable models for neutrino
oscillations where the neutrino masses arise at one and two loops, respectively. We comment on
the naturalness of the e↵ective setups as well as on their implications for vacuum stability and
electroweak baryogenesis.

PACS numbers: 12.60.Fr,14.60.Pq,14.80.Va

I. INTRODUCTION

⇤ = mPl (1)

f = 109 GeV (2)

✓̄ . 10�10 �! n � 10 (3)

⇠ = 0.05 (4)

⇥ (5)

Leff = LSM + ✓̄
↵s

8⇡
Gµ⌫

a G̃a
µ⌫ + ⇠

a

vPQ

↵s

8⇡
Gµ⌫

a G̃a
µ⌫ � 1

2
@µa@µa+ L(@µa, ) (6)

mq = 0 (7)

|✓̄| < 10�11 (8)

⇤ stefano.bertolini@sissa.it
† luca.di.luzio@ge.infn.it
‡ helena.kolesova@fjfi.cvut.cz

§ malinsky@ipnp.troja.m↵.cuni.cz

Massive neutrinos and invisible axion minimally connected

Stefano Bertolini,1, ⇤ Luca Di Luzio,2, † Helena Kolešová,3, 4, 5, ‡ and Michal Malinský4, §
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[Kamionkowski, March-Russell (1992), Kallosh, Linde, Linde, Susskind (1992), Holman et al. (1992)]

A threat to the PQ solution

- global charges can be eaten by black holes, which may subsequently evaporate

• Parametrizing explicit breaking by effective operators:

• “Folk’s theorem” about the non-existence of global symmetries in quantum gravity  
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[Bekenstein (1972), Zeldovich (1977)]



• Dual formulation of the axion allows to identify the source of gravitational breaking
[Kallosh, Linde, Linde, Susskind (1992), Dvali (2005)]

- gravitational anomaly produces a non-zero 
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- if the axion couples to the current               gravitational effects are absent
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[Dvali, Folkerts, Franca (2014)]

• Small neutrino mass disturbs the solution in a controlled way

• For            there is a further chiral current (                   ) with a gravitational anomaly

Massive neutrinos and invisible axion minimally connected

Stefano Bertolini,1, ⇤ Luca Di Luzio,2, † Helena Kolešová,3, 4, 5, ‡ and Michal Malinský4, §
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4Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics,

Charles University in Prague, V Holešovičkách 2, 180 00 Praha 8, Czech Republic
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5SISSA/ISAS, Via Bonomea 265, 34136 Trieste, Italy

We survey a few minimal scalar extensions of the standard electroweak model that provide a simple
setup for massive neutrinos in connection with an invisible axion. The presence of a chiral U(1)
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Axion-neutrino coupling
• PQ charges fixed up to a normalization (           and                         )
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where we employed the notation H̃u = i⌧2H
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u. Notice
that terms like H̃†
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lowed since the QCD anomaly of the PQ current requires
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are needed in order to assign a non-vanishing PQ
charge to the singlet � and to generate neutrino masses.
Notice that the simultaneous presence of �5, �6 and Y�

is needed to explicitly break lepton number. If any of the
couplings is missing, either lepton number is exact and
neutrinos are massless or lepton number is spontaneously
broken and the vacuum exhibits a majoron together with
a Wilczek-Weinberg axion [39]. As shown next, the po-
tential in Eq. (15) corresponds to a unique PQ charge
assignment that forbids among else the presence of tri-
linear interaction terms. The absence of cubic scalar in-
teractions, which characterizes the three models here dis-
cussed, paves the way to their embedding in a classically
scale invariant setup dynamically broken a la Coleman-
Weinberg. We shall comment on that in Sect. VI.

Finally, the couplings �5 and �6 can be set real by two
independent rephasings of the fields.

B. PQ charges

The invariants in Eq. (11) and Eq. (15) enforce the
following constraints on the PQ charges:
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Following [39, 52] we require the orthogonality of the hy-
percharge and axion currents. This leads to the relation

Xuv
2
u = Xdv

2
d , (21)

where vu = hHui and vd = hHdi. Adding this condition
to Eq. (20), we can determine all the PQ charges up to
an overall normalization. We choose this normalization
by the condition

X� = 1 . (22)

By defining x ⌘ vu/vd the remaining charges in Eq. (20)
read
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C. Scalar spectrum

To compute the scalar spectrum we expand the scalar
fields around the chargeless and CP-conserving vacuum
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X� = 1 . (22)

By defining x ⌘ vu/vd the remaining charges in Eq. (20)
read
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,
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. (23)

C. Scalar spectrum

To compute the scalar spectrum we expand the scalar
fields around the chargeless and CP-conserving vacuum
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where we employed the notation H̃u = i⌧2H
⇤

u. Notice
that terms like H̃†

uHdTr(�†�) or H̃†

u��†Hd are not al-
lowed since the QCD anomaly of the PQ current requires
Xu + Xd 6= 0. Moreover, H†
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|Hu,d|2Tr(�†�), so that only two invariants out of three
are linearly independent.
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are needed in order to assign a non-vanishing PQ
charge to the singlet � and to generate neutrino masses.
Notice that the simultaneous presence of �5, �6 and Y�

is needed to explicitly break lepton number. If any of the
couplings is missing, either lepton number is exact and
neutrinos are massless or lepton number is spontaneously
broken and the vacuum exhibits a majoron together with
a Wilczek-Weinberg axion [39]. As shown next, the po-
tential in Eq. (15) corresponds to a unique PQ charge
assignment that forbids among else the presence of tri-
linear interaction terms. The absence of cubic scalar in-
teractions, which characterizes the three models here dis-
cussed, paves the way to their embedding in a classically
scale invariant setup dynamically broken a la Coleman-
Weinberg. We shall comment on that in Sect. VI.

Finally, the couplings �5 and �6 can be set real by two
independent rephasings of the fields.
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The invariants in Eq. (11) and Eq. (15) enforce the
following constraints on the PQ charges:

�X` +Xe �Xd = 0 , (16)

2X` +X� = 0 , (17)

2X� �Xu �Xd = 0 , (18)

X� +Xu �X� �Xd = 0 . (19)

Solving in terms of Xu and Xd we get:

X` = �3Xu

4
+

Xd

4
, Xe = �3Xu

4
+

5Xd

4
,

X� =
3Xu

2
� Xd

2
, X� =

Xu

2
+

Xd

2
. (20)

Following [39, 52] we require the orthogonality of the hy-
percharge and axion currents. This leads to the relation

Xuv
2
u = Xdv

2
d , (21)

where vu = hHui and vd = hHdi. Adding this condition
to Eq. (20), we can determine all the PQ charges up to
an overall normalization. We choose this normalization
by the condition

X� = 1 . (22)

By defining x ⌘ vu/vd the remaining charges in Eq. (20)
read

Xu =
2

x2 + 1
, Xd =

2x2

x2 + 1
, X` =

x2 � 3

2(x2 + 1)
,

Xe =
5x2 � 3

2(x2 + 1)
, X� =

3� x2

x2 + 1
. (23)

C. Scalar spectrum

To compute the scalar spectrum we expand the scalar
fields around the chargeless and CP-conserving vacuum
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The first LHC run has led to the discovery of a scalar
particle that looks much like the Higgs boson of the
SU(2)L ⌦U(1)Y electroweak standard model (SM). The
raising limits on exotic physics scales set a challenge to
the popular issue of naturalness [1], a paradigm that has
guided much of the beyond the SM modelling in the last
decades. This notwithstanding, neutrino oscillations and
dark matter call for physics beyond the standard sce-
nario. Baryon asymmetry calls for it as well while elec-
troweak vacuum stability may not be an issue in min-
imally extended scenarios [2]. We aim at discussing a
class of minimal extensions of the SM that account for
the aforementioned open issues. To this end we choose
to maintain the fermionic SM content as it stands and
consider only extensions of the scalar sector. Advantages
of this choice will be clear in the following. According
to that, the only tree-level realization of the dimension-
5 Weinberg operator (LLHH)/M for Majorana neutrino
masses is via the mediation of an SU(2)L scalar triplet of
hypercharge one. This is commonly known as the type-II
seesaw [3–7], Fig. 1a.

At the radiative level an elegant and simple realiza-
tion of the same was provided long ago by Zee [8]; the
Weinberg operator is there obtained at one loop from
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is needed to explicitly break lepton number. If any of the
couplings is missing, either lepton number is exact and
neutrinos are massless or lepton number is spontaneously
broken and the vacuum exhibits a majoron together with
a Wilczek-Weinberg axion [39]. As shown next, the po-
tential in Eq. (15) corresponds to a unique PQ charge
assignment that forbids among else the presence of tri-
linear interaction terms. The absence of cubic scalar in-
teractions, which characterizes the three models here dis-
cussed, paves the way to their embedding in a classically
scale invariant setup dynamically broken a la Coleman-
Weinberg. We shall comment on that in Sect. VI.

Finally, the couplings �5 and �6 can be set real by two
independent rephasings of the fields.

B. PQ charges

The invariants in Eq. (11) and Eq. (15) enforce the
following constraints on the PQ charges:

�X` +Xe �Xd = 0 , (16)

2X` +X� = 0 , (17)

2X� �Xu �Xd = 0 , (18)
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Following [39, 52] we require the orthogonality of the hy-
percharge and axion currents. This leads to the relation

Xuv
2
u = Xdv

2
d , (21)

where vu = hHui and vd = hHdi. Adding this condition
to Eq. (20), we can determine all the PQ charges up to
an overall normalization. We choose this normalization
by the condition

X� = 1 . (22)

By defining x ⌘ vu/vd the remaining charges in Eq. (20)
read
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, Xd =

2x2

x2 + 1
, X` =

x2 � 3

2(x2 + 1)
,

Xe =
5x2 � 3

2(x2 + 1)
, X� =

3� x2

x2 + 1
. (23)

C. Scalar spectrum

To compute the scalar spectrum we expand the scalar
fields around the chargeless and CP-conserving vacuum

• With respect to DFSZ, an extra (tiny) coupling of the axion to neutrinos
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5SISSA/ISAS, Via Bonomea 265, 34136 Trieste, Italy

We survey a few minimal scalar extensions of the standard electroweak model that provide a simple
setup for massive neutrinos in connection with an invisible axion. The presence of a chiral U(1)
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The first LHC run has led to the discovery of a scalar
particle that looks much like the Higgs boson of the
SU(2)L ⌦U(1)Y electroweak standard model (SM). The
raising limits on exotic physics scales set a challenge to
the popular issue of naturalness [1], a paradigm that has
guided much of the beyond the SM modelling in the last
decades. This notwithstanding, neutrino oscillations and
dark matter call for physics beyond the standard sce-
nario. Baryon asymmetry calls for it as well while elec-
troweak vacuum stability may not be an issue in min-
imally extended scenarios [2]. We aim at discussing a
class of minimal extensions of the SM that account for
the aforementioned open issues. To this end we choose
to maintain the fermionic SM content as it stands and
consider only extensions of the scalar sector. Advantages
of this choice will be clear in the following. According
to that, the only tree-level realization of the dimension-
5 Weinberg operator (LLHH)/M for Majorana neutrino
masses is via the mediation of an SU(2)L scalar triplet of
hypercharge one. This is commonly known as the type-II
seesaw [3–7], Fig. 1a.

• Neutrinos might recouple (after EW decoupling) and leave an imprint in the CMB
[Hannestad, Raffelt (2005), …, Archidiacono Hannestad (2014)]

- Free-streaming requirement: 
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B. PQ charges

The invariants in Eq. (43) and Eq. (47) enforce the
following constraints on the PQ charges:

�X` +Xe �Xd = 0 , (48)

2X` +X� = 0 , (49)

2X� �Xu �Xd = 0 , (50)

X� +Xu �X� �Xd = 0 . (51)

Solving in terms of Xu and Xd we get:
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4
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4
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4
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2
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2
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Following [39, 52] we require the orthogonality of the hy-
percharge and axion currents. This leads to the relation

Xuv
2
u = Xdv

2
d , (53)

where vu = hHui and vd = hHdi. Adding this condition
to Eq. (52), we can determine all the PQ charges up to
an overall normalization. We choose this normalization
by the condition

X� = 1 . (54)

By defining x ⌘ vu/vd the remaining charges in Eq. (52)
read
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, X� =
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. (55)

C. Scalar spectrum

To compute the scalar spectrum we expand the scalar
fields around the chargeless and CP-conserving vacuum
configuration
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� = V� +
�0 + i⌘0�p

2
, (59)

with vu, vd, v� and V� denoting the relevant (real) vac-
uum expectation values (VEVs). 2

2 While it is assumed that there exists a region of the scalar po-
tential parameters for which the absolute minimum preserves the

FIG. 2. The tree-level “hug” diagram responsible for the
Majorana neutrino mass in the PQ extended type-II seesaw
model.

