GUT-inspired SUSY and the muon g-2 anomaly: prospects for LHC 14 TeV

Andrew J. Williams

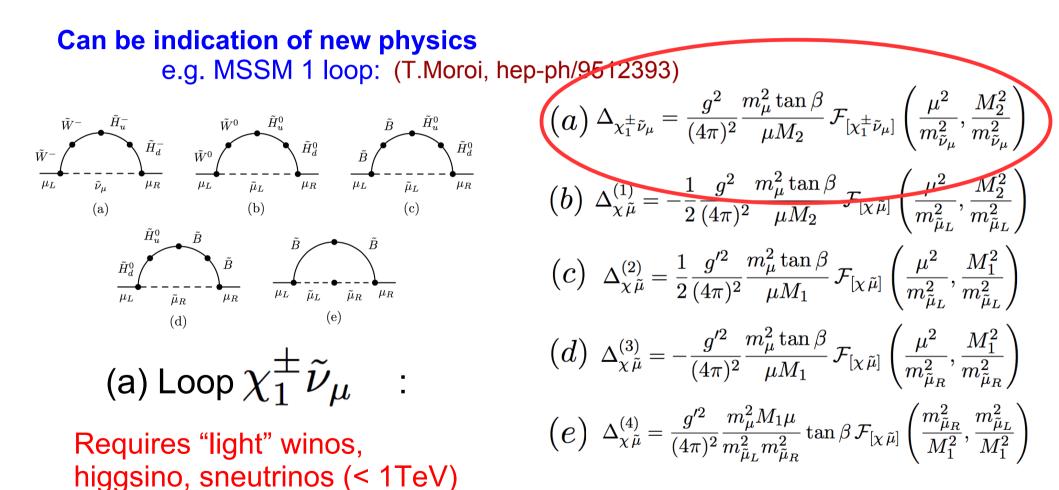
National Centre for Nuclear Research (NCBJ) Warsaw, Poland

SCALARS 2015 Warsaw, December 6th, 2015

Based on

K.Kowalska, L.Roszkowski, E.Sessolo, and AJW ArXiv:1503.08219 JHEP 1506 (2015) 020

Grants for innovation. Project operated within the Foundation for Polish Science "WELCOME" co-financed by the European Regional Development Fund


Outline

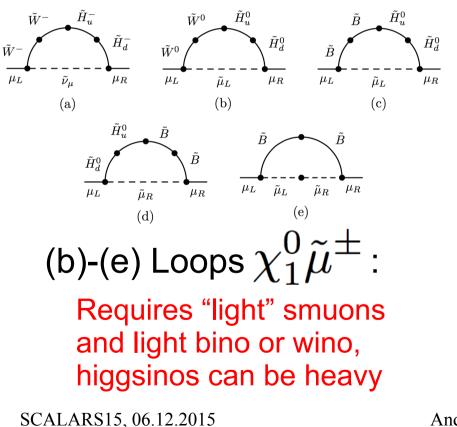
- Muon g-2: discrepancy w/ SM and p.s. in the MSSM
- If real, meaningful consequences for the LHC?
 - In constrained vs phenomenological models
 - In gravity mediation with non-universal gauginos (NUGM) and GUT symmetries (Full p.s. within LHC 14 TeV!)
- Conclusions

Muon g-2 anomaly

> 3 σ discrepancy with the SM:

$$\delta \left(g - 2\right)_{\mu} = (28.7 \pm 8.0) \times 10^{-10}$$

SCALARS15, 06.12.2015

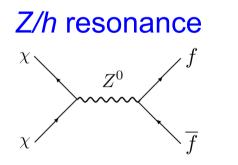

Muon g-2 anomaly

> 3 σ discrepancy with the SM:

$$\delta \left(g - 2\right)_{\mu} = (28.7 \pm 8.0) \times 10^{-10}$$

Can be indication of new physics

e.g. MSSM 1 loop: (T.Moroi, hep-ph/9512393)

