The Elementary Goldstone Higgs

Works in collaboration with
T. Alanne, H. Gertov, E. Molinaro, F. Sannino

Aurora Meroni

SCALARS, 6 December 2015

Cosmology \& Particle Physics

The Standard Model

- Unification of strong and electroweak interactions $\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(\mathrm{I})$
- Higgs sector exhibits even larger chiral symmetry
- interactions: gauge, Yukawas and selfinteractions
- precision obtained is at the level of 10% in the best channels (WW and ZZ)

presented at LHCP-20I5, I5th September 2015 [ATALS-CONF-20I5-044; CMS-PAS-HIG-I5-002]

Open problems \& unknowns (pheno)

- Explanation of matter-antimatter asymmetry
- Elusive sector: neutrinos and DM (BSM physics!)
- absolute value of neutrino masses, Hierarchy (normal or inverted), CP-phases: δ, and Majorana phases
- Connection between non zero neutrino masses and symmetries for the lepton mixing
- Nature of massive neutrinos $(2 \beta 0 \nu)$: Dirac or Majorana

$$
\left|<m>\left|=\left|\sum_{j}^{\text {light }}\left(U_{e j}^{\text {PMNS }}\right)^{2} m_{j}\right|\right.\right.
$$

Open problems (theory)

- Hierarchy problem:Why is the $\mathrm{SU}(2) \times \mathrm{U}(\mathrm{I})$ breaking scale so much smaller than the unification scale? (Absence of mechanisms establishing the EW scale against quantum corrections)
- Lack of dynamical motivation for the origin of SSB
- Flavour puzzle: Why does Nature repeat Herself?
- The absence of absolute vacuum stability

Elementary Goldstone Higgs

H. Gertov, A. M. , E. Molinaro, F. Sannino Phys. Rev. D 92, 095003 (2015)
T. Alanne, H. Gertov, F. Sannino, K. Tuominen Phys. Rev. D 91, 095021 (2015)

- We extend the Higgs sector symmetry
- The physical Higgs emerges as a pseudo Nambu Goldstone Boson (pNGB).
- We explore a different paradigm, that is the one that allows to disentangle the vacuum expectation of the elementary Higgs sector from the EW scale.
- Calculable radiative corrections induce the proper breaking of the EW symmetry and naturally aligns the vacuum in the pNGB Higgs direction.
- The EW scale is only radiatively induced and it is order of magnitudes smaller than the scale of the Higgs sector in isolation.
- The present realization is, by construction, UV complete and under perturbative control.

Alignment of the vacuum

- We study $\mathbf{G}=\mathbf{S U}(4)$ and $\mathbf{H}=\mathbf{S p}(4)$
- The Higgs arises as one of the 5 Goldstone bosons belonging to the coset $S U(4) / S p(4)$.

$$
\theta=0
$$

- EW gauge group does not break
- Higgs is a Goldstone boson

$$
\theta=\pi / 2
$$

- EW breaks completely
- Higgs is a massive excitation

Description valid also for TC
Peskin Nucl. Physics BI75 (1980) I97
Preskill Nucl. Physics B I77 (I98I) 21-59

The EGH model

$$
S O(6) \sim S U(4) \rightarrow S p(4) \sim S O(5)
$$

$$
\begin{aligned}
& T_{a} 10 \text { generators of } \mathrm{Sp}(4) \\
& X_{a} 5 \text { broken generators of } \mathrm{SU}(4)
\end{aligned}
$$

How do I break it?
6-dim irrep (real) of $\mathrm{SU}(4): \quad M^{[i, j]}$

$$
\boxminus \quad M=\left[\frac{1}{2}(\sigma+i \Theta)+\sqrt{2}\left(\Pi_{i}+i \tilde{\Pi}_{i}\right) X_{\theta}^{i}\right] E_{\theta}
$$