The scalar spectrum of the model is detailed in Ap-
pendix A and the main features are discussed in Sect. V.
Here we just anticipate that the model features a DFSZ
invisible axion, with a tiny coupling to neutrinos, and its
SM singlet companion with a PQ scale mass. By invoking
a technically natural ultraweak limit (see the discussion
in Sect. VA) such a heavy scalar is su�ciently decou-
pled from all the other physical scalar states that are
requested to live at the TeV scale thus preserving the ra-
diative stability of the light scalar spectrum. At the weak
scale the model allows for a SM-like Higgs boson; this,
together with a brief account of the relevant phenomeno-
logical constraints, shall be discussed in Sect. VC.

D. Neutrino masses

In the TII model, the neutrino masses are generated
through the tree-level diagram in Fig. 2.

Their expression is conveniently obtained by comput-
ing the (induced) VEV of the triplet. Let us hence con-
sider the projection of the scalar potential along the neu-
tral VEV components of Eqs. (56)–(59)
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+ v�-indep. terms . (60)

Given the phenomenological hierarchy V� � vu,d � v�,
the stationary condition with respect to v� is well ap-
proximated by

2M2
�v� + 2�6V�vuvd ⇡ 0 , (61)

where we defined the e↵ective mass parameter

M2
� = µ2
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d . (62)

electric charge, it can be shown (see Sect. VD) that the potential
of Eq. (47) does not lead to spontaneous CP violation.
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The scalar spectrum of the model is detailed in Ap-
pendix A and the main features are discussed in Sect. V.
Here we just anticipate that the model features a DFSZ
invisible axion, with a tiny coupling to neutrinos, and its
SM singlet companion with a PQ scale mass. By invoking
a technically natural ultraweak limit (see the discussion
in Sect. VA) such a heavy scalar is su�ciently decou-
pled from all the other physical scalar states that are
requested to live at the TeV scale thus preserving the ra-
diative stability of the light scalar spectrum. At the weak
scale the model allows for a SM-like Higgs boson; this,
together with a brief account of the relevant phenomeno-
logical constraints, shall be discussed in Sect. VC.

D. Neutrino masses

In the TII model, the neutrino masses are generated
through the tree-level diagram in Fig. 2.

Their expression is conveniently obtained by comput-
ing the (induced) VEV of the triplet. Let us hence con-
sider the projection of the scalar potential along the neu-
tral VEV components of Eqs. (56)–(59)
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the stationary condition with respect to v� is well ap-
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electric charge, it can be shown (see Sect. VD) that the potential
of Eq. (47) does not lead to spontaneous CP violation.

6

B. PQ charges

The invariants in Eq. (43) and Eq. (47) enforce the
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Following [39, 52] we require the orthogonality of the hy-
percharge and axion currents. This leads to the relation
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2
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where vu = hHui and vd = hHdi. Adding this condition
to Eq. (52), we can determine all the PQ charges up to
an overall normalization. We choose this normalization
by the condition
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C. Scalar spectrum

To compute the scalar spectrum we expand the scalar
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ii) A real pseudoscalar SM singlet ⌘0�:

M2
⌘0
�
= 0 , (A3)

which is the zero-mass mode of the PQ-breaking field
corresponding to the axion.
iii) A complex triplet �:

M2
� = ��3V

2
� + µ2

� . (A4)

iv) Complex doublets Hu and Hd:

M2
H =

 
�13V

2
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1 �5V
2
�

�5V
2
� �23V

2
� � µ2

2

!
; (A5)

here M2
H is written in the (H⇤

u, Hd) basis (column in-
dices). Eq. (A5) is diagonalized by an orthogonal trans-

formation
 

Ĥ⇤
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� sin↵ cos↵

! 
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u
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!
, (A6)

where

tan 2↵ =
2�5V

2
�

(�13 � �23)V 2
� � µ2

1 + µ2
2

. (A7)

The corresponding eigenvalues then read

2M2
u,d = (�13 + �23)V

2
� � µ2

1 � µ2
2

±
q
((�13 � �23)V 2

� � µ2
1 + µ2

2)
2
+ 4�2

5V
4
� . (A8)

2. vu,d,� 6= 0 case

By plugging Eqs. (56)–(59) into the expression of the
scalar potential in Eq. (47), we obtain the stationarity
equations in the form

0 =
@ hVTIIi
@vu

= 2vu
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2
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2
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�
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2
� , (A9)
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� , (A10)
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�
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� + ��1v

2
u + (��2 + �8)v

2
d + ��3V

2
� + µ2

�

�
+ 2�6V�vuvd . (A12)

The spectrum is then obtained by expanding the scalar potential up to the second order in the fields of Eqs. (56)–
(59), around the vacuum configuration given by the above stationarity equations. This yields:

i) Neutral scalars (h0
u, h

0
d,�

0, �0):

M2
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0

BBB@
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�6vuvd + 2��3v�V� 4 (�9 + ��4) v2� � �6V�vdvd/v�

1

CCCA
, (A13)

where Rank M2
S = 4. The exact form of the eigenvalues is quite cumbersome. However, the required hierarchy

v� ⌧ vu, vd ⌧ V� allows us to compute the eigenvalues perturbatively. Taking into account the scaling of the
couplings in Eq. (101), we define �6 ⌘ c6

v�
V�

, �5 ⌘ c5
v2

V 2
�
, �i3 ⌘ ci3

v2

V 2
�

with c5, c6, ci3 being O(1) coe�cients. Hence,

the leading contribution to the neutral scalar mass matrix (given by the terms & O(v2)) reads

M
2(LO)
S =

0

BBB@

4�1v
2
u + c5

vdv
2

vu
c5v

2 + 2�12vuvd 0 0

c5v
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2
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2
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0 0

0 0 4�3V
2
� 0

0 0 0 �c6vuvd

1
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.

- Neutral pseudo-scalars                   : Z0 GB + axion + 2 neutral pseudo-scalars
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It is now clear that, at the leading order in the VEV ratio expansion, the eigenvalues of the scalar mass matrix read

{O(v2), O(v2), 4�3V
2
� , �vuvdc6} (A14)

and that there is no mixing of the singlet and triplet fields with the SU(2)L doublets. The first NLO corrections to the
mass matrix are of the order of v�v, which implies, for instance, that the mixing between the doublet and the triplet
components is of the order of v�/v. One further finds that the first corrections to the eigenvalues are only of the order
of v2� and that the mixing with the singlet component is of the order of v/V�. For large tan� = vu/vd the two doublet
eigenvalues are approximately 4�1v

2 and c5v
2 tan�, while for the mixing angle ↵ one obtains tan↵ ⇡ cot� ⌧ 1. In

this limit the lightest doublet scalar behaves as the standard model Higgs boson.

ii) Neutral pseudo-scalars (⌘0u, ⌘
0
d, ⌘

0
�, ⌘

0
� ):

M2
PS =

0

BBB@

(�5V� � �6v�)V�vd/vu (�5V� + �6v�)V� (2�5V� + �6v�) vd ��6V�vd
(�5V� + �6v�)V� (�5V� � �6v�)V�vu/vd (2�5V� � �6v�) vu �6V�vu
(2�5V� + �6v�) vd (2�5V� � �6v�) vu 4�5vuvd � �6v�vuvd/V� �6vuvd

��6V�vd �6V�vu �6vuvd ��6V�vuvd/v�

1

CCCA
(A15)

is a Rank = 2 matrix which implies the existence of two zero modes, one of them being the would-be Goldstone mode
associated with the Z boson and the other corresponding to the axion that acquires mass by non-perturbative QCD
e↵ects. Even though the eigenvalues can be given in a closed form, it is su�cient to report the LO result

⇢
0,

v4

vuvd
c5, 0,�vuvdc6

�
, (A16)

where the entries correspond, consecutively, to the pair of SU(2)L (mostly) doublet components, the singlet and the
triplet. The zeros are exact (at the perturbative level), while the other entries receive corrections at most of the order
of v2�. The mixing among the doublet and triplet components is again found to be of the order of v�/v.

iii) Singly-charged scalars: (h+
u , h

+
d , �

+)
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+ =
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2
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2
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p
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2
d

2 � �6V�vdvu/v�

1
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(A17)
is again of Rank 2, which is related to the existence of a would-be Goldstone mode associated to the W boson. In
analogy with the PS case, the eigenvalues read at LO

⇢
0,�4v

2 + c5
v4

vuvd
,�c6vuvd +

1

2

�
�7v

2
u + �8v

2
d

��
, (A18)

and the mixing of the doublet and triplet components is suppressed by the v�/v ratio.

iv) Doubly-charged scalar �++:

M2
++ = �7v

2
u � �8v

2
d � 2�9v

2
� � �6vuvdV�/v� ⇡ �7v

2
u � �8v

2
d � c6vuvd . (A19)

By comparing (A19) with (A14), (A16) and (A18) one recognizes the weak mass splitting among the triplet components
induced, at the leading order, by the �7 and �8 terms.
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is a Rank = 2 matrix which implies the existence of two zero modes, one of them being the would-be Goldstone mode
associated with the Z boson and the other corresponding to the axion that acquires mass by non-perturbative QCD
e↵ects. Even though the eigenvalues can be given in a closed form, it is su�cient to report the LO result
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where the entries correspond, consecutively, to the pair of SU(2)L (mostly) doublet components, the singlet and the
triplet. The zeros are exact (at the perturbative level), while the other entries receive corrections at most of the order
of v2�. The mixing among the doublet and triplet components is again found to be of the order of v�/v.
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is again of Rank 2, which is related to the existence of a would-be Goldstone mode associated to the W boson. In
analogy with the PS case, the eigenvalues read at LO
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and the mixing of the doublet and triplet components is suppressed by the v�/v ratio.

iv) Doubly-charged scalar �++:

M2
++ = �7v

2
u � �8v

2
d � 2�9v

2
� � �6vuvdV�/v� ⇡ �7v

2
u � �8v

2
d � c6vuvd . (A19)

By comparing (A19) with (A14), (A16) and (A18) one recognizes the weak mass splitting among the triplet components
induced, at the leading order, by the �7 and �8 terms.
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à la Peccei-Quinn drives the pattern of Majorana neutrino masses while providing a dynamical
solution to the strong CP problem and an axion as a dark matter candidate. We paradigmatically
apply such a renormalizable framework to type-II seesaw and to two viable models for neutrino
oscillations where the neutrino masses arise at one and two loops, respectively. We comment on
the naturalness of the e↵ective setups as well as on their implications for vacuum stability and
electroweak baryogenesis.

PACS numbers: 12.60.Fr,14.60.Pq,14.80.Va

I. INTRODUCTION

TeV (1)

��5 / �5(. . .) (2)

��6 / �6(. . .) (3)

��13 / �13(. . .) + �23(. . .) + ��3(. . .) + 8�2
5 + 3�2

6 (4)

��23 / �13(. . .) + �23(. . .) + ��3(. . .) + 8�2
5 + 3�2

6 (5)

���3 / �13(. . .) + �23(. . .) + ��3(. . .) + 2�2
6 (6)

@µT
µ⌫
/� = @µT

µ⌫
� = 0 (7)

⇤ stefano.bertolini@sissa.it
† luca.di.luzio@ge.infn.it
‡ helena.kolesova@fjfi.cvut.cz
§ malinsky@ipnp.troja.m↵.cuni.cz

S =

Z
d4xL/�(x) +

Z
d4x0L�(x

0) (8)

All � 6= 0 =) [U(1)PQ (9)

�6 = 0 =) [U(1)PQ ⌦ U(1)L (10)

Massive neutrinos and invisible axion minimally connected

Stefano Bertolini,1, ⇤ Luca Di Luzio,2, † Helena Kolešová,3, 4, 5, ‡ and Michal Malinský4, §
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In spite of the fundamental importance for the understanding of the electroweak symmetry breaking, the discovery
of what appears to be the long-sought Higgs boson still leaves many issues of the Standard Model (SM) of particle
interactions unaddressed. Laboratory and astrophysical observations give us an extremely detailed picture of massive
neutrino and lepton mixing which clearly indicate the need for physics beyond the SM. Dark matter is required to
account for more than 20% of the mass of the Universe, where antimatter is a very rare component. From a theoretical
point of view, the absence of new particles at the TeV scale raises the issue of the stability of the electroweak scale in
the presence of hypothetical new heavy states associated to, e.g., grand unification or other high-scale dynamics (if
nothing else gravity does).

In a recent paper [1] we attempted to show that most of these issues can be organically addressed in a minimal
renormalizable framework that just extends the Higgs sector of the SM. While providing a structural connection
among di↵erent open questions, the model naturally o↵ers a stable spectrum of exotic scalar states at the TeV scale,
thus opening the possibility of a test at the LHC.