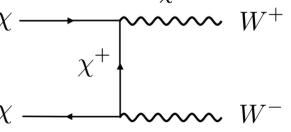

 $\begin{aligned} & (a) \ \Delta_{\chi_{1}^{\pm}\tilde{\nu}_{\mu}} = \frac{g^{2}}{(4\pi)^{2}} \frac{m_{\mu}^{2} \tan \beta}{\mu M_{2}} \ \mathcal{F}_{[\chi_{1}^{\pm}\tilde{\nu}_{\mu}]} \left(\frac{\mu^{2}}{m_{\tilde{\nu}_{\mu}}^{2}}, \frac{M_{2}^{2}}{m_{\tilde{\nu}_{\mu}}^{2}} \right) \\ & (b) \ \Delta_{\chi_{\mu}}^{(1)} = -\frac{1}{2} \frac{g^{2}}{(4\pi)^{2}} \frac{m_{\mu}^{2} \tan \beta}{\mu M_{2}} \ \mathcal{F}_{[\chi_{\mu}]} \left(\frac{\mu^{2}}{m_{\mu_{L}}^{2}}, \frac{M_{2}^{2}}{m_{\tilde{\mu}_{L}}^{2}} \right) \\ & (c) \ \Delta_{\chi_{\mu}}^{(2)} = \frac{1}{2} \frac{g'^{2}}{(4\pi)^{2}} \frac{m_{\mu}^{2} \tan \beta}{\mu M_{1}} \ \mathcal{F}_{[\chi_{\mu}]} \left(\frac{\mu^{2}}{m_{\mu_{L}}^{2}}, \frac{M_{1}^{2}}{m_{\mu_{L}}^{2}} \right) \\ & (d) \ \Delta_{\chi_{\mu}}^{(3)} = -\frac{g'^{2}}{(4\pi)^{2}} \frac{m_{\mu}^{2} \tan \beta}{\mu M_{1}} \ \mathcal{F}_{[\chi_{\mu}]} \left(\frac{\mu^{2}}{m_{\mu_{L}}^{2}}, \frac{M_{1}^{2}}{m_{\mu_{L}}^{2}} \right) \\ & (e) \ \Delta_{\chi_{\mu}}^{(4)} = \frac{g'^{2}}{(4\pi)^{2}} \frac{m_{\mu}^{2} \ln \beta}{m_{\mu_{L}}^{2}} \\ & (a) \ \mathcal{F}_{[\chi_{\mu}]} \left(\frac{m_{\mu}^{2}}{m_{\mu_{R}}^{2}}, \frac{M_{1}^{2}}{m_{\mu_{R}}^{2}} \right) \end{aligned}$

MSSM: Other constraints

A solution to the muon g-2 anomaly in the MSSM should be in agreement with other experimental constraints and expectations for DM:

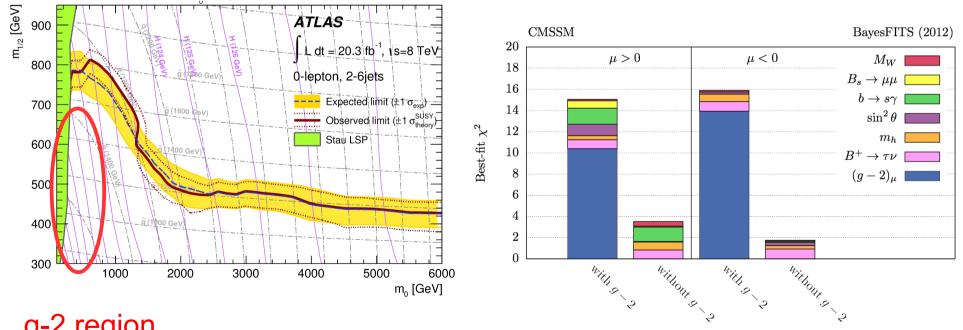
Key Constraints

- The Higgs mass at 125 GeV
- LHC direct bounds on sparticles
- The lightest neutralino as (part of) dark matter (limited # of mechanisms make this possible):


Slepton coannihilation $\chi \longrightarrow \tau^{\pm}$ $\tilde{\tau}^{\pm}$ $\tilde{\tau}^{\pm} Z^{0}$

Scenarios consistent with g-2 tested / testable at the LHC?