Vacuum Alignment

$$
\langle M\rangle=\frac{v}{2} E_{\theta}
$$

Both for fundamental \& composite
Appelquist, Sannino, 98, 99
Ryttov, Sannino, 2008
Katz, Nelson Walker, 2005
Gripaios, Pomarol, Riva, Serra, 2009
Galloway, Evans, Luty, Tacchi, 2010
The vacuum used is a superposition of two vacua

$$
E_{\theta}=\cos \theta E_{B}+\sin \theta E_{H}=-E_{\theta}^{T}
$$

Electroweak vacuum

$$
E_{B}=\left(\begin{array}{cc}
i \sigma_{2} & 0 \\
0 & -i \sigma_{2}
\end{array}\right)
$$

Technicolor vacuum

$$
E_{H}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

Tree-Level Scalar potential

$$
\begin{aligned}
V_{M} & =\frac{1}{2} m_{M}^{2} \operatorname{Tr}\left[M^{\dagger} M\right]+c_{M} P f(M) \\
& +\frac{\lambda}{4} \operatorname{Tr}\left[M^{\dagger} M\right]^{2}+\lambda_{1} \operatorname{Tr}\left[M^{\dagger} M M^{\dagger} M\right] \\
& -2 \lambda_{2} \operatorname{Pf}(M)^{2}+\frac{\lambda_{3}}{2} \operatorname{Tr}\left[M^{\dagger} M\right] P f(M)+\text { h.c. }, \\
V_{D M} & =\frac{\mu_{M}^{2}}{8} \operatorname{Tr}\left[E_{A} M\right] \operatorname{Tr}\left[E_{A} M\right]^{*}=\frac{1}{2} \mu_{M}^{2}\left(\Pi_{5}^{2}+\tilde{\Pi}_{5}^{2}\right),
\end{aligned}
$$

$$
\text { with } E_{A}=\left(\begin{array}{cc}
i \sigma_{2} & 0 \\
0 & i \sigma_{2}
\end{array}\right)
$$

$$
\begin{gathered}
V=V_{M}+V_{D M} \\
m_{\sigma}^{2} \equiv M_{\sigma}^{2}, \quad m_{\Theta}^{2} \equiv M_{\Theta}^{2}, \quad m_{\tilde{\Pi}_{i}}^{2} \equiv M_{\Theta}^{2}+2 \lambda_{f} v^{2} \quad m_{\tilde{\Pi}_{5}}^{2} \equiv M_{\Theta}^{2}+2 \lambda_{f} v^{2}+\mu_{M}^{2}
\end{gathered}
$$

Yukawa Interactions

Operators that explicitly break the $S U(4)$ global symmetry

$$
\mathcal{L}_{q}^{\mathrm{Y}}+\mathcal{L}_{\ell}^{\mathrm{Y}}+\mathcal{L}_{\nu}^{\mathrm{Y}+\text { Majorana }}
$$

$\square \quad \mathbf{L}_{\alpha}=\left(\begin{array}{llll}L, & \tilde{\nu}, \quad \tilde{\ell}\end{array}{ }_{\alpha L}^{T} \sim \mathbf{4}, \quad \mathbf{Q}_{i}=\left(\begin{array}{lll}Q, & \tilde{q}^{u}, & \tilde{q}^{d}\end{array}\right)_{i L}^{T} \sim \mathbf{4}\right.$