The proposal in [1] extends the model discussed in [2, 3] which provided a connection between an invisible axion
à la Dine-Fischler-Srednicki-Zhitnitsky (DFSZ) [4, 5] and the one-loop generation of neutrino masses à la Zee [6, 7].
As explicit and potentially realistic realizations of such a scheme we surveyed in [1] three setups where the neutrino
mass arises at di↵erent loop orders, namely, at the tree level via Type-II seesaw [8–12], at one loop as in [13], and at
two loops as in the Zee-Babu model [14, 15], respectively.

Regardless of the presence of the large Peccei-Quinn (PQ) scale, in all variants of the scheme discussed in [1],
a natural and stable electroweak setup is obtained by invoking a decoupling behaviour of the scalar singlet field
responsible for the PQ symmetry breaking. All its interactions in the scalar potential (besides the self-interaction)
are scaled down by powers of the electroweak over the PQ scales in such a way that all non-singlet states acquire
weak-scale masses. This “ultraweak” setting of the singlet scalar interactions is in fact technically stable since the
decoupling of the singlet corresponds to an extended Poincaré symmetry of the action [2, 16].1

The presence of the invisible axion requires at least two Higgs doublets and a complex singlet field. One or more
additional scalars are then responsible for the generation of Majorana neutrino masses. The scalar spectra obtained
in [1] are naturally compatible with one light SM-like Higgs (a general discussion on the decoupling and alignment
limits in a two Higgs doublet context is found in [18]). On top of that, perturbative naturalness implies that the new

1
Comments on the role of gravity in such a setting can be found in [17].
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In spite of the fundamental importance for the understanding of the electroweak symmetry breaking, the discovery
of what appears to be the long-sought Higgs boson still leaves many issues of the Standard Model (SM) of particle
interactions unaddressed. Laboratory and astrophysical observations give us an extremely detailed picture of massive
neutrino and lepton mixing which clearly indicate the need for physics beyond the SM. Dark matter is required to
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Quartic coupling Electroweak-scale value

�1 0.15

�2 = �12 = �4 0.08

�7 = �8 = �9 0.08

��1 = ��2 = ��4 0.08

�5/c5 3.0⇥ 10�14
⇣

109 GeV
V�

⌘2

�6/c6 1.0⇥ 10�9
�

v�
GeV

� ⇣
109 GeV

V�

⌘

�13(⇤) 1.3⇥ 10�15

�23(⇤) 9.1⇥ 10�14

��3(⇤) 6.2⇥ 10�15

�3(⇤) 1.1⇥ 10�28

TABLE II. Benchmark values of quartic couplings at the electroweak scale v ⇡ 174 GeV. The starred couplings are related
by the vacuum to the other ones and their reference values are given for tan� = 3.1, c5 = �c6 = 1 and V� = 109 GeV
(v� < 1 GeV). As discussed in the text the tiny scale of the ultraweak couplings is protected by symmetry and it is therefore
technically natural.

tan� c5 mh[GeV] mH [GeV] mA[GeV] mH+ [GeV]

3.1 1.0 125 324 322 326

3.0 2.0 125 451 449 452

3.0 5.0 125 711 710 712

TABLE III. Typical values of the doublet scalar masses for the values of the quartic couplings in Table II when varying tan�
and c5 within the allowed region in Fig. 2.

required by the CW mechanism.
In Table III and Table IV typical mass spectra of the scalar fields are displayed. The mass scale of the exotic doublet

and triplet states is controlled by c5 and c6, respectively. The large value of c6 which drives the triplet masses does
not a↵ect neither the stability of the �6 coupling (which, alike �5, is multiplicatively renormalized), nor perturbativity
since �6 is ultraweak. Rather, as for c5, it is a measure of the naturalness of the setup. Roughly speaking, the degree
of fine tuning related to the stability of the lightest Higgs mass against radiative corrections induced by the scalar
triplet states is proportional to the square root of |c6|.

This analysis allows us to conclude that the model can accommodate all the present experimental constraints [40–
42], while maintaining, as we will shortly detail, vacuum stability and absence of Landau poles up to the Planck scale.
Indeed, as already mentioned, among all the Higgs doublet couplings, �1 takes the largest value in order to avoid the
vacuum instability due to the large renormalization e↵ect induced by the top quark. The smaller values chosen for
the other couplings then ensure the absence of Landau poles below the Planck scale.

A few comments on the pattern of the scalar couplings are in order. Among the ultraweak couplings that, as a
set, renormalize multiplicatively, a large hierarchy may appear with respect to �6 (it actually depends on the value
of the triplet VEV which is bound to be smaller than about 1 GeV). On the other hand, this hierarchy does not
destabilize the ultraweak couplings as long as the size of �6 is of the order of the square root of the other ultraweak
couplings or smaller. This is a consequence of the fact that the �6 interaction involves four di↵erent scalar multiplets
and therefore a↵ects the renormalization of the other couplings quadratically at one loop (see Fig. 5). In terms of the
rescaled coupling c6 such a condition can be conservatively written as

|c6| < v

v�
, (48)

independently on the PQ scale, V�. Depending on the actual value of v� < 1 GeV, stability of the ultraweak setup
is maintained even in the presence of very large values of c6 that, indeed, may be needed by the heavy triplet states.

Finally, �5 and �6 are individually multiplicatively renormalized since lepton number is restored when one of them
vanishes. In the limit c5 ! 0 there is a PQ charge assignment that leaves the singlet scalar carrying only the lepton
number. We thus recover at the tree level two massless pseudo-scalar states: an invisible Majoron and a weak-scale
axion. In the limit c6 ! 0 lepton number is restored and it remains unbroken as there is no induced triplet VEV. From
the inspection of the triplet mass spectrum we observe the vanishing of the mass of the neutral triplet components,
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where v2 = v2u + v2d. The reference scaling of the singlet couplings is dictated by the requirement that the physical
weakly interacting scalars have weak-scale masses. It is convenient to introduce the rescaled couplings c� as
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v2
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, �6 ⌘ c6
v�
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. (20)
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V 2
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This setting is at the origin of the hierarchy between the PQ and EW scales and the stability of the Higgs mass,
thus making the setup insensitive to the large PQ scale. The limit �i3,�5,�6 ! 0 is associated with the emergence of
an additional Poincaré symmetry of the action [2, 16] (see [17] for a recent reassessment) which makes the ultraweak
limit perturbatively stable. It is readily verified that the renormalization of the couplings connecting the “light” and
“heavy” sectors is, as a set, multiplicative (the relevant beta functions exhibit a fixed point for vanishing couplings,
as it is verified from inspection of the one-loop beta coe�cients in Appendix B). Note that the hierarchy among the
ultraweak couplings in Eq. (19) is stable since �2

6 ⌧ �i3. The couplings �5 and �6 are themselves multiplicatively
renormalized since lepton number is restored when one of them is vanishing.

The stronger scaling pattern of �3
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is required by the Coleman-Weinberg (CW) mechanism in order to be e↵ective along the singlet direction, so that
the PQ scale is obtained by dimensional transmutation [23]. This is also a renormalization safe assumption since the
limit �i3,�5,�6,�3 ! 0 is associated with the emergence of a shift symmetry of the non-interacting scalar singlet [29].
These considerations hold as long as we neglect gravity. For a brief discussion of gravity induced e↵ects we refer to
[1] and references therein.

C. CW potential and the vacuum configuration

The generation of the electroweak breaking vacuum via the CW mechanism [23] was shown to require a very light
Higgs mass, of about 10 GeV [23, 32]. In this paper, analogously to the proposal of [29], we provide a realistic setup
where quantum correction are responsible for the generation of the PQ scale. This leads, as we will see, to a very
light neutral scalar acting as a pseudo-dilaton, still phenomenologically viable. The hierarchy between the PQ and
the electroweak scale is ensured by the technically natural ultraweak limit on the singlet couplings to the other scalar
fields [1, 2, 16], as stated in Eq. (19).

To this end the relevant one-loop CW potential in the MS scheme can be written as
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where �̄ denotes a spacetime-independent classical field and the trace is over the tree-level mass matrices in the shifted
� ! �̄ + � theory,
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where the vector � stands for the whole set of the real fields in the model. In our case the leading contributions to
the e↵ective potential in the �-field direction read (from now on we drop the bar symbol over �)
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where v2 = v2u + v2d. The reference scaling of the singlet couplings is dictated by the requirement that the physical
weakly interacting scalars have weak-scale masses. It is convenient to introduce the rescaled couplings c� as

�i3,5 ⌘ ci3,5
v2

V 2
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, �6 ⌘ c6
v�
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. (20)
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(21)

This setting is at the origin of the hierarchy between the PQ and EW scales and the stability of the Higgs mass,
thus making the setup insensitive to the large PQ scale. The limit �i3,�5,�6 ! 0 is associated with the emergence of
an additional Poincaré symmetry of the action [2, 16] (see [17] for a recent reassessment) which makes the ultraweak
limit perturbatively stable. It is readily verified that the renormalization of the couplings connecting the “light” and
“heavy” sectors is, as a set, multiplicative (the relevant beta functions exhibit a fixed point for vanishing couplings,
as it is verified from inspection of the one-loop beta coe�cients in Appendix B). Note that the hierarchy among the
ultraweak couplings in Eq. (19) is stable since �2

6 ⌧ �i3. The couplings �5 and �6 are themselves multiplicatively
renormalized since lepton number is restored when one of them is vanishing.
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is required by the Coleman-Weinberg (CW) mechanism in order to be e↵ective along the singlet direction, so that
the PQ scale is obtained by dimensional transmutation [23]. This is also a renormalization safe assumption since the
limit �i3,�5,�6,�3 ! 0 is associated with the emergence of a shift symmetry of the non-interacting scalar singlet [29].
These considerations hold as long as we neglect gravity. For a brief discussion of gravity induced e↵ects we refer to
[1] and references therein.

C. CW potential and the vacuum configuration

The generation of the electroweak breaking vacuum via the CW mechanism [23] was shown to require a very light
Higgs mass, of about 10 GeV [23, 32]. In this paper, analogously to the proposal of [29], we provide a realistic setup
where quantum correction are responsible for the generation of the PQ scale. This leads, as we will see, to a very
light neutral scalar acting as a pseudo-dilaton, still phenomenologically viable. The hierarchy between the PQ and
the electroweak scale is ensured by the technically natural ultraweak limit on the singlet couplings to the other scalar
fields [1, 2, 16], as stated in Eq. (19).

To this end the relevant one-loop CW potential in the MS scheme can be written as
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where �̄ denotes a spacetime-independent classical field and the trace is over the tree-level mass matrices in the shifted
� ! �̄ + � theory,
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where the vector � stands for the whole set of the real fields in the model. In our case the leading contributions to
the e↵ective potential in the �-field direction read (from now on we drop the bar symbol over �)
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I. INTRODUCTION

v� ⌧ v (1)

v� < 1 GeV (2)

c5 > 1 (3)

. 1 keV (4)

125 GeV (5)

h (6)

H,�S , A,�A, H
+,�+,�++ (7)

�(v0) = �4�(v0) (8)

v0 = Me�1/4 (9)
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(12)

x = vu/vd (13)

In spite of the fundamental importance for the understanding of the electroweak symmetry breaking, the discovery
of what appears to be the long-sought Higgs boson still leaves many issues of the Standard Model (SM) of particle
interactions unaddressed. Laboratory and astrophysical observations give us an extremely detailed picture of massive
neutrino and lepton mixing which clearly indicate the need for physics beyond the SM. Dark matter is required to
account for more than 20% of the mass of the Universe, where antimatter is a very rare component. From a theoretical
point of view, the absence of new particles at the TeV scale raises the issue of the stability of the electroweak scale in
the presence of hypothetical new heavy states associated to, e.g., grand unification or other high-scale dynamics (if
nothing else gravity does).

- A benchmark point: 
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Quartic coupling Electroweak-scale value

�1 0.15

�2 = �12 = �4 0.08

�7 = �8 = �9 0.08

��1 = ��2 = ��4 0.08

�5/c5 3.0⇥ 10�14
⇣

109 GeV
V�

⌘2

�6/c6 1.0⇥ 10�9
�

v�
GeV

� ⇣
109 GeV

V�

⌘

�13(⇤) 1.3⇥ 10�15

�23(⇤) 9.1⇥ 10�14

��3(⇤) 6.2⇥ 10�15

�3(⇤) 1.1⇥ 10�28

TABLE II. Benchmark values of quartic couplings at the electroweak scale v ⇡ 174 GeV. The starred couplings are related
by the vacuum to the other ones and their reference values are given for tan� = 3.1, c5 = �c6 = 1 and V� = 109 GeV
(v� < 1 GeV). As discussed in the text the tiny scale of the ultraweak couplings is protected by symmetry and it is therefore
technically natural.

tan� c5 mh[GeV] mH [GeV] mA[GeV] mH+ [GeV]

3.1 1.0 125 324 322 326

3.0 2.0 125 451 449 452

3.0 5.0 125 711 710 712

TABLE III. Typical values of the doublet scalar masses for the values of the quartic couplings in Table II when varying tan�
and c5 within the allowed region in Fig. 2.

required by the CW mechanism.
In Table III and Table IV typical mass spectra of the scalar fields are displayed. The mass scale of the exotic doublet

and triplet states is controlled by c5 and c6, respectively. The large value of c6 which drives the triplet masses does
not a↵ect neither the stability of the �6 coupling (which, alike �5, is multiplicatively renormalized), nor perturbativity
since �6 is ultraweak. Rather, as for c5, it is a measure of the naturalness of the setup. Roughly speaking, the degree
of fine tuning related to the stability of the lightest Higgs mass against radiative corrections induced by the scalar
triplet states is proportional to the square root of |c6|.