SCALARS15, 06.12.2015

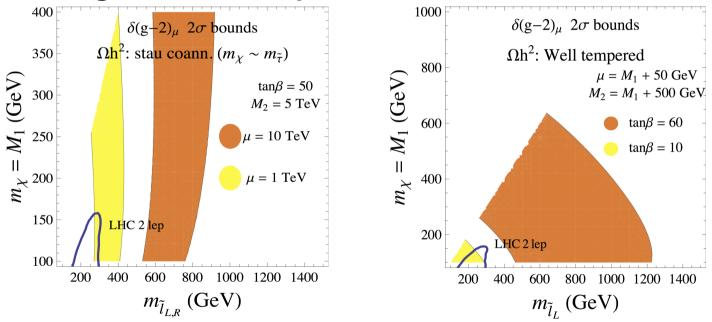

Andrew Williams

Mixed bino/higgsino Pure higgsino Pure wino $\Omega_{\chi}h^2 < 0.12$

Extreme cases: from "no solution" to "too much freedom"

 CMSSM / NUHM $m_0, m_{1/2}, A_0, \tan\beta, \operatorname{sgn}(\mu)$ **Combination of Higgs mass value** and LHC direct squark/gluino bounds => No solution left for g-2

g-2 region


Extreme cases: from "no solution" to "too much freedom"

pMSSM19 free parameters

Plenty of parameter space still available => Limited predictivity at the LHC 14 TeV

 $m_{\chi_1^{\pm}} \approx m_{\chi}$

Dark matter from Slepton, sneutrino coannihilations: Chargino mass, slepton mass outside LHC reach

Dark matter from Well tempered, pure winos, pure higgsinos: Compressed spectra, outside 14 TeV reach...

Intermediate possibility

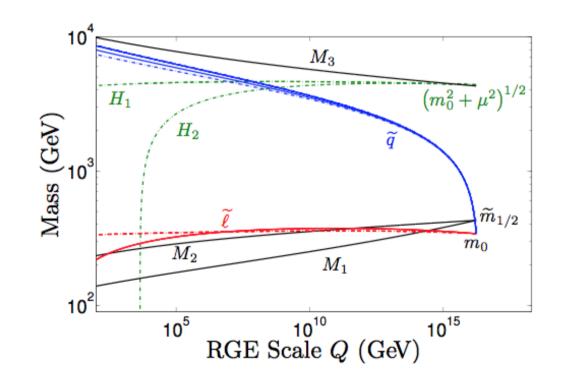
 Gravity mediation with gaugino non-universality interesting possibility

At the GUT scale:

 $M_3 \gg M_1, M_2$

At the SUSY scale:

Color sector becomes heavy


- Fits the Higgs
- Evades LHC sq/gluino bounds

Noncolor sector remains light

• Fits g-2

(see, e.g., Akula and Nath, 1304.5526)

$$egin{aligned} \mathcal{L} &\sim rac{F_{ab}}{M_{Pl}} \lambda_a \lambda_b & \lambda_a \lambda_b \sim (\mathbf{24} imes \mathbf{24})_{ ext{sym}} = \ & \mathbf{1} + \mathbf{24} + \mathbf{75} + \mathbf{200} \end{aligned}$$

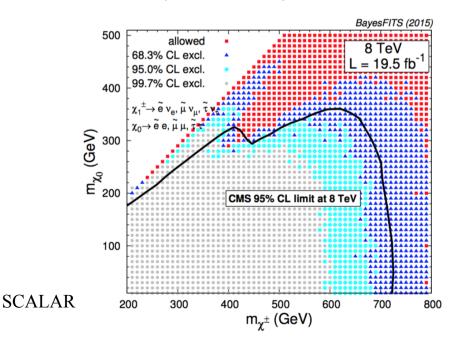
Simulation of LHC bounds and projections

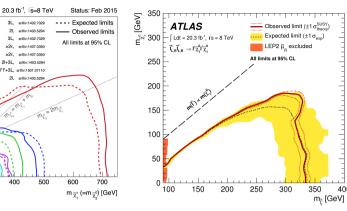
ATI AS Preliminan

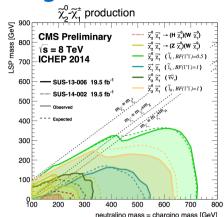
⊽*⊽ via Ĩ./ v

 $\tilde{v}^* \tilde{v}^0$ via $\tilde{\tau} / \tilde{v}$.