$$
m_{F}=y_{F} \frac{v \sin \theta}{\sqrt{2}}
$$

$$
\begin{aligned}
-\mathcal{L}_{q, \ell, \nu}^{Y} & =\frac{Y_{i j}^{u}}{\sqrt{2}}\left(\mathbf{Q}_{i}^{T} P_{a} \mathbf{Q}_{j}\right)^{\dagger} \operatorname{Tr}\left[P_{a} M\right]+\frac{Y_{i j}^{d}}{\sqrt{2}}\left(\mathbf{Q}_{i}^{T} \bar{P}_{a} \mathbf{Q}_{j}\right)^{\dagger} \operatorname{Tr}\left[\bar{P}_{a} M\right] & & P_{1}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
\mathbf{0}_{\mathbf{2}} & \tau_{3} \\
-\tau_{3} & \mathbf{0}_{\mathbf{2}}
\end{array}\right), \quad P_{2}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
\mathbf{0}_{\mathbf{2}} & \tau^{-} \\
-\tau^{+} & \mathbf{0}_{\mathbf{2}}
\end{array}\right), \\
& +\frac{Y_{\alpha \beta}^{\nu}}{\sqrt{2}}\left(\mathbf{L}_{\alpha}^{T} P_{a} \mathbf{L}_{\beta}\right)^{\dagger} \operatorname{Tr}\left[P_{a} M\right]+\frac{Y_{\alpha}^{\ell}}{\sqrt{2}}\left(\mathbf{L}_{\alpha}^{T} \bar{P}_{a} \mathbf{L}_{\beta}\right)^{\dagger} \operatorname{Tr}\left[\bar{P}_{a} M\right] & & \bar{P}_{1}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
\mathbf{0}_{\mathbf{2}} & \tau^{+} \\
-\tau^{-} & \mathbf{0}_{\mathbf{2}}
\end{array}\right), \quad \overline{P_{2}}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
\mathbf{0}_{\mathbf{2}} & \bar{\tau}_{3} \\
-\bar{\tau}_{3} & \mathbf{0}_{\mathbf{2}}
\end{array}\right)
\end{aligned}
$$

Electroweak Gauge Bosons

The electroweak interactions appear in the kinetic term of the Lagrangian

$$
\mathscr{L}_{\text {kin }}=\frac{1}{2} \operatorname{Tr}\left[D_{\mu} M^{\dagger} D^{\mu} M\right]
$$

where

$$
\begin{gathered}
D_{\mu} M=\partial_{\mu} M-i\left(G_{\mu} M+M G_{\mu}^{\mathrm{T}}\right) \\
G_{\mu}
\end{gathered}=g W_{\mu}^{i} T_{L}^{i}+g^{\prime} B_{\mu} T_{R}^{3}
$$

which gives the masses

$$
\begin{aligned}
m_{W}^{2} & =\frac{1}{4} g^{2} v^{2} \sin ^{2} \theta \\
m_{Z}^{2} & =\frac{1}{4}\left(g^{2}+g^{\prime 2}\right) v^{2} \sin ^{2} \theta \\
m_{A}^{2} & =0
\end{aligned}
$$

Quantum Corrections

The Renormalized Coleman-Weinberg potential at I-loop:

$$
\begin{align*}
& \delta V(\Phi)=\frac{1}{64 \pi^{2}} \operatorname{Str}\left[\mathcal{M}_{0}^{4}(\Phi) \log \frac{\mathcal{M}_{0}^{2}(\Phi)}{\mu_{0}^{2}}-C\right]+V_{G B} \\
& C_{\text {scalar }}=\frac{3}{2} \quad C_{\mathrm{EW}}=\frac{5}{6} \quad C_{\text {top }}=\frac{3}{2} \\
& \delta V\left(\sigma, \Pi_{4}\right)=\delta V_{\mathrm{EW}}\left(\sigma, \Pi_{4}\right)+\delta V_{\mathrm{top}}\left(\sigma, \Pi_{4}\right)+\delta V_{\mathrm{sc}}\left(\sigma, \Pi_{4}\right) \\
& \delta V_{\operatorname{EW}}\left(\sigma, \Pi_{4}\right)=\frac{3}{1024 \pi^{2}} \phi^{4}\left[2 g^{4}\left(\log \frac{g^{2} \phi^{2}}{4 \mu_{0}^{2}}-\frac{5}{6}\right)+\left(g^{2}+g^{\prime 2}\right)^{2}\left(\log \frac{\left(g^{2}+g^{\prime 2}\right) \phi^{2}}{4 \mu_{0}^{2}}-\frac{5}{6}\right)\right], \\
& \delta V_{\text {top }}\left(\sigma, \Pi_{4}\right)=-\frac{3}{64 \pi^{2}} \phi^{4} y_{t}^{4}\left(\log \frac{y_{t}^{2} \phi^{2}}{2 \mu_{0}^{2}}-\frac{3}{2}\right) \tag{2}
\end{align*}
$$

Parameters, Constraints and Minimization

$$
\begin{array}{lllllll}
v, & \theta, & M_{\sigma}, & M_{\Theta}, & \mu_{M}, & \tilde{\lambda}, & \lambda_{f}
\end{array}
$$