This analysis allows us to conclude that the model can accommodate all the present experimental constraints [40–
42], while maintaining, as we will shortly detail, vacuum stability and absence of Landau poles up to the Planck scale.
Indeed, as already mentioned, among all the Higgs doublet couplings, �1 takes the largest value in order to avoid the
vacuum instability due to the large renormalization e↵ect induced by the top quark. The smaller values chosen for
the other couplings then ensure the absence of Landau poles below the Planck scale.

A few comments on the pattern of the scalar couplings are in order. Among the ultraweak couplings that, as a
set, renormalize multiplicatively, a large hierarchy may appear with respect to �6 (it actually depends on the value
of the triplet VEV which is bound to be smaller than about 1 GeV). On the other hand, this hierarchy does not
destabilize the ultraweak couplings as long as the size of �6 is of the order of the square root of the other ultraweak
couplings or smaller. This is a consequence of the fact that the �6 interaction involves four di↵erent scalar multiplets
and therefore a↵ects the renormalization of the other couplings quadratically at one loop (see Fig. 5). In terms of the
rescaled coupling c6 such a condition can be conservatively written as

|c6| < v

v�
, (48)

independently on the PQ scale, V�. Depending on the actual value of v� < 1 GeV, stability of the ultraweak setup
is maintained even in the presence of very large values of c6 that, indeed, may be needed by the heavy triplet states.

Finally, �5 and �6 are individually multiplicatively renormalized since lepton number is restored when one of them
vanishes. In the limit c5 ! 0 there is a PQ charge assignment that leaves the singlet scalar carrying only the lepton
number. We thus recover at the tree level two massless pseudo-scalar states: an invisible Majoron and a weak-scale
axion. In the limit c6 ! 0 lepton number is restored and it remains unbroken as there is no induced triplet VEV. From
the inspection of the triplet mass spectrum we observe the vanishing of the mass of the neutral triplet components,

6

where v2 = v2u + v2d. The reference scaling of the singlet couplings is dictated by the requirement that the physical
weakly interacting scalars have weak-scale masses. It is convenient to introduce the rescaled couplings c� as

�i3,5 ⌘ ci3,5
v2

V 2
�

, �6 ⌘ c6
v�
V�

. (20)

�5 ⌘ c5
v2

V 2
�

�6 ⌘ c6
v�
V�

(21)

This setting is at the origin of the hierarchy between the PQ and EW scales and the stability of the Higgs mass,
thus making the setup insensitive to the large PQ scale. The limit �i3,�5,�6 ! 0 is associated with the emergence of
an additional Poincaré symmetry of the action [2, 16] (see [17] for a recent reassessment) which makes the ultraweak
limit perturbatively stable. It is readily verified that the renormalization of the couplings connecting the “light” and
“heavy” sectors is, as a set, multiplicative (the relevant beta functions exhibit a fixed point for vanishing couplings,
as it is verified from inspection of the one-loop beta coe�cients in Appendix B). Note that the hierarchy among the
ultraweak couplings in Eq. (19) is stable since �2

6 ⌧ �i3. The couplings �5 and �6 are themselves multiplicatively
renormalized since lepton number is restored when one of them is vanishing.

The stronger scaling pattern of �3
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is required by the Coleman-Weinberg (CW) mechanism in order to be e↵ective along the singlet direction, so that
the PQ scale is obtained by dimensional transmutation [23]. This is also a renormalization safe assumption since the
limit �i3,�5,�6,�3 ! 0 is associated with the emergence of a shift symmetry of the non-interacting scalar singlet [29].
These considerations hold as long as we neglect gravity. For a brief discussion of gravity induced e↵ects we refer to
[1] and references therein.

C. CW potential and the vacuum configuration

The generation of the electroweak breaking vacuum via the CW mechanism [23] was shown to require a very light
Higgs mass, of about 10 GeV [23, 32]. In this paper, analogously to the proposal of [29], we provide a realistic setup
where quantum correction are responsible for the generation of the PQ scale. This leads, as we will see, to a very
light neutral scalar acting as a pseudo-dilaton, still phenomenologically viable. The hierarchy between the PQ and
the electroweak scale is ensured by the technically natural ultraweak limit on the singlet couplings to the other scalar
fields [1, 2, 16], as stated in Eq. (19).

To this end the relevant one-loop CW potential in the MS scheme can be written as
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1
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where �̄ denotes a spacetime-independent classical field and the trace is over the tree-level mass matrices in the shifted
� ! �̄ + � theory,
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where the vector � stands for the whole set of the real fields in the model. In our case the leading contributions to
the e↵ective potential in the �-field direction read (from now on we drop the bar symbol over �)
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1

64⇡2



4�2
+|�|4

✓

ln
�+|�|2
µ2

� 3

2

◆

+

4�2
�

|�|4
✓

ln
�
�

|�|2
µ2

� 3

2

◆

+

6�2
�3|�|4

✓

ln
��3|�|2

µ2
� 3

2

◆�

, (25)

6

where v2 = v2u + v2d. The reference scaling of the singlet couplings is dictated by the requirement that the physical
weakly interacting scalars have weak-scale masses. It is convenient to introduce the rescaled couplings c� as

�i3,5 ⌘ ci3,5
v2

V 2
�

, �6 ⌘ c6
v�
V�

. (20)

�5 ⌘ c5
v2

V 2
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v�
V�

(21)

This setting is at the origin of the hierarchy between the PQ and EW scales and the stability of the Higgs mass,
thus making the setup insensitive to the large PQ scale. The limit �i3,�5,�6 ! 0 is associated with the emergence of
an additional Poincaré symmetry of the action [2, 16] (see [17] for a recent reassessment) which makes the ultraweak
limit perturbatively stable. It is readily verified that the renormalization of the couplings connecting the “light” and
“heavy” sectors is, as a set, multiplicative (the relevant beta functions exhibit a fixed point for vanishing couplings,
as it is verified from inspection of the one-loop beta coe�cients in Appendix B). Note that the hierarchy among the
ultraweak couplings in Eq. (19) is stable since �2

6 ⌧ �i3. The couplings �5 and �6 are themselves multiplicatively
renormalized since lepton number is restored when one of them is vanishing.
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is required by the Coleman-Weinberg (CW) mechanism in order to be e↵ective along the singlet direction, so that
the PQ scale is obtained by dimensional transmutation [23]. This is also a renormalization safe assumption since the
limit �i3,�5,�6,�3 ! 0 is associated with the emergence of a shift symmetry of the non-interacting scalar singlet [29].
These considerations hold as long as we neglect gravity. For a brief discussion of gravity induced e↵ects we refer to
[1] and references therein.

C. CW potential and the vacuum configuration

The generation of the electroweak breaking vacuum via the CW mechanism [23] was shown to require a very light
Higgs mass, of about 10 GeV [23, 32]. In this paper, analogously to the proposal of [29], we provide a realistic setup
where quantum correction are responsible for the generation of the PQ scale. This leads, as we will see, to a very
light neutral scalar acting as a pseudo-dilaton, still phenomenologically viable. The hierarchy between the PQ and
the electroweak scale is ensured by the technically natural ultraweak limit on the singlet couplings to the other scalar
fields [1, 2, 16], as stated in Eq. (19).

To this end the relevant one-loop CW potential in the MS scheme can be written as

V1(�̄) =
1
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where �̄ denotes a spacetime-independent classical field and the trace is over the tree-level mass matrices in the shifted
� ! �̄ + � theory,
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where the vector � stands for the whole set of the real fields in the model. In our case the leading contributions to
the e↵ective potential in the �-field direction read (from now on we drop the bar symbol over �)
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c5 > 1 (3)
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In spite of the fundamental importance for the understanding of the electroweak symmetry breaking, the discovery
of what appears to be the long-sought Higgs boson still leaves many issues of the Standard Model (SM) of particle
interactions unaddressed. Laboratory and astrophysical observations give us an extremely detailed picture of massive
neutrino and lepton mixing which clearly indicate the need for physics beyond the SM. Dark matter is required to
account for more than 20% of the mass of the Universe, where antimatter is a very rare component. From a theoretical
point of view, the absence of new particles at the TeV scale raises the issue of the stability of the electroweak scale in
the presence of hypothetical new heavy states associated to, e.g., grand unification or other high-scale dynamics (if
nothing else gravity does).

- A benchmark point: 1) Satisfies Higgs data

gauges the degree of decoupling 
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FIG. 2. Allowed region at 1� and 2� in the (c5, tan�) plane from the constraints coming from the Higgs mass and the decays
h ! bb̄, h ! tt̄ and h ! V V .

FIG. 3. Dependence of cos(� � ↵) on tan� for di↵erent values of c5.

can be readily inferred from Eq. (37). In the large c5 limit the leading c5 contributions cancel in the lightest scalar
mass eigenvalue (while they sum up in the heavier one). The assumed perturbativity of the scalar couplings up to the
Planck scale together with the constraints from the Higgs mass lead to the typical 10�1 scale for the relevant doublet
couplings. For doublet couplings of similar size a double solution above and below tan� = 1 appears, as expected. A
value of tan� near unity is allowed for �1 = �2 = �12 ⇡ 0.17 which, however, is too large for perturbativity. On the
other hand, when considering lower values, a hierarchy between �1 and the other doublet couplings is imposed by the
requirement of vacuum stability (�1 is a↵ected by a large top quark negative renormalization and it is bound to larger
values). This, altogether, selects the tan� > 1 solution. For decreasing c5 < 1 a solution is maintained by increasing
tan�. These features are apparent in Fig. 2 for typical values of the doublet couplings. The specific pattern there is a
consequence of the hierarchy between �1 and the other doublet couplings which is needed to reconcile perturbativity
with vacuum stability. The “lower part” of the plot (i.e., c5 . 0.5) is cut out by the constraints from the h ! bb̄
data that still allow for about 30% deviation from the SM coupling [39]. In combination, a rather sharp constraint
on tan� emerges.

A phenomenologically acceptable mass gap between the lightest Higgs and the other physical doublet eigenstates
can then be obtained, even for moderate values of tan� and perturbative quartic couplings, by raising c5, as we shall
shortly detail (no issue of perturbativity arises since �5 is an ultraweak coupling). In the large c5 limit the doublet
mixing angle ↵ is simply related to tan�. From Eq. (A26) one obtains

tan 2↵ ⇡ 2

cot� � tan�
. (50)

According to the doublet eigenstate definitions in Appendix A, this leads for tan� > 1 to cos(� � ↵) ⇡ 0, which
corresponds to the alignment limit with the SM Higgs couplings [18]. We recall that, in the broken PQ phase, the �5
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In spite of the fundamental importance for the understanding of the electroweak symmetry breaking, the discovery
of what appears to be the long-sought Higgs boson still leaves many issues of the Standard Model (SM) of particle
interactions unaddressed. Laboratory and astrophysical observations give us an extremely detailed picture of massive
neutrino and lepton mixing which clearly indicate the need for physics beyond the SM. Dark matter is required to
account for more than 20% of the mass of the Universe, where antimatter is a very rare component. From a theoretical
point of view, the absence of new particles at the TeV scale raises the issue of the stability of the electroweak scale in
the presence of hypothetical new heavy states associated to, e.g., grand unification or other high-scale dynamics (if
nothing else gravity does).

In a recent paper [1] we attempted to show that most of these issues can be organically addressed in a minimal
renormalizable framework that just extends the Higgs sector of the SM. While providing a structural connection
among di↵erent open questions, the model naturally o↵ers a stable spectrum of exotic scalar states at the TeV scale,
thus opening the possibility of a test at the LHC.