200

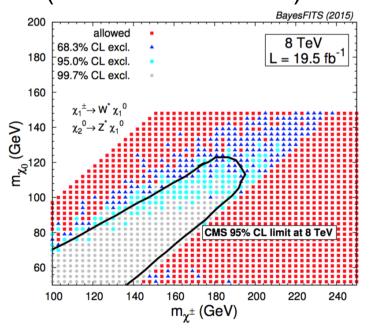

300


400


8 TeV LHC bounds: **Recast existing** searches for new models

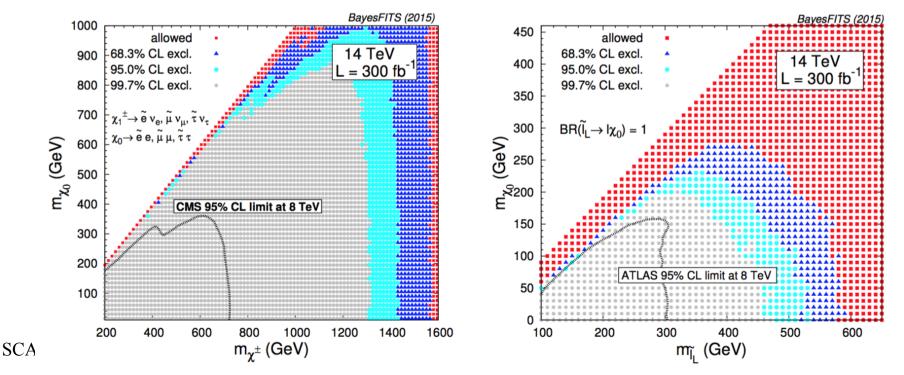
- ATLAS 3 lepton
- ATLAS 2 lepton

We use CheckMATE Drees, Dreiner, Schmeier, Tattersall, Kim (1312.2591)



• CMS 3 lepton We use our own code, produces point by point likelihood function (validated down here)

400



Simulation of LHC bounds and projections 14 TeV LHC 300/fb:

Simulate SM backgrounds to 3 lepton and 2 lepton searches Compare to signal point by point **3 lepton:** 3×10^5 rare SM $1.5 \times 10^6 \ t\bar{t}$ $2 \times 10^5 \ WZ$ $1.5 \times 10^6 \ t\bar{t}$ $10^6 \ ZZ$

MadGraph5_aMC@NLO --- PYTHIA8 ---- DELPHES 3

Example: apply to simplified models to get a sense of reach:

Scans: GUT NUGM models

Model 1 Extension of the CMSSM

 $m_0, m_{1/2}, M_3, A_0, \tan\beta, \operatorname{sgn}(\mu)$

Model 3 SO(10)-like GUT scale b.c.

 $m_{1/2}, M_3, A_0, \tan\beta, \operatorname{sgn}(\mu)$

$$\begin{split} m_Q^2 &= m_U^2 = m_E^2 \equiv m_{16}^2 + M_D^2 \\ m_D^2 &= m_L^2 \equiv m_{16}^2 - 3M_D^2 \\ m_{H_{u,d}}^2 &\equiv m_{10}^2 \mp 2M_D^2 \end{split}$$

Model 2 Full gaugino nonuniversality

 $m_0, M_1, M_2, M_3,$ $A_0, \tan\beta, \operatorname{sgn}(\mu)$

Model 4 SU(5)-like / Pati-Salam b.c.

$$m_{1/2}, M_3, m_{H_d}^2, m_{H_u}^2,$$

$$A_0, \tan\beta, \operatorname{sgn}(\mu)$$

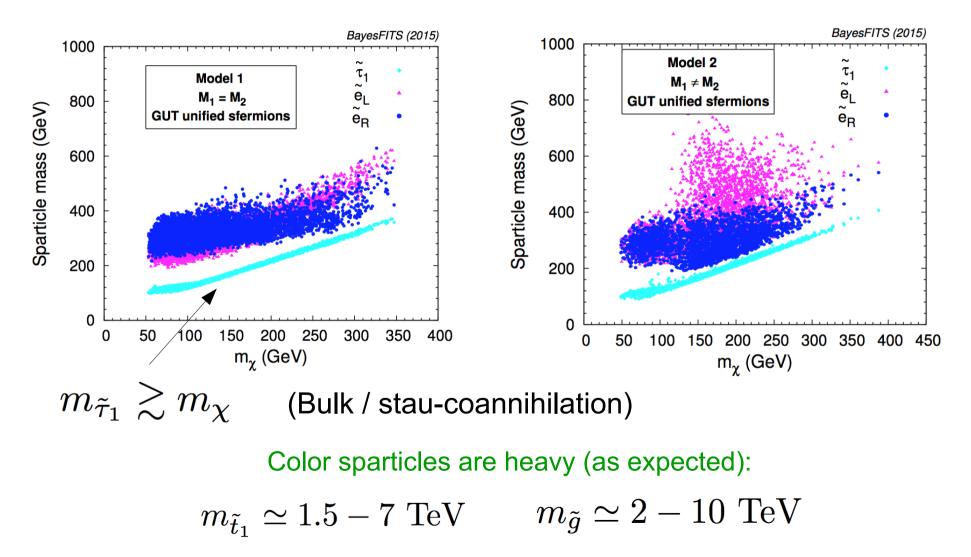
$$m_Q^2 = m_U^2 = m_E^2 \equiv m_{10}^2$$