Higgs boson mass

$$
\begin{aligned}
m_{h} & =125.7 \pm 0.4 \mathrm{GeV} \\
\binom{\sigma}{\Pi_{4}} & =\left(\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right)\binom{H_{1}}{H_{2}}
\end{aligned}
$$

electroweak bosons masses
$v_{\text {ew }}=v \sin \theta=246 \mathrm{GeV}$

Higgs couplings with fermions and vector bosons

$$
\begin{gathered}
c_{V}=1.01_{-0.07}^{+0.07} \quad c_{f}=0.89_{-0.13}^{+0.14} \\
c_{V}=c_{f}=\sin (\theta+\alpha)
\end{gathered}
$$

What fixes θ ?

- Gauge and top corrections
- Explicit breaking of global symmetry
- CW analysis to determine vacuum expectation value
- Couplings close to SM values

$$
\delta V(\Phi)=\frac{1}{64 \pi^{2}} \operatorname{Str}\left[\mathcal{M}_{0}^{4}(\Phi) \log \frac{\mathcal{M}_{0}^{2}(\Phi)}{\mu_{0}^{2}}-C\right]+V_{G B}
$$

Small θ via radiative corrections

in the minimal scenario

$$
v, \quad \theta, \quad M_{S} \quad \mu_{M}, \quad \tilde{\lambda}
$$

Assuming perturbativity of $\tilde{\lambda}$

$$
\begin{gathered}
\bar{\theta}=0.136_{-0.012}^{+0.006} \\
\bar{v}=1.81_{-0.15}^{+0.08} \mathrm{TeV}
\end{gathered}
$$

In composite scenarios θ is not small (it can be smaller due to the addition of ad-hoc operators)

The minimal scenario

$$
v, \quad \theta, \quad M_{S} \quad \mu_{M}, \quad \tilde{\lambda}
$$

The Higgs mass as a constraint

$$
m_{h}=125.7 \pm 0.4 \mathrm{GeV}
$$

- The observed Higgs mass

10 \% less than the observed Higgs mass

10 \% more than the observed Higgs mass

small θ and small self-coupling

$$
v, \quad \theta, \quad M_{S} \quad \mu_{M}, \quad \tilde{\lambda}
$$

σ field and other scalars

non minimal scenario

$$
v, \quad \theta, \quad M_{\sigma}, \quad M_{S}, \quad \mu_{M}, \quad \tilde{\lambda}
$$

Assuming perturbativity of $\tilde{\lambda}$

$$
\begin{aligned}
\bar{\theta} & =0.016_{-0.002}^{+0.004} \\
\bar{f} & =15.2_{-1.4}^{+3.9} \mathrm{TeV}
\end{aligned}
$$

Testing the model

Oblique parameters ST U

- T and U are very suppressed
- S depends in the most generic case on the masses of extra massive scalars