The proposal in [1] extends the model discussed in [2, 3] which provided a connection between an invisible axion
à la Dine-Fischler-Srednicki-Zhitnitsky (DFSZ) [4, 5] and the one-loop generation of neutrino masses à la Zee [6, 7].
As explicit and potentially realistic realizations of such a scheme we surveyed in [1] three setups where the neutrino
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Quartic coupling Electroweak-scale value

�1 0.15

�2 = �12 = �4 0.08

�7 = �8 = �9 0.08

��1 = ��2 = ��4 0.08

�5/c5 3.0⇥ 10�14
⇣

109 GeV
V�

⌘2

�6/c6 1.0⇥ 10�9
�

v�
GeV

� ⇣
109 GeV

V�

⌘

�13(⇤) 1.3⇥ 10�15

�23(⇤) 9.1⇥ 10�14

��3(⇤) 6.2⇥ 10�15

�3(⇤) 1.1⇥ 10�28

TABLE II. Benchmark values of quartic couplings at the electroweak scale v ⇡ 174 GeV. The starred couplings are related
by the vacuum to the other ones and their reference values are given for tan� = 3.1, c5 = �c6 = 1 and V� = 109 GeV
(v� < 1 GeV). As discussed in the text the tiny scale of the ultraweak couplings is protected by symmetry and it is therefore
technically natural.

tan� c5 mh[GeV] mH [GeV] mA[GeV] mH+ [GeV]
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TABLE III. Typical values of the doublet scalar masses for the values of the quartic couplings in Table II when varying tan�
and c5 within the allowed region in Fig. 2.

required by the CW mechanism.
In Table III and Table IV typical mass spectra of the scalar fields are displayed. The mass scale of the exotic doublet

and triplet states is controlled by c5 and c6, respectively. The large value of c6 which drives the triplet masses does
not a↵ect neither the stability of the �6 coupling (which, alike �5, is multiplicatively renormalized), nor perturbativity
since �6 is ultraweak. Rather, as for c5, it is a measure of the naturalness of the setup. Roughly speaking, the degree
of fine tuning related to the stability of the lightest Higgs mass against radiative corrections induced by the scalar
triplet states is proportional to the square root of |c6|.

This analysis allows us to conclude that the model can accommodate all the present experimental constraints [40–
42], while maintaining, as we will shortly detail, vacuum stability and absence of Landau poles up to the Planck scale.
Indeed, as already mentioned, among all the Higgs doublet couplings, �1 takes the largest value in order to avoid the
vacuum instability due to the large renormalization e↵ect induced by the top quark. The smaller values chosen for
the other couplings then ensure the absence of Landau poles below the Planck scale.

A few comments on the pattern of the scalar couplings are in order. Among the ultraweak couplings that, as a
set, renormalize multiplicatively, a large hierarchy may appear with respect to �6 (it actually depends on the value
of the triplet VEV which is bound to be smaller than about 1 GeV). On the other hand, this hierarchy does not
destabilize the ultraweak couplings as long as the size of �6 is of the order of the square root of the other ultraweak
couplings or smaller. This is a consequence of the fact that the �6 interaction involves four di↵erent scalar multiplets
and therefore a↵ects the renormalization of the other couplings quadratically at one loop (see Fig. 5). In terms of the
rescaled coupling c6 such a condition can be conservatively written as

|c6| < v

v�
, (48)

independently on the PQ scale, V�. Depending on the actual value of v� < 1 GeV, stability of the ultraweak setup
is maintained even in the presence of very large values of c6 that, indeed, may be needed by the heavy triplet states.

Finally, �5 and �6 are individually multiplicatively renormalized since lepton number is restored when one of them
vanishes. In the limit c5 ! 0 there is a PQ charge assignment that leaves the singlet scalar carrying only the lepton
number. We thus recover at the tree level two massless pseudo-scalar states: an invisible Majoron and a weak-scale
axion. In the limit c6 ! 0 lepton number is restored and it remains unbroken as there is no induced triplet VEV. From
the inspection of the triplet mass spectrum we observe the vanishing of the mass of the neutral triplet components,
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where v2 = v2u + v2d. The reference scaling of the singlet couplings is dictated by the requirement that the physical
weakly interacting scalars have weak-scale masses. It is convenient to introduce the rescaled couplings c� as
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This setting is at the origin of the hierarchy between the PQ and EW scales and the stability of the Higgs mass,
thus making the setup insensitive to the large PQ scale. The limit �i3,�5,�6 ! 0 is associated with the emergence of
an additional Poincaré symmetry of the action [2, 16] (see [17] for a recent reassessment) which makes the ultraweak
limit perturbatively stable. It is readily verified that the renormalization of the couplings connecting the “light” and
“heavy” sectors is, as a set, multiplicative (the relevant beta functions exhibit a fixed point for vanishing couplings,
as it is verified from inspection of the one-loop beta coe�cients in Appendix B). Note that the hierarchy among the
ultraweak couplings in Eq. (19) is stable since �2

6 ⌧ �i3. The couplings �5 and �6 are themselves multiplicatively
renormalized since lepton number is restored when one of them is vanishing.
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is required by the Coleman-Weinberg (CW) mechanism in order to be e↵ective along the singlet direction, so that
the PQ scale is obtained by dimensional transmutation [23]. This is also a renormalization safe assumption since the
limit �i3,�5,�6,�3 ! 0 is associated with the emergence of a shift symmetry of the non-interacting scalar singlet [29].
These considerations hold as long as we neglect gravity. For a brief discussion of gravity induced e↵ects we refer to
[1] and references therein.

C. CW potential and the vacuum configuration

The generation of the electroweak breaking vacuum via the CW mechanism [23] was shown to require a very light
Higgs mass, of about 10 GeV [23, 32]. In this paper, analogously to the proposal of [29], we provide a realistic setup
where quantum correction are responsible for the generation of the PQ scale. This leads, as we will see, to a very
light neutral scalar acting as a pseudo-dilaton, still phenomenologically viable. The hierarchy between the PQ and
the electroweak scale is ensured by the technically natural ultraweak limit on the singlet couplings to the other scalar
fields [1, 2, 16], as stated in Eq. (19).

To this end the relevant one-loop CW potential in the MS scheme can be written as
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where �̄ denotes a spacetime-independent classical field and the trace is over the tree-level mass matrices in the shifted
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where the vector � stands for the whole set of the real fields in the model. In our case the leading contributions to
the e↵ective potential in the �-field direction read (from now on we drop the bar symbol over �)
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where v2 = v2u + v2d. The reference scaling of the singlet couplings is dictated by the requirement that the physical
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This setting is at the origin of the hierarchy between the PQ and EW scales and the stability of the Higgs mass,
thus making the setup insensitive to the large PQ scale. The limit �i3,�5,�6 ! 0 is associated with the emergence of
an additional Poincaré symmetry of the action [2, 16] (see [17] for a recent reassessment) which makes the ultraweak
limit perturbatively stable. It is readily verified that the renormalization of the couplings connecting the “light” and
“heavy” sectors is, as a set, multiplicative (the relevant beta functions exhibit a fixed point for vanishing couplings,
as it is verified from inspection of the one-loop beta coe�cients in Appendix B). Note that the hierarchy among the
ultraweak couplings in Eq. (19) is stable since �2
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is required by the Coleman-Weinberg (CW) mechanism in order to be e↵ective along the singlet direction, so that
the PQ scale is obtained by dimensional transmutation [23]. This is also a renormalization safe assumption since the
limit �i3,�5,�6,�3 ! 0 is associated with the emergence of a shift symmetry of the non-interacting scalar singlet [29].
These considerations hold as long as we neglect gravity. For a brief discussion of gravity induced e↵ects we refer to
[1] and references therein.

C. CW potential and the vacuum configuration

The generation of the electroweak breaking vacuum via the CW mechanism [23] was shown to require a very light
Higgs mass, of about 10 GeV [23, 32]. In this paper, analogously to the proposal of [29], we provide a realistic setup
where quantum correction are responsible for the generation of the PQ scale. This leads, as we will see, to a very
light neutral scalar acting as a pseudo-dilaton, still phenomenologically viable. The hierarchy between the PQ and
the electroweak scale is ensured by the technically natural ultraweak limit on the singlet couplings to the other scalar
fields [1, 2, 16], as stated in Eq. (19).

To this end the relevant one-loop CW potential in the MS scheme can be written as
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where the vector � stands for the whole set of the real fields in the model. In our case the leading contributions to
the e↵ective potential in the �-field direction read (from now on we drop the bar symbol over �)
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I. INTRODUCTION

v� ⌧ v (1)

v� < 1 GeV (2)

c5 > 1 (3)

. 1 keV (4)

125 GeV (5)

h (6)

H,�S , A,�A, H
+,�+,�++ (7)

�(v0) = �4�(v0) (8)

v0 = Me�1/4 (9)

|�| (10)

�VCW (11)

+
1
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TrM4(�)
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◆

(12)

x = vu/vd (13)

In spite of the fundamental importance for the understanding of the electroweak symmetry breaking, the discovery
of what appears to be the long-sought Higgs boson still leaves many issues of the Standard Model (SM) of particle
interactions unaddressed. Laboratory and astrophysical observations give us an extremely detailed picture of massive
neutrino and lepton mixing which clearly indicate the need for physics beyond the SM. Dark matter is required to
account for more than 20% of the mass of the Universe, where antimatter is a very rare component. From a theoretical
point of view, the absence of new particles at the TeV scale raises the issue of the stability of the electroweak scale in
the presence of hypothetical new heavy states associated to, e.g., grand unification or other high-scale dynamics (if
nothing else gravity does).

- A benchmark point: 1) Satisfies Higgs data
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Quartic coupling Electroweak-scale value

�1 0.15

�2 = �12 = �4 0.08

�7 = �8 = �9 0.08

��1 = ��2 = ��4 0.08

�5/c5 3.0⇥ 10�14
⇣

109 GeV
V�

⌘2

�6/c6 1.0⇥ 10�9
�

v�
GeV

� ⇣
109 GeV

V�

⌘

�13(⇤) 1.3⇥ 10�15

�23(⇤) 9.1⇥ 10�14

��3(⇤) 6.2⇥ 10�15

�3(⇤) 1.1⇥ 10�28

TABLE II. Benchmark values of quartic couplings at the electroweak scale v ⇡ 174 GeV. The starred couplings are related
by the vacuum to the other ones and their reference values are given for tan� = 3.1, c5 = �c6 = 1 and V� = 109 GeV
(v� < 1 GeV). As discussed in the text the tiny scale of the ultraweak couplings is protected by symmetry and it is therefore
technically natural.

tan� c5 mh[GeV] mH [GeV] mA[GeV] mH+ [GeV]

3.1 1.0 125 324 322 326

3.0 2.0 125 451 449 452

3.0 5.0 125 711 710 712

TABLE III. Typical values of the doublet scalar masses for the values of the quartic couplings in Table II when varying tan�
and c5 within the allowed region in Fig. 2.

required by the CW mechanism.
In Table III and Table IV typical mass spectra of the scalar fields are displayed. The mass scale of the exotic doublet

and triplet states is controlled by c5 and c6, respectively. The large value of c6 which drives the triplet masses does
not a↵ect neither the stability of the �6 coupling (which, alike �5, is multiplicatively renormalized), nor perturbativity
since �6 is ultraweak. Rather, as for c5, it is a measure of the naturalness of the setup. Roughly speaking, the degree
of fine tuning related to the stability of the lightest Higgs mass against radiative corrections induced by the scalar
triplet states is proportional to the square root of |c6|.

This analysis allows us to conclude that the model can accommodate all the present experimental constraints [40–
42], while maintaining, as we will shortly detail, vacuum stability and absence of Landau poles up to the Planck scale.
Indeed, as already mentioned, among all the Higgs doublet couplings, �1 takes the largest value in order to avoid the
vacuum instability due to the large renormalization e↵ect induced by the top quark. The smaller values chosen for
the other couplings then ensure the absence of Landau poles below the Planck scale.

A few comments on the pattern of the scalar couplings are in order. Among the ultraweak couplings that, as a
set, renormalize multiplicatively, a large hierarchy may appear with respect to �6 (it actually depends on the value
of the triplet VEV which is bound to be smaller than about 1 GeV). On the other hand, this hierarchy does not
destabilize the ultraweak couplings as long as the size of �6 is of the order of the square root of the other ultraweak
couplings or smaller. This is a consequence of the fact that the �6 interaction involves four di↵erent scalar multiplets
and therefore a↵ects the renormalization of the other couplings quadratically at one loop (see Fig. 5). In terms of the
rescaled coupling c6 such a condition can be conservatively written as

|c6| < v

v�
, (48)

independently on the PQ scale, V�. Depending on the actual value of v� < 1 GeV, stability of the ultraweak setup
is maintained even in the presence of very large values of c6 that, indeed, may be needed by the heavy triplet states.