$$m_D^2 = m_L^2 \equiv m_5^2,$$

SCALARS15, 06.12.2015

Prior ranges and constraints

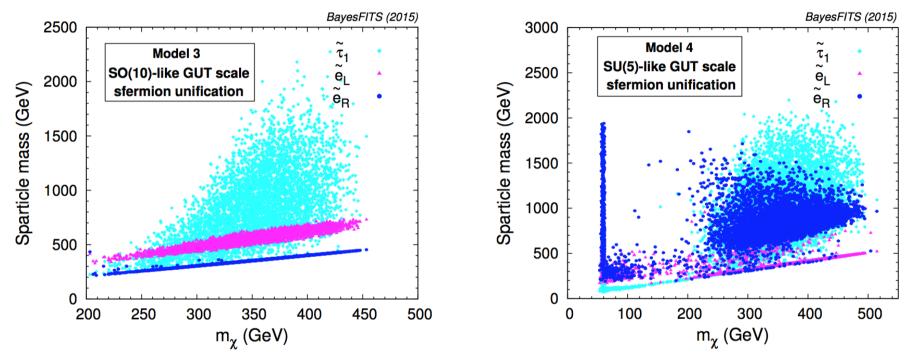
Model 1	CMSSM-like M_3 floating		
Parameter	Description	Range	
m_0	Universal scalar mass	100, 4000	
$m_{1/2}$	Bino/wino soft mass	100, 4000	
M_3	Gluino soft mass	700, 10000	
A_0	Universal trilinear coupling	-8000, 8000	
aneta	Ratio of the Higgs vevs	2, 62	
$\mathrm{sgn}\mu$	Sign of the Higgs/higgsino mass parameter	+1	
Model 2	Non-universal gaugino masses		
M_1	Bino soft mass	-4000, 4000	
M_2	Wino soft mass	-4000, 4000	
$m_0,M_3,A_0, aneta,\mathrm{sgn}\mu$	Same as Model 1	Same as Model 1	
Model 3	SO(10)-like sfermions		
m_{16}	Universal scalar mass 16 repr.	100, 4000	
m_{10}^2	Universal scalar mass 10 repr.	$-10000^2, 10000^2$	
$3 M_D^2$	D-term extra $U(1)$	$0, m_{16}^2 - (100 { m GeV})^2$	
$m_{1/2}$	Bino/wino soft mass	100, 2000	
M_3	Gluino soft mass	800, 5000	
$A_0, \tan eta, \operatorname{sgn} \mu$	Same as Model 1	Same as Model 1	
Model 4	SU(5)-like sfermions		
m_{10}	Universal scalar mass 10 repr.	100, 4000	
m_5	Universal scalar mass $\overline{5}$ repr.	100, 2000	
$m_{H_d}^2$	Down Higgs doublet soft mass	$-10000^2, 10000^2$	
$m_{H_u}^2$	Up Higgs doublet soft mass	$-10000^2, 10000^2$	
$m_{1/2}, M_3, A_0, \tan\beta \ \mathrm{sgn}\mu$	Same as Model 3	Same as Model 3	
Model 4-zoom	$SU(5) \ \mu, m_A$ parameterization		
μ	EW-scale higgsino mass parameter	10, 2000	
m_A	Pseudoscalar pole mass	100, 4000	
M3	Gluino soft mass	500, 2000	
$m_{10}, m_5, m_{1/2}, A_0, \tan eta$	Same as Model 3	Same as Model 3	