$$
\begin{aligned}
S= & \frac{\cos ^{2}(\theta+\alpha)}{72 \pi}\left(\frac{-5 m_{H}^{4}+22 m_{H}^{2} m_{Z}^{2}-5 m_{Z}^{4}}{\left(m_{H}^{2}-m_{Z}^{2}\right)^{2}}+\frac{5 m_{h}^{4}-22 m_{h}^{2} m_{Z}^{2}+5 m_{Z}^{4}}{\left(m_{h}^{2}-m_{Z}^{2}\right)^{2}}\right. \\
& \left.-\frac{6 m_{h}^{4}\left(m_{h}^{2}-3 m_{Z}^{2}\right) \log \left(\frac{m_{n}^{2}}{m_{Z}^{2}}\right)}{\left(m_{h}^{2}-m_{Z}^{2}\right)^{3}}+\frac{6 m_{H}^{4}\left(m_{H}^{2}-3 m_{Z}^{2}\right) \log \left(\frac{m_{H}^{2}}{m_{Z}^{2}}\right)}{\left(m_{H}^{2}-m_{Z}^{2}\right)^{3}}\right) \\
& \left.+\frac{\sin ^{2} \theta}{72 \pi}\left(-\frac{6\left(M_{\Theta}^{6}-3 M_{\Theta}^{4} M_{\Pi}^{2}\right) \log \left(\frac{M_{n}^{2}}{M_{\Theta}^{2}}\right)}{\left(M_{\Theta}^{2}-M_{\Pi}^{2}\right)^{3}}+\frac{-5 M_{\Theta}^{4}+22 M_{\Theta}^{2} M_{\Pi}^{2}-5 M_{\Pi}^{4}}{\left(M_{\Theta}^{2}-M_{\Pi}^{2}\right.}\right)^{2}\right), \\
T= & \frac{\cos ^{2}(\theta+\alpha)}{16 \pi}\left(\frac{\log \left(\frac{m_{H}^{2}}{m_{h}^{2}}\right)}{c_{W}^{2}}-\frac{\left(4 m_{h}^{2}+m_{Z}^{2}\right) \log \left(\frac{m_{h}^{2}}{m_{Z}^{2}}\right)}{c_{W}^{2} s_{W}^{2}\left(m_{h}^{2}-m_{Z}^{2}\right)}+\frac{\left(4 m_{H}^{2}+m_{Z}^{2}\right) \log \left(\frac{m_{H}^{2}}{m_{Z}^{2}}\right)}{c_{W}^{2} s_{W}^{2}\left(m_{H}^{2}-m_{W}^{2}\right)}\right. \\
& \left.+\frac{\left(4 m_{h}^{2}+m_{W}^{2}\right) \log \left(\frac{m_{h}^{2}}{m_{W}^{2}}\right)}{s_{W}^{2}\left(m_{Z}^{2}-m_{W}^{2}\right)}-\frac{\left(4 m_{H}^{2}+m_{W}^{2}\right) \log \left(\frac{m_{H}^{2}}{m_{W}^{2}}\right)}{c_{W}^{2}\left(m_{h}^{2}-s_{W}^{2}\right)}\right), \\
U=- & \frac{\cos ^{2}(\theta+\alpha)}{12 \pi}\left(2\left(m_{W}^{2}-m_{Z}^{2}\right)\left(\frac{m_{h}^{2}\left(m_{h}^{4}-m_{W}^{2} m_{Z}^{2}\right)}{\left(m_{h}^{2}-m_{W}^{2}\right)^{2}\left(m_{h}^{2}-m_{Z}^{2}\right)^{2}}-\frac{m_{H}^{2}\left(m_{H}^{4}-m_{W}^{2} m_{Z}^{2}\right)}{\left(m_{H}^{2}-m_{W}^{2}\right)^{2}\left(m_{H}^{2}-m_{Z}^{2}\right)^{2}}\right)\right. \\
& +\frac{m_{W}^{4}\left(m_{W}^{2}-3 m_{h}^{2}\right) \log \left(\frac{m_{h}^{2}}{m_{W}^{2}}\right)}{\left(m_{h}^{2}-m_{W}^{2}\right)^{3}}+\frac{m_{Z}^{4}\left(m_{Z}^{2}-3 m_{h}^{2}\right) \log \left(\frac{m_{h}^{2}}{m_{Z}^{2}}\right)}{\left(m_{Z}^{2}-m_{h}^{2}\right)^{3}} \\
& \left.+\frac{m_{W}^{4}\left(m_{W}^{2}-3 m_{H}^{2}\right) \log \left(\frac{m_{H}^{2}}{m_{W}^{2}}\right)}{\left(m_{W}^{2}-m_{H}^{2}\right)^{3}}+\frac{m_{Z}^{4}\left(m_{Z}^{2}-3 m_{H}^{2}\right) \log \left(\frac{m_{H}^{2}}{m_{Z}^{2}}\right)}{\left(m_{H}^{2}-m_{Z}^{2}\right)^{3}}\right) .
\end{aligned}
$$

Outlook

- Radiatively induced Higgs model, like EGH, are valid alternative,
- the observed Higgs emerges as a pNGB with its mass arising via radiative corrections.
- massive spectrum in TeV range
- Yukawa sector
- T and U very well protected. S is suppressed by higher massive states and $\sin \theta$!
- We need to test models! We need good observables in order to test them in the next collider generation:
- trilinear coupling
- ...

Thanks

for the altention