Finally, �5 and �6 are individually multiplicatively renormalized since lepton number is restored when one of them
vanishes. In the limit c5 ! 0 there is a PQ charge assignment that leaves the singlet scalar carrying only the lepton
number. We thus recover at the tree level two massless pseudo-scalar states: an invisible Majoron and a weak-scale
axion. In the limit c6 ! 0 lepton number is restored and it remains unbroken as there is no induced triplet VEV. From
the inspection of the triplet mass spectrum we observe the vanishing of the mass of the neutral triplet components,
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tan� �c6 m�0 [GeV] m�+ [GeV] m�++ [GeV] m�[GeV]

25 476 477 478 0.5⇥ 10�4

3.0 50 674 674 675 0.9⇥ 10�4

75 825 826 826 1.3⇥ 10�4

TABLE IV. Typical triplet and pseudo-dilaton masses for the benchmark values of the quartic couplings in Table II. The scalar
masses are given for reference tan� and c6 values that accomodate the present collider limits on the doubly-charged triplet
component. The dependence of the pseudo-dilaton mass on c5, in the interval 1 to 5, ranges from a factor of 2 to a factor of
1.1 as c6 increases.

FIG. 5. One-loop running of ultraweak couplings for the weak-scale benchmark values of Table II.

while for �7,8 ! 0 all triplet-dominated fields turn out to be massless as well. These tree-level results are related to
the neglect of the triplet mixings, and they can be generally understood in terms of accidental shift symmetries of the
scalar potential for vanishing triplet couplings. All these features are explicitly verified by the inspection of the mass
spectrum and the one-loop beta coe�cients reported in Appendix B.

The tiny value of the quartic singlet coupling is also preserved by renormalization since only squares of the ultraweak
couplings appear in its beta function. This is again understood in terms of symmetries since, for vanishing interactions
of the singlet with the other fields, a further shift symmetry arises when the quartic self interaction vanishes as well.
All that can be explicitly seen by inspection of the one-loop beta coe�cients given in Appendix B. We can therefore
conclude that the pattern of the benchmark values given in Table II is technically natural, and leads (within the
present experimental limits on the scalar spectrum) to a natural and stable model setup.

From Table III and Table IV we see that the heavy part of the scalar spectrum of the model may be accessible at
the LHC. It goes without saying that heavier masses for the exotic scalar fields can be achieved at the expense of the
strict naturalness requirement we asked for.

B. Ultralight pseudo-dilaton phenomenology

The smoking gun of the current scenario at low energy is the light pseudo-dilaton, whose basic features are rather
similar to those of the analogous state discussed in [29, 34].

In particular, concerning the pseudo-dilaton couplings to the matter fields, they are driven by its mixing with the
other neutral scalars. As one can see by inverting Eqs. (A27)–(A29), its projection onto the neutral components of
the Higgs doublets amounts to ⇠ v/V� which, in turn, yields couplings to the SM fermions of the order of mf/V�.
Although this, in principle, admits for a possible pseudo-dilaton detection in “5th force” experiments, this interaction
turns out to be too weak for the existing limits to provide nontrivial constraints. Since the relevant mediator mass
m� is of O(v2/V�) ⇡ 30 ⇥ (109 GeV/V�) keV, the current bound reads ↵5/↵EM . 10�8 � 10�16 [43], for V� in the
109�1012 GeV range, far above the size of the pseudo-dilaton interaction strenght with ordinary matter. The ultraweak
size of the couplings of the complex singlet scalar field, which drives the axion and light pseudo-dilaton states, does
not lead to visible collider signatures either, at variance with less constrained scale invariant Higgs extensions [44].

Considering the role the pseudo-dilaton may play in the early Universe cosmology, the main concerns have to
do with the energy stored in the coherent oscillations of the pseudo-dilaton field after inflation. To that end, two
basic scenarios, characterized basically by the hierarchy between the reheat temperature and the PQ breaking scale,

2) Satisfies collider bounds
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(v� < 1 GeV). As discussed in the text the tiny scale of the ultraweak couplings is protected by symmetry and it is therefore
technically natural.
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TABLE III. Typical values of the doublet scalar masses for the values of the quartic couplings in Table II when varying tan�
and c5 within the allowed region in Fig. 2.

required by the CW mechanism.
In Table III and Table IV typical mass spectra of the scalar fields are displayed. The mass scale of the exotic doublet

and triplet states is controlled by c5 and c6, respectively. The large value of c6 which drives the triplet masses does
not a↵ect neither the stability of the �6 coupling (which, alike �5, is multiplicatively renormalized), nor perturbativity
since �6 is ultraweak. Rather, as for c5, it is a measure of the naturalness of the setup. Roughly speaking, the degree
of fine tuning related to the stability of the lightest Higgs mass against radiative corrections induced by the scalar
triplet states is proportional to the square root of |c6|.

This analysis allows us to conclude that the model can accommodate all the present experimental constraints [40–
42], while maintaining, as we will shortly detail, vacuum stability and absence of Landau poles up to the Planck scale.
Indeed, as already mentioned, among all the Higgs doublet couplings, �1 takes the largest value in order to avoid the
vacuum instability due to the large renormalization e↵ect induced by the top quark. The smaller values chosen for
the other couplings then ensure the absence of Landau poles below the Planck scale.

A few comments on the pattern of the scalar couplings are in order. Among the ultraweak couplings that, as a
set, renormalize multiplicatively, a large hierarchy may appear with respect to �6 (it actually depends on the value
of the triplet VEV which is bound to be smaller than about 1 GeV). On the other hand, this hierarchy does not
destabilize the ultraweak couplings as long as the size of �6 is of the order of the square root of the other ultraweak
couplings or smaller. This is a consequence of the fact that the �6 interaction involves four di↵erent scalar multiplets
and therefore a↵ects the renormalization of the other couplings quadratically at one loop (see Fig. 5). In terms of the
rescaled coupling c6 such a condition can be conservatively written as

|c6| < v

v�
, (48)

independently on the PQ scale, V�. Depending on the actual value of v� < 1 GeV, stability of the ultraweak setup
is maintained even in the presence of very large values of c6 that, indeed, may be needed by the heavy triplet states.

Finally, �5 and �6 are individually multiplicatively renormalized since lepton number is restored when one of them
vanishes. In the limit c5 ! 0 there is a PQ charge assignment that leaves the singlet scalar carrying only the lepton
number. We thus recover at the tree level two massless pseudo-scalar states: an invisible Majoron and a weak-scale
axion. In the limit c6 ! 0 lepton number is restored and it remains unbroken as there is no induced triplet VEV. From
the inspection of the triplet mass spectrum we observe the vanishing of the mass of the neutral triplet components,
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where v2 = v2u + v2d. The reference scaling of the singlet couplings is dictated by the requirement that the physical
weakly interacting scalars have weak-scale masses. It is convenient to introduce the rescaled couplings c� as
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This setting is at the origin of the hierarchy between the PQ and EW scales and the stability of the Higgs mass,
thus making the setup insensitive to the large PQ scale. The limit �i3,�5,�6 ! 0 is associated with the emergence of
an additional Poincaré symmetry of the action [2, 16] (see [17] for a recent reassessment) which makes the ultraweak
limit perturbatively stable. It is readily verified that the renormalization of the couplings connecting the “light” and
“heavy” sectors is, as a set, multiplicative (the relevant beta functions exhibit a fixed point for vanishing couplings,
as it is verified from inspection of the one-loop beta coe�cients in Appendix B). Note that the hierarchy among the
ultraweak couplings in Eq. (19) is stable since �2

6 ⌧ �i3. The couplings �5 and �6 are themselves multiplicatively
renormalized since lepton number is restored when one of them is vanishing.
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is required by the Coleman-Weinberg (CW) mechanism in order to be e↵ective along the singlet direction, so that
the PQ scale is obtained by dimensional transmutation [23]. This is also a renormalization safe assumption since the
limit �i3,�5,�6,�3 ! 0 is associated with the emergence of a shift symmetry of the non-interacting scalar singlet [29].
These considerations hold as long as we neglect gravity. For a brief discussion of gravity induced e↵ects we refer to
[1] and references therein.

C. CW potential and the vacuum configuration

The generation of the electroweak breaking vacuum via the CW mechanism [23] was shown to require a very light
Higgs mass, of about 10 GeV [23, 32]. In this paper, analogously to the proposal of [29], we provide a realistic setup
where quantum correction are responsible for the generation of the PQ scale. This leads, as we will see, to a very
light neutral scalar acting as a pseudo-dilaton, still phenomenologically viable. The hierarchy between the PQ and
the electroweak scale is ensured by the technically natural ultraweak limit on the singlet couplings to the other scalar
fields [1, 2, 16], as stated in Eq. (19).

To this end the relevant one-loop CW potential in the MS scheme can be written as
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where �̄ denotes a spacetime-independent classical field and the trace is over the tree-level mass matrices in the shifted
� ! �̄ + � theory,
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where the vector � stands for the whole set of the real fields in the model. In our case the leading contributions to
the e↵ective potential in the �-field direction read (from now on we drop the bar symbol over �)
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where v2 = v2u + v2d. The reference scaling of the singlet couplings is dictated by the requirement that the physical
weakly interacting scalars have weak-scale masses. It is convenient to introduce the rescaled couplings c� as
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This setting is at the origin of the hierarchy between the PQ and EW scales and the stability of the Higgs mass,
thus making the setup insensitive to the large PQ scale. The limit �i3,�5,�6 ! 0 is associated with the emergence of
an additional Poincaré symmetry of the action [2, 16] (see [17] for a recent reassessment) which makes the ultraweak
limit perturbatively stable. It is readily verified that the renormalization of the couplings connecting the “light” and
“heavy” sectors is, as a set, multiplicative (the relevant beta functions exhibit a fixed point for vanishing couplings,
as it is verified from inspection of the one-loop beta coe�cients in Appendix B). Note that the hierarchy among the
ultraweak couplings in Eq. (19) is stable since �2
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renormalized since lepton number is restored when one of them is vanishing.
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is required by the Coleman-Weinberg (CW) mechanism in order to be e↵ective along the singlet direction, so that
the PQ scale is obtained by dimensional transmutation [23]. This is also a renormalization safe assumption since the
limit �i3,�5,�6,�3 ! 0 is associated with the emergence of a shift symmetry of the non-interacting scalar singlet [29].
These considerations hold as long as we neglect gravity. For a brief discussion of gravity induced e↵ects we refer to
[1] and references therein.

C. CW potential and the vacuum configuration

The generation of the electroweak breaking vacuum via the CW mechanism [23] was shown to require a very light
Higgs mass, of about 10 GeV [23, 32]. In this paper, analogously to the proposal of [29], we provide a realistic setup
where quantum correction are responsible for the generation of the PQ scale. This leads, as we will see, to a very
light neutral scalar acting as a pseudo-dilaton, still phenomenologically viable. The hierarchy between the PQ and
the electroweak scale is ensured by the technically natural ultraweak limit on the singlet couplings to the other scalar
fields [1, 2, 16], as stated in Eq. (19).

To this end the relevant one-loop CW potential in the MS scheme can be written as
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where �̄ denotes a spacetime-independent classical field and the trace is over the tree-level mass matrices in the shifted
� ! �̄ + � theory,
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where the vector � stands for the whole set of the real fields in the model. In our case the leading contributions to
the e↵ective potential in the �-field direction read (from now on we drop the bar symbol over �)
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In spite of the fundamental importance for the understanding of the electroweak symmetry breaking, the discovery
of what appears to be the long-sought Higgs boson still leaves many issues of the Standard Model (SM) of particle
interactions unaddressed. Laboratory and astrophysical observations give us an extremely detailed picture of massive
neutrino and lepton mixing which clearly indicate the need for physics beyond the SM. Dark matter is required to
account for more than 20% of the mass of the Universe, where antimatter is a very rare component. From a theoretical
point of view, the absence of new particles at the TeV scale raises the issue of the stability of the electroweak scale in
the presence of hypothetical new heavy states associated to, e.g., grand unification or other high-scale dynamics (if
nothing else gravity does).

- A benchmark point: 1) Satisfies Higgs data

2) Satisfies collider bounds

3) Radiative stability of ultraweak couplings
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tan� �c6 m�0 [GeV] m�+ [GeV] m�++ [GeV] m�[GeV]

25 476 477 478 0.5⇥ 10�4

3.0 50 674 674 675 0.9⇥ 10�4

75 825 826 826 1.3⇥ 10�4

TABLE IV. Typical triplet and pseudo-dilaton masses for the benchmark values of the quartic couplings in Table II. The scalar
masses are given for reference tan� and c6 values that accomodate the present collider limits on the doubly-charged triplet
component. The dependence of the pseudo-dilaton mass on c5, in the interval 1 to 5, ranges from a factor of 2 to a factor of
1.1 as c6 increases.

FIG. 5. One-loop running of ultraweak couplings for the weak-scale benchmark values of Table II.

while for �7,8 ! 0 all triplet-dominated fields turn out to be massless as well. These tree-level results are related to
the neglect of the triplet mixings, and they can be generally understood in terms of accidental shift symmetries of the
scalar potential for vanishing triplet couplings. All these features are explicitly verified by the inspection of the mass
spectrum and the one-loop beta coe�cients reported in Appendix B.