Constraint	Mean	Exp. Error	Th. Error	Ref.
Higgs sector	See text.	See text.	See text.	[86-89]
LUX	See [77, 92].	See [77, 92].	See [77, 92].	[93]
$\Omega_\chi h^2$	0.1199	0.0027	10%	[44]
$\delta \left(g-2 ight)_{\mu} imes 10^{10}$	28.7	8.0	3.0	[1, 94]
$\sin^2 heta_{ m eff}$	0.23155	0.00015	0.00015	[95]
${ m BR}\left(\overline{ m B} ightarrow { m X_s}\gamma ight) imes 10^4$	3.43	0.22	0.21	[<mark>96</mark>]
$\mathrm{BR}\left(\mathrm{B_u} \to \tau\nu\right) \times 10^4$	0.72	0.27	0.38	[97]
ΔM_{B_s}	17.719 ps^{-1}	$0.043 \ {\rm ps}^{-1}$	$2.400 \ {\rm ps}^{-1}$	[95]
M_W	$80.385{ m GeV}$	$0.015{ m GeV}$	$0.015{ m GeV}$	[95]
$\mathrm{BR}(\mathrm{B_s} \to \mu^+\mu^-) \times 10^9$	2.9	0.7	10%	[98, 99]
$\Gamma(Z o \chi \chi)$	$\leq 1.7{ m MeV}$	0.3	_	[100]

- Broad ranges scanned
- All relevant low energy constraints applied

(For g-2 SuperISO v3.4)

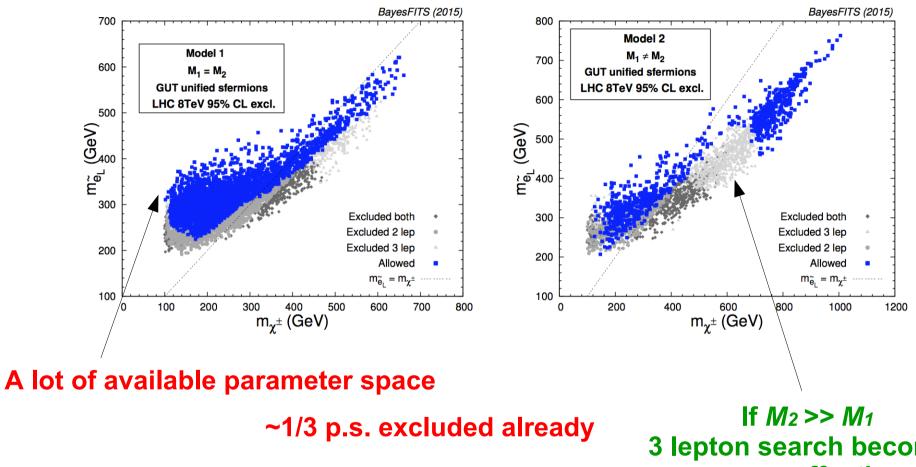
Models 1-2: Physical mass distribution


Relic density $\Omega_{\chi}h^2 \simeq 0.12$ affects EW-ino and sfermion sectors:

SCALARS15, 06.12.2015

Models 3-4: Physical mass distribution

Relic density $\Omega_{\chi}h^2 \simeq 0.12$ affects EW-ino and sfermion sectors:

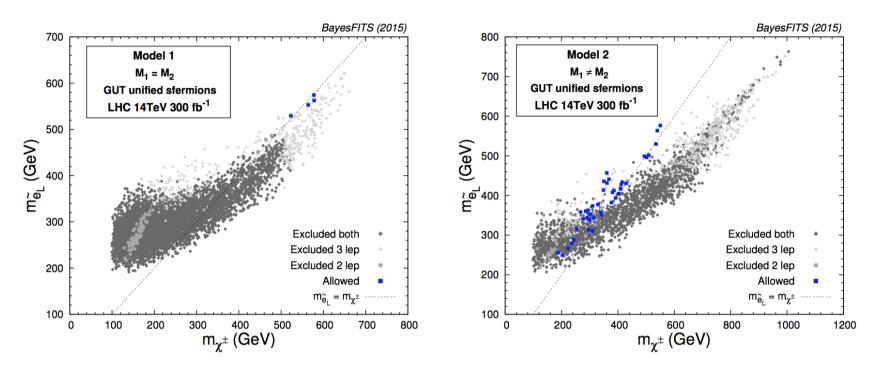

Additional mechanisms: L - R selectron/smuon, or sneutrino coannihilation Z/h resonance

Color sparticles are heavy (as expected):

$$m_{\tilde{t}_1} \simeq 1.5 - 7 \text{ TeV} \qquad m_{\tilde{g}} \simeq 2 - 10 \text{ TeV}$$

