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Symmetries play an important rôle in multi-Higgs  
models

- reduction of the number of free parameters

- experimental predictions

Connections can be established between Symmetries  
and:

- mass degeneracies in the scalar sector

- CP violation in the scalar sector

- existence of massless scalars

- symmetries help to control HFCNC



Symmetries of the 2 Higgs Doublet Model
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symmetries, we can identify those that can potentially guarantee the mass degeneracy of scalar
states. By examining the consequences of these symmetries, we again confirm that the only
possible neutral scalar mass degeneracy in the 2HDM arises in the IDM as previously noted.

In section 3 we consider possible mass-degeneracies in the three Higgs doublet model. Using
the previous 2HDM analysis of mass degeneracies of the IDM, we construct a three Higgs dou-
blet model (3HDM) generalization of the IDM, which we call the replicated inert doublet model
(RIDM). In this model, two of the three Higgs doublets are inert, and four mass-degenerate
scalar pairs exist (two involving the charged scalar states from the inert doublets and two
involving the neutral scalar states from the inert doublets). We can explicitly identify the sym-
metries that are responsible for these mass degeneracies. We then investigate the possibility
of adding new terms to the scalar potential that partially break these symmetries while pre-
serving the mass degeneracies. In this way, we arrive at a model first proposed by Ivanov and
Silva [29]. The Ivanov and Silva scalar potential possesses a discrete subgroup of the continuous
symmetries that govern the RIDM, that maintains the mass degeneracies of the RIDM. This
discrete subgroup is the generalized CP symmetry, CP4, which has the property that (CP4)n

is the identity operator only for integer n values that are multiples of 4. The CP4 symmetry
is distinguished from the ordinary CP symmetry (denoted henceforth by CP2), which has the
property that (CP2)2 is the identity operator. Some properties of specialized 3HDMs have also
been analyzed recently in Ref. [30].

One of the most notable properties of the Ivanov-Silva (IS) model is that one can write
down the most general CP4-invariant scalar potential with three Higgs doublets, which has
the feature that at least one of the coe�cients of the quartic terms of the scalar potential
must be complex (with a nonvanishing imaginary part). Indeed, as demonstrated explicitly in
Appendix A, one cannot redefine the scalar fields within the family of Higgs bases such that
all the coe�cients of the scalar potential are real. In this case, we say that no real Higgs basis
exists. This means that CP2 is not a symmetry of the IS scalar potential and vacuum.

In section 4, we identify the existence of a physical observable of the IS model that is
present if no real Higgs basis exists (i.e., CP2 is violated) and is absent if the CP2 symmetry is
respected. As an example, we focus on Z decay into four inert neutral scalars (with some details
relegated to Appendix B). Nevertheless, the CP4 invariance guarantees that all CP-violating
observables involving the Higgs/gauge boson sector of the theory must be absent. For example,
we provide an instructive analysis in section 5 that shows how the CP4 symmetry of the IS
model with no real Higgs basis ensures the cancellation of the contributions to the CP-violating
form factors of the e↵ective ZZZ and ZW+W� vertices up to three-loop order. Finally, we
state our conclusions in section 6.

2 2HDM mass degeneracies

Consider the 2HDM, consisting of two hypercharge-one, doublet scalar fields, �1 and �2. The
most general gauge-invariant renormalizable scalar potential is
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3

11 independent parameters

If all the parameters are real CP is explicitly conserved: 
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8 Spontaneous CP violation

The S3-symmetric potential offers a very rich phenomenology, and can accommodate a
variety of physical situations, as outlined in sections 4 and 5, where we classified the
different vacua.

We assumed, for simplicity, that all parameters of the potential are real. Therefore our
discussion is done in the framework of explicit CP conservation. This raises the question
of whether or not CP can be violated spontaneously. For that purpose we can inspect the
list of complex solutions presented in Table 2. CP can only be spontaneously violated if
the Lagrangian is invariant under CP and if at the same time there is no transformation
that can be identified with a CP transformation, leaving both the Lagrangian and the
vacuum invariant. The idea of spontaneous CP violation was first proposed by T. D.
Lee [3] in the context of two Higgs doublets. In the context of the SM, with a single Higgs
doublet, a CP transformation of the scalar doublet amounts to its complex conjugation
and the scalar sector cannot violate CP. In models with several Higgs doublets complex
conjugation may be combined with a unitary transformation acting on the set of doublets,
since this transformation leaves the kinetic energy term of the Lagrangian invariant. In
this case the most general CP transformation is given by:

Φi
CP−→ UijΦ

∗
j (8.1)

with U an arbitrary unitary matrix4. This equation together with the assumption that
the vacuum is CP invariant:

CP|0⟩ = |0⟩ (8.2)

leads to the following condition [32]:

Uij⟨0|Φj|0⟩∗ = ⟨0|Φi|0⟩ (8.3)

implying that there is spontaneous CP violation if none of the CP symmetries allowed
by the Lagrangian satisfy this equation. For real vevs this condition is obviously verified.
If the Lagrangian has a discrete symmetry one must take it into consideration before
drawing conclusions. In the discussion that follows we do not take the Yukawa sector into
consideration. We now comment on each one of the cases presented in Table 2 concerning
the possibility of having spontaneous CP violation:

• The case C-I-a is a familiar one that has been discussed long ago in the framework
of the reducible representation [32]. It was pointed out that it has complex vacuum
expectation values with calculable non-trivial phases, assuming geometrical values,
entirely determined by the symmetry of the scalar potential. These phases cannot
be rotated away and yet they do not lead to spontaneous CP violation, since there
is a matrix U satisfying the constraint of Eq. (8.3), namely:

U =

⎛

⎝

1 0 0
0 0 1
0 1 0

⎞

⎠ , (8.4)

4Some authors refer to this transformation as a “generalized” CP transformation. This is somewhat
misleading since it suggests that there is also a “non-generalized” CP transformation.
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with U a unitary matrix which we can choose as the identity matrix when  
all parameters are real

However, there is still the possibility of Spontaneous Symmetry Breaking

this case there is no zero vev and all vevs have different moduli. The construction of a
matrix U satisfying the constraint of Eq. (2) follows the same steps as in the case C-III-c.
However, in this case there is no freedom to apply an overall phase rotation to transform
the relative phase of w1 and w2 into two symmetric phases, since this would make wS

complex. It turns out that this vacuum is more constrained than case C-III-c, requiring
four relations among the coefficients of the potential to be obeyed. As a result, the SO(2)
rotation transforming it into (beiγ1 , beiγ2 , ŵS) automatically leads to γ1 + γ2 = 0. Once
again building the matrix U requires special insight. The necessary SO(2) rotation will
be a function of the ŵi and σi, for i = 1, 2 and is similar to the one of case C-III-c [10]
being given by tan 2θ = (ŵ2

1 − ŵ2
2)/(2ŵ1ŵ2 cos(σ1 − σ2)). The alternative procedure of

going directly to the Higgs basis is also, in this case, the easiest and most straightforward
way of checking for CP conservation where now a possible rotation is:

⎛

⎝

h′
1

h′
2

h′
S
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1
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(ŵ2 −ŵ1 0)
1
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e−iσ1 0 0
0 e−iσ2 0
0 0 1

⎞
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⎛

⎝

h1

h2

hS

⎞

⎠ (10)

where 1/Ni are normalisation factors and the X is chosen in such a way that rows 1 and
3 are also orthogonal. With this transformation only h′

1 acquires a non-zero vev and the
coefficients of the potential can all be made real using the freedom to rephase the fields
with zero vevs.

Examples C-III-c and C-IV-e show that searching for a matrix U satisfying the constraint
of Eq. (2) may not always be the easiest path to check for CP conservation. In particular,
as the complexity grows, it may be more convenient to inspect the potential directly by
going to the Higgs basis.

The T. D. Lee Model
So far we have shown how to use the Higgs basis to prove that CP is not spontaneously
broken. In T. D. Lee’s two-Higgs-doublet model [1] the potential has the most general
form with real coefficients:

V (φ) = −λ1φ
†
1φ1 − λ2φ

†
2φ2

+ A(φ†
1φ1)

2 +B(φ†
2φ2)

2 + C(φ†
1φ1)(φ

†
2φ2) + C̄(φ†

1φ2)(φ
†
2φ1)

+
1

2
[(φ†

1φ2)(Dφ†
1φ2 + Eφ†

1φ1 + Fφ†
2φ2) + h.c.]. (11)

CP is violated spontaneously by vevs of the form (ρ1eiθ, ρ2), in the region of parameters
of the potential where ρ1 and ρ2 are different from zero and eiθ ̸= 1. The transformation
to the Higgs basis is given by

(

φ′
1

φ′
2

)

=
1

v

(

1 0
0 eiχ

)(

ρ1 ρ2
−ρ2 ρ1

)(

e−iθ 0
0 1

)(

φ1

φ2

)

(12)

with v2 = ρ21 + ρ22. The potential acquires a new form under this transformation. The
bilinear part of the potential is only real if sinχ = 0 or λ1 = λ2. In either case requiring
the quartic part of the potential to be real leads to special conditions on the parameters
of the potential and therefore, does not hold in general.
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2)/(2ŵ1ŵ2 cos(σ1 − σ2)). The alternative procedure of

going directly to the Higgs basis is also, in this case, the easiest and most straightforward
way of checking for CP conservation where now a possible rotation is:

⎛

⎝

h′
1

h′
2

h′
S

⎞

⎠ =

⎛

⎝

1
N1
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The above equation together with the assumption that the vacuum is CP invariant leads to
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then that would be a sure indication that there is spon- 
taneous T violation. 

It  has been emphasized some time ago [ 1 ] that in 
the framework of an SU(2) X U(1) gauge theory with 
scalar doublets, a minimum of two scalar multiplets 
are required in order to obtain spontaneous T viola- 
tion. In the case of  two scalar doublets, the most gen- 
eral Higgs potential can be written 

V(~I, ~2) = VO + [;kl ( ~ q ~ 2 ) ( ~ 2 )  + ~ 2 ( ~  ~ 2 ) ( ~  ~1) 

+ X3(¢I~2)(~t24~2) + h .c . l ,  (4) 

where V 0 denotes the part of the potential without 
any phase dependence. Since we are interested in 
spontaneously broken T invariance, we will always 
assume real coupling constants. For an appropriate 
finite range of  the parameters of  the scalar potential, 
the minimum is at: 

COS 0 = --(4XlOlO2)-l()t202 + X302), (5) 

where (014~010) --- v i =Ioil exp(i0i) and 0 = 02 - 01. 
In eq. (5), the above mentioned dependence of 0 on 
the coupling constants of  the scalar potential is illu- 
strated. In this case, it is easily seen that Tis  sponta- 
neously broken. Indeed in this example, there is no 
matrix satisfying simultaneously eqs. (2), (3). This is 
clearly the simplest example of spontaneous T viola- 
tion. However, the phase 0 is not a "calculable" quan- 
tity. In this note a "calculable phase" refers to a 
phase whose value is independent of  the coupling 
constants of  the scalar potential and therefore stable 
against radiative corrections [5]. In the case of  two 
Higgs doublets, the only way of  having a calculable 