The tiny value of the quartic singlet coupling is also preserved by renormalization since only squares of the ultraweak
couplings appear in its beta function. This is again understood in terms of symmetries since, for vanishing interactions
of the singlet with the other fields, a further shift symmetry arises when the quartic self interaction vanishes as well.
All that can be explicitly seen by inspection of the one-loop beta coe�cients given in Appendix B. We can therefore
conclude that the pattern of the benchmark values given in Table II is technically natural, and leads (within the
present experimental limits on the scalar spectrum) to a natural and stable model setup.

From Table III and Table IV we see that the heavy part of the scalar spectrum of the model may be accessible at
the LHC. It goes without saying that heavier masses for the exotic scalar fields can be achieved at the expense of the
strict naturalness requirement we asked for.

B. Ultralight pseudo-dilaton phenomenology

The smoking gun of the current scenario at low energy is the light pseudo-dilaton, whose basic features are rather
similar to those of the analogous state discussed in [29, 34].

In particular, concerning the pseudo-dilaton couplings to the matter fields, they are driven by its mixing with the
other neutral scalars. As one can see by inverting Eqs. (A27)–(A29), its projection onto the neutral components of
the Higgs doublets amounts to ⇠ v/V� which, in turn, yields couplings to the SM fermions of the order of mf/V�.
Although this, in principle, admits for a possible pseudo-dilaton detection in “5th force” experiments, this interaction
turns out to be too weak for the existing limits to provide nontrivial constraints. Since the relevant mediator mass
m� is of O(v2/V�) ⇡ 30 ⇥ (109 GeV/V�) keV, the current bound reads ↵5/↵EM . 10�8 � 10�16 [43], for V� in the
109�1012 GeV range, far above the size of the pseudo-dilaton interaction strenght with ordinary matter. The ultraweak
size of the couplings of the complex singlet scalar field, which drives the axion and light pseudo-dilaton states, does
not lead to visible collider signatures either, at variance with less constrained scale invariant Higgs extensions [44].

Considering the role the pseudo-dilaton may play in the early Universe cosmology, the main concerns have to
do with the energy stored in the coherent oscillations of the pseudo-dilaton field after inflation. To that end, two
basic scenarios, characterized basically by the hierarchy between the reheat temperature and the PQ breaking scale,
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Quartic coupling Electroweak-scale value

�1 0.15

�2 = �12 = �4 0.08

�7 = �8 = �9 0.08

��1 = ��2 = ��4 0.08

�5/c5 3.0⇥ 10�14
⇣

109 GeV
V�

⌘2

�6/c6 1.0⇥ 10�9
�

v�
GeV

� ⇣
109 GeV

V�

⌘

�13(⇤) 1.3⇥ 10�15

�23(⇤) 9.1⇥ 10�14

��3(⇤) 6.2⇥ 10�15

�3(⇤) 1.1⇥ 10�28

TABLE II. Benchmark values of quartic couplings at the electroweak scale v ⇡ 174 GeV. The starred couplings are related
by the vacuum to the other ones and their reference values are given for tan� = 3.1, c5 = �c6 = 1 and V� = 109 GeV
(v� < 1 GeV). As discussed in the text the tiny scale of the ultraweak couplings is protected by symmetry and it is therefore
technically natural.

tan� c5 mh[GeV] mH [GeV] mA[GeV] mH+ [GeV]

3.1 1.0 125 324 322 326

3.0 2.0 125 451 449 452

3.0 5.0 125 711 710 712

TABLE III. Typical values of the doublet scalar masses for the values of the quartic couplings in Table II when varying tan�
and c5 within the allowed region in Fig. 2.

required by the CW mechanism.
In Table III and Table IV typical mass spectra of the scalar fields are displayed. The mass scale of the exotic doublet

and triplet states is controlled by c5 and c6, respectively. The large value of c6 which drives the triplet masses does
not a↵ect neither the stability of the �6 coupling (which, alike �5, is multiplicatively renormalized), nor perturbativity
since �6 is ultraweak. Rather, as for c5, it is a measure of the naturalness of the setup. Roughly speaking, the degree
of fine tuning related to the stability of the lightest Higgs mass against radiative corrections induced by the scalar
triplet states is proportional to the square root of |c6|.

This analysis allows us to conclude that the model can accommodate all the present experimental constraints [40–
42], while maintaining, as we will shortly detail, vacuum stability and absence of Landau poles up to the Planck scale.
Indeed, as already mentioned, among all the Higgs doublet couplings, �1 takes the largest value in order to avoid the
vacuum instability due to the large renormalization e↵ect induced by the top quark. The smaller values chosen for
the other couplings then ensure the absence of Landau poles below the Planck scale.

A few comments on the pattern of the scalar couplings are in order. Among the ultraweak couplings that, as a
set, renormalize multiplicatively, a large hierarchy may appear with respect to �6 (it actually depends on the value
of the triplet VEV which is bound to be smaller than about 1 GeV). On the other hand, this hierarchy does not
destabilize the ultraweak couplings as long as the size of �6 is of the order of the square root of the other ultraweak
couplings or smaller. This is a consequence of the fact that the �6 interaction involves four di↵erent scalar multiplets
and therefore a↵ects the renormalization of the other couplings quadratically at one loop (see Fig. 5). In terms of the
rescaled coupling c6 such a condition can be conservatively written as

|c6| < v

v�
, (48)

independently on the PQ scale, V�. Depending on the actual value of v� < 1 GeV, stability of the ultraweak setup
is maintained even in the presence of very large values of c6 that, indeed, may be needed by the heavy triplet states.

Finally, �5 and �6 are individually multiplicatively renormalized since lepton number is restored when one of them
vanishes. In the limit c5 ! 0 there is a PQ charge assignment that leaves the singlet scalar carrying only the lepton
number. We thus recover at the tree level two massless pseudo-scalar states: an invisible Majoron and a weak-scale
axion. In the limit c6 ! 0 lepton number is restored and it remains unbroken as there is no induced triplet VEV. From
the inspection of the triplet mass spectrum we observe the vanishing of the mass of the neutral triplet components,

6

where v2 = v2u + v2d. The reference scaling of the singlet couplings is dictated by the requirement that the physical
weakly interacting scalars have weak-scale masses. It is convenient to introduce the rescaled couplings c� as

�i3,5 ⌘ ci3,5
v2

V 2
�

, �6 ⌘ c6
v�
V�

. (20)

�5 ⌘ c5
v2

V 2
�

�6 ⌘ c6
v�
V�

(21)

This setting is at the origin of the hierarchy between the PQ and EW scales and the stability of the Higgs mass,
thus making the setup insensitive to the large PQ scale. The limit �i3,�5,�6 ! 0 is associated with the emergence of
an additional Poincaré symmetry of the action [2, 16] (see [17] for a recent reassessment) which makes the ultraweak
limit perturbatively stable. It is readily verified that the renormalization of the couplings connecting the “light” and
“heavy” sectors is, as a set, multiplicative (the relevant beta functions exhibit a fixed point for vanishing couplings,
as it is verified from inspection of the one-loop beta coe�cients in Appendix B). Note that the hierarchy among the
ultraweak couplings in Eq. (19) is stable since �2

6 ⌧ �i3. The couplings �5 and �6 are themselves multiplicatively
renormalized since lepton number is restored when one of them is vanishing.
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is required by the Coleman-Weinberg (CW) mechanism in order to be e↵ective along the singlet direction, so that
the PQ scale is obtained by dimensional transmutation [23]. This is also a renormalization safe assumption since the
limit �i3,�5,�6,�3 ! 0 is associated with the emergence of a shift symmetry of the non-interacting scalar singlet [29].
These considerations hold as long as we neglect gravity. For a brief discussion of gravity induced e↵ects we refer to
[1] and references therein.

C. CW potential and the vacuum configuration

The generation of the electroweak breaking vacuum via the CW mechanism [23] was shown to require a very light
Higgs mass, of about 10 GeV [23, 32]. In this paper, analogously to the proposal of [29], we provide a realistic setup
where quantum correction are responsible for the generation of the PQ scale. This leads, as we will see, to a very
light neutral scalar acting as a pseudo-dilaton, still phenomenologically viable. The hierarchy between the PQ and
the electroweak scale is ensured by the technically natural ultraweak limit on the singlet couplings to the other scalar
fields [1, 2, 16], as stated in Eq. (19).

To this end the relevant one-loop CW potential in the MS scheme can be written as

V1(�̄) =
1

64⇡2
TrM4(�̄)

✓

log
M2(�̄)

µ2
� 3

2

◆

, (23)

where �̄ denotes a spacetime-independent classical field and the trace is over the tree-level mass matrices in the shifted
� ! �̄ + � theory,
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where the vector � stands for the whole set of the real fields in the model. In our case the leading contributions to
the e↵ective potential in the �-field direction read (from now on we drop the bar symbol over �)
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where v2 = v2u + v2d. The reference scaling of the singlet couplings is dictated by the requirement that the physical
weakly interacting scalars have weak-scale masses. It is convenient to introduce the rescaled couplings c� as
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This setting is at the origin of the hierarchy between the PQ and EW scales and the stability of the Higgs mass,
thus making the setup insensitive to the large PQ scale. The limit �i3,�5,�6 ! 0 is associated with the emergence of
an additional Poincaré symmetry of the action [2, 16] (see [17] for a recent reassessment) which makes the ultraweak
limit perturbatively stable. It is readily verified that the renormalization of the couplings connecting the “light” and
“heavy” sectors is, as a set, multiplicative (the relevant beta functions exhibit a fixed point for vanishing couplings,
as it is verified from inspection of the one-loop beta coe�cients in Appendix B). Note that the hierarchy among the
ultraweak couplings in Eq. (19) is stable since �2

6 ⌧ �i3. The couplings �5 and �6 are themselves multiplicatively
renormalized since lepton number is restored when one of them is vanishing.
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is required by the Coleman-Weinberg (CW) mechanism in order to be e↵ective along the singlet direction, so that
the PQ scale is obtained by dimensional transmutation [23]. This is also a renormalization safe assumption since the
limit �i3,�5,�6,�3 ! 0 is associated with the emergence of a shift symmetry of the non-interacting scalar singlet [29].
These considerations hold as long as we neglect gravity. For a brief discussion of gravity induced e↵ects we refer to
[1] and references therein.

C. CW potential and the vacuum configuration

The generation of the electroweak breaking vacuum via the CW mechanism [23] was shown to require a very light
Higgs mass, of about 10 GeV [23, 32]. In this paper, analogously to the proposal of [29], we provide a realistic setup
where quantum correction are responsible for the generation of the PQ scale. This leads, as we will see, to a very
light neutral scalar acting as a pseudo-dilaton, still phenomenologically viable. The hierarchy between the PQ and
the electroweak scale is ensured by the technically natural ultraweak limit on the singlet couplings to the other scalar
fields [1, 2, 16], as stated in Eq. (19).

To this end the relevant one-loop CW potential in the MS scheme can be written as
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where �̄ denotes a spacetime-independent classical field and the trace is over the tree-level mass matrices in the shifted
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where the vector � stands for the whole set of the real fields in the model. In our case the leading contributions to
the e↵ective potential in the �-field direction read (from now on we drop the bar symbol over �)
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In spite of the fundamental importance for the understanding of the electroweak symmetry breaking, the discovery
of what appears to be the long-sought Higgs boson still leaves many issues of the Standard Model (SM) of particle
interactions unaddressed. Laboratory and astrophysical observations give us an extremely detailed picture of massive
neutrino and lepton mixing which clearly indicate the need for physics beyond the SM. Dark matter is required to
account for more than 20% of the mass of the Universe, where antimatter is a very rare component. From a theoretical
point of view, the absence of new particles at the TeV scale raises the issue of the stability of the electroweak scale in
the presence of hypothetical new heavy states associated to, e.g., grand unification or other high-scale dynamics (if
nothing else gravity does).

- A benchmark point: 1) Satisfies Higgs data

2) Satisfies collider bounds

3) Radiative stability of ultraweak couplings

4) Vacuum stability and perturbativity 15

FIG. 6. One-loop running of the O(10�1) couplings for the weak-scale benchmark values specified in Table II.

emerge [29, 34]. It turns out, however, that in either of these cases there is a natural way to dissipate the excess energy
either by the pseudo-dilaton interactions with the SM thermal bath or by taming its very production in the first place.
The former, in the current setup, may work even better than estimated in the large tan� scenario of [34] since the
small tan� constraint implies larger up-type Yukawa couplings and, in turn, more e�cient dissipation. There is no
natural domain for the relevant parameters in which the pseudo-dilaton may contribute a significant fraction of ⌦DM

(unlike the axion): either its production is negligible or it is unstable on cosmological scales.
Given all that, the main di↵erence among our setup and that in [34], is the direct coupling of the pseudo-dilaton

to the light neutrinos that follows from its mixing with the triplet scalar in the Type-II seesaw. On the other hand,
the absolute size of the corresponding e↵ective coupling, g�⌫⌫ / m⌫/V�, is utterly small and, at the present time, it
yields no observable e↵ect.