SCALARS15, 06.12.2015

Models 1-2: LHC 8 TeV bounds



Since
$$m_{\tilde{l}} > m_{\chi_1^{\pm}}$$

 $\tilde{\nu}_l \to \chi_1^{\pm} l^{\mp}$ is most effective channel

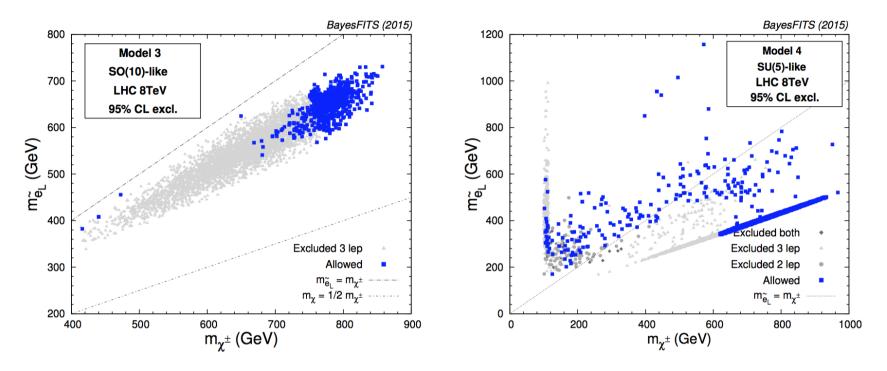
3 lepton search becomes more effective

> (stau coannihilation constrains sleptons)

Models 1-2: 14 TeV 300/fb projection

Parameter space almost fully covered!

(interplay of different production and decay channels)


A few blind spots (compressed) might escape detection:

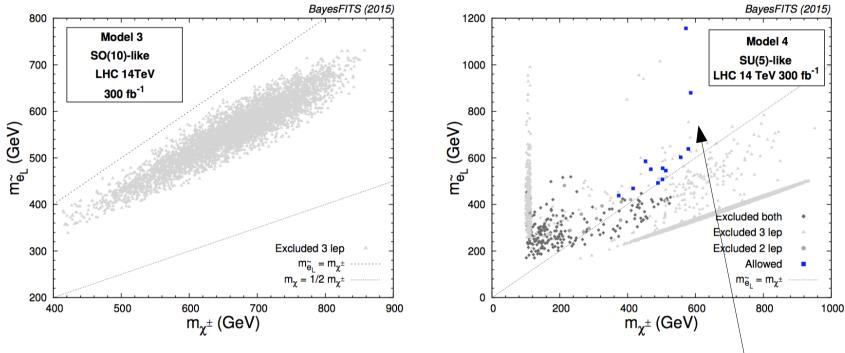
$$m_{\tilde{l}_L} \approx m_{\chi_1^{\pm}} \simeq 500 - 600 \,\mathrm{GeV}$$

$$m_{\chi_1^\pm} \approx m_{\tilde{l}_L} \approx m_\chi$$

SCALARS15, 06.12.2015

Models 3-4: LHC 8 TeV bounds

3-lepton search quite effective in placing bounds if *M*₂ ~ *M*₁ (Sleptons are kept light by requirement of coannihilation)


Channels presently unconstrained:

$$\tilde{\chi}_2^0 \chi_1^\pm \to \tilde{\tau}_1 \tau \, \tilde{\tau}_1 \nu_\tau$$

$$\tilde{\chi}_2^0 \chi_1^\pm \to \tilde{\nu}_\tau \nu_\tau \, \tilde{\nu}_\tau \tau$$

SCALARS15, 06.12.2015

Models 3-4: 14 TeV 300/fb projection

Parameter space almost fully covered!

(Actually the full p.s. of SO(10) is testable with 100-110/fb!)

Some SU(5) might remain beyond reach...

...As 3-lepton not very sensitive to decays through Higgs

$$\tilde{\chi}_2^0 \chi_1^{\pm} \to h \tilde{\chi}_1^0 W^{\pm} \tilde{\chi}_1^0$$

SCALARS15, 06.12.2015

Andrew Williams

3000/fb will be enough! 18

Summary

- Muon g-2 anomaly: easy fit in the MSSM, but one needs more specific theoretical framework for predictable scenarios.
- GUT scale b.c. $M_3 >> M_1$, M_2 fit all constraints well.
- These scenarios only partially constrained at the LHC 8 TeV.
- Almost fully tested at LHC 14 TeV.
- Possible blind spots: Charginos degenerate with left selectrons; no light selectrons, decay involves Higgs; large BR to staus...