C. Vacuum stability

An added value of scalar extensions of the SM is their potential to improve on the stability of the electroweak
vacuum. This issue has been discussed at length in the literature (see for instance Refs. [45, 46]), and we just briefly
recall the argument here. The key e↵ect is the positive contribution of the new scalars (through, e.g., the Higgs portal
couplings) to the beta-function of the Higgs quartic coupling �H . As such, they tend to stabilize the Higgs potential
if they enter the running below the instability scale.2

Nevertheless, the presence of multiple scalar field directions may potentially reintroduce the issue of instability
already at tree level, especially in those cases where operators featuring an odd power of the same field are present
(e.g. those associated with the couplings �5 and �6 in Eq. (14)). On the other hand, even at the tree-level potential
level, a fully analytical determination of the necessary and su�cient conditions for the boundeness of Eq. (14) from
below turns out to be a formidable problem.

In Fig. 6 we display the one-loop running of the “large” (i.e., O(10�1)) couplings for the weak-scale benchmark
values given in Table II.

Regardless of the fact that �4 and �7 both fall negative at large energies, it can be shown that the relevant
boundedness conditions are always satisfied. To this end, in Appendix C we provide a compact parametrization of the
scalar potential manifold based on the “invariants’ method” (see e.g. Ref. [49]), which allows us to probe the critical
scalar field directions by fully exploiting the symmetries of the system. In particular, the sixteen real field variables
of the potential in Eq. (14) are traded for ten real parameters (three angles and six invariants defined over a compact
domain plus one radial coordinate). In this way, given a set of benchmark values for the scalar potential couplings it
is possible to perform a fast numerical check of the vacuum stability by randomly scanning over the scalar potential
variables.

Moreover, by selecting specific field directions (angles), certain su�cient conditions for the vacuum stability can be
explicitly worked out (cf. Appendix C). This provides an analytical understanding of the reason why, e.g., the fact
that �7 runs sharply negative, as shown in Fig. 6, is not necessarily a problem. As a matter of fact, the relevant

2
The instability scale of the SM e↵ective potential is a gauge dependent quantity [47]. A gauge invariant criterium to include the e↵ects

of new physics can be devised [48].
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II. GENERAL THEORETICAL CONSIDERATIONS

A. Schematic Analysis

To get a feeling for how Coleman-Weinberg symmetry
breaking works, with particular emphasis upon the renorm-
alization group (RG), we consider aUð1ÞHiggs scalar field
potential 12 λðH

†HÞ2. This classical potential, for λ > 0 has
an uninteresting minimum at hHi ¼ v ¼ 0 as in Fig. 1.
A process with N Feynman loops is of order OðℏNÞ in

field theory. Quantum loops lead to the RG running of
couplings, such as λ, with scale, μ. Typically, we might
have a one-loop, OðℏÞ, solution to the RG equations as in
Fig. 2:

λðμÞ ≈ β lnðμ=MÞ (2)

where β ∝ ℏ. M simply parametrizes the particular RG
trajectory of the running λðμÞ; i.e., we would ask our
experimental colleagues to measure the dimensionless
quantity λ at some energy scale μ, and we would then
chooseM so that we fit their result as λexptðμÞ ¼ β lnðμ=MÞ.
With the running quartic coupling constant, the scale can

be set by the vacuum expectation value, hHi ¼ v, of the
fieldH itself. The resulting scalar potential, as a function of
v ¼ μ, is then:

VðvÞ ¼ 1

2
βv4 lnðv=MÞ (3)

This potential has a local minimum, as in Fig. 3, at
v0 ¼ Me−1=4. A stable minimum of the potential; i.e.,

one with a positive curvature at the minimum, or m2
h > 0,

occurs just below the zero-crossing of λðvÞ from a negative
to a positive value. Hence λmust be negative and β must be
positive at the minimum [we’ll see in Section V that there
are alternative solutions involving two loops in which the
situation is flipped; i.e., β (λ) can be negative (positive)].
If λðμÞ continues to run as ∝ β lnðμ=MÞ, we would see

that the ratio of the VEV, v0, to any other scale M0 is then

v0
M0 ∝ exp

!
−
λðM0Þ
β

"
: (4)

A large hierarchy between v0 and M0 can be exponentially
controlled by the ratio of dimensionless quantities,
λðM0Þ=β. With vweak ≡ v0, the ’t Hooft naturalness of
the “small ratio” of vweak=MPlanck, or vweak=MGUT, would
be, in analogy to QCD, associated with the limit β → 0,
which is again the limit of classical scale invariance, ℏ → 0.
Of course, the RG running of λðμÞ can be complicated over
a large range of μ.
β, which we have approximated as a constant above, is

the β function of λ which defines the Gell-Mann–Low
renormalization group equation [29]

dλ
d lnðμÞ

¼ βðλÞ: (5)

To see the structure of the CW potential in somewhat
greater detail we expand the potential of Eq. (3) in H about
a hypothetical vacuum expectation value v,

jHj ¼ vþ h=
ffiffiffi
2

p
; (6)

where h is a physical Higgs boson field, according to
λðjHjÞ ¼ β lnðjHj=MÞ,

λðvþ h=
ffiffiffi
2

p
Þ ¼ λðvÞ þ β lnð1þ h=
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2

p
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20
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FIG. 1. Classical ∼λv4 potential.

FIG. 3. Resulting CW potential, ∼βv4 lnðv=MÞ.

FIG. 2. Typical RG trajectory λ ∼ β lnðv=MÞ.
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βv4 lnðv=MÞ (3)

This potential has a local minimum, as in Fig. 3, at
v0 ¼ Me−1=4. A stable minimum of the potential; i.e.,

one with a positive curvature at the minimum, or m2
h > 0,

occurs just below the zero-crossing of λðvÞ from a negative
to a positive value. Hence λmust be negative and β must be
positive at the minimum [we’ll see in Section V that there
are alternative solutions involving two loops in which the
situation is flipped; i.e., β (λ) can be negative (positive)].
If λðμÞ continues to run as ∝ β lnðμ=MÞ, we would see

that the ratio of the VEV, v0, to any other scale M0 is then

v0
M0 ∝ exp

!
−
λðM0Þ
β

"
: (4)

A large hierarchy between v0 and M0 can be exponentially
controlled by the ratio of dimensionless quantities,
λðM0Þ=β. With vweak ≡ v0, the ’t Hooft naturalness of
the “small ratio” of vweak=MPlanck, or vweak=MGUT, would
be, in analogy to QCD, associated with the limit β → 0,
which is again the limit of classical scale invariance, ℏ → 0.
Of course, the RG running of λðμÞ can be complicated over
a large range of μ.
β, which we have approximated as a constant above, is

the β function of λ which defines the Gell-Mann–Low
renormalization group equation [29]

dλ
d lnðμÞ

¼ βðλÞ: (5)

To see the structure of the CW potential in somewhat
greater detail we expand the potential of Eq. (3) in H about
a hypothetical vacuum expectation value v,

jHj ¼ vþ h=
ffiffiffi
2

p
; (6)

where h is a physical Higgs boson field, according to
λðjHjÞ ¼ β lnðjHj=MÞ,

λðvþ h=
ffiffiffi
2

p
Þ ¼ λðvÞ þ β lnð1þ h=

ffiffiffi
2

p
vÞ

≈ λðvÞ þ β

!
hffiffiffi
2

p
v
−

h2

4v2
þ h3

6
ffiffiffi
2

p
v3

−
h4

16v4

þ h5

20
ffiffiffi
2

p
v5

"
þOðh6Þ: (7)

FIG. 1. Classical ∼λv4 potential.

FIG. 3. Resulting CW potential, ∼βv4 lnðv=MÞ.

FIG. 2. Typical RG trajectory λ ∼ β lnðv=MÞ.

IS THE HIGGS BOSON ASSOCIATED WITH COLEMAN- … PHYSICAL REVIEW D 89, 073003 (2014)

073003-3

- local minimum 

2

I. INTRODUCTION

v0 = Me�1/4 (1)

|�| (2)

�VCW (3)

+
1

64⇡2
TrM4(�)

✓

log
M2(�)

µ2
� 3

2

◆

(4)

x = vu/vd (5)

In spite of the fundamental importance for the understanding of the electroweak symmetry breaking, the discovery
of what appears to be the long-sought Higgs boson still leaves many issues of the Standard Model (SM) of particle
interactions unaddressed. Laboratory and astrophysical observations give us an extremely detailed picture of massive
neutrino and lepton mixing which clearly indicate the need for physics beyond the SM. Dark matter is required to
account for more than 20% of the mass of the Universe, where antimatter is a very rare component. From a theoretical
point of view, the absence of new particles at the TeV scale raises the issue of the stability of the electroweak scale in
the presence of hypothetical new heavy states associated to, e.g., grand unification or other high-scale dynamics (if
nothing else gravity does).

In a recent paper [1] we attempted to show that most of these issues can be organically addressed in a minimal
renormalizable framework that just extends the Higgs sector of the SM. While providing a structural connection
among di↵erent open questions, the model naturally o↵ers a stable spectrum of exotic scalar states at the TeV scale,
thus opening the possibility of a test at the LHC.

The proposal in [1] extends the model discussed in [2, 3] which provided a connection between an invisible axion
à la Dine-Fischler-Srednicki-Zhitnitsky (DFSZ) [4, 5] and the one-loop generation of neutrino masses à la Zee [6, 7].
As explicit and potentially realistic realizations of such a scheme we surveyed in [1] three setups where the neutrino
mass arises at di↵erent loop orders, namely, at the tree level via Type-II seesaw [8–12], at one loop as in [13], and at
two loops as in the Zee-Babu model [14, 15], respectively.

Regardless of the presence of the large Peccei-Quinn (PQ) scale, in all variants of the scheme discussed in [1],
a natural and stable electroweak setup is obtained by invoking a decoupling behaviour of the scalar singlet field
responsible for the PQ symmetry breaking. All its interactions in the scalar potential (besides the self-interaction)
are scaled down by powers of the electroweak over the PQ scales in such a way that all non-singlet states acquire
weak-scale masses. This “ultraweak” setting of the singlet scalar interactions is in fact technically stable since the
decoupling of the singlet corresponds to an extended Poincaré symmetry of the action [2, 16].1

The presence of the invisible axion requires at least two Higgs doublets and a complex singlet field. One or more
additional scalars are then responsible for the generation of Majorana neutrino masses. The scalar spectra obtained
in [1] are naturally compatible with one light SM-like Higgs (a general discussion on the decoupling and alignment
limits in a two Higgs doublet context is found in [18]). On top of that, perturbative naturalness implies that the new
scalars should be within the reach of the LHC. As a fringe benefit of the extension of the scalar sector the stability of
the electroweak vacuum is expected to be improved with respect to the SM [19, 20] (for a recent overview see [21]).

Hence, a stable renormalizable and realistic extension of the SM is obtained that not only addresses the origin of
the neutrino masses and mixings but, at the same time, connects them to the presence of an invisible axion, a viable
dark matter candidate (at variance with the DFSZ model, in the current setup the axion entertains tiny couplings to
the neutrinos). These models, in their minimal realizations, do not exhibit additional sources of CP violation, thus
fostering the dynamical solution of the strong CP problem via the PQ mechanism [22].

1
Comments on the role of gravity in such a setting can be found in [17].
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à la Dine-Fischler-Srednicki-Zhitnitsky (DFSZ) [4, 5] and the one-loop generation of neutrino masses à la Zee [6, 7].
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mass arises at di↵erent loop orders, namely, at the tree level via Type-II seesaw [8–12], at one loop as in [13], and at
two loops as in the Zee-Babu model [14, 15], respectively.
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are scaled down by powers of the electroweak over the PQ scales in such a way that all non-singlet states acquire
weak-scale masses. This “ultraweak” setting of the singlet scalar interactions is in fact technically stable since the
decoupling of the singlet corresponds to an extended Poincaré symmetry of the action [2, 16].1

The presence of the invisible axion requires at least two Higgs doublets and a complex singlet field. One or more
additional scalars are then responsible for the generation of Majorana neutrino masses. The scalar spectra obtained
in [1] are naturally compatible with one light SM-like Higgs (a general discussion on the decoupling and alignment
limits in a two Higgs doublet context is found in [18]). On top of that, perturbative naturalness implies that the new
scalars should be within the reach of the LHC. As a fringe benefit of the extension of the scalar sector the stability of
the electroweak vacuum is expected to be improved with respect to the SM [19, 20] (for a recent overview see [21]).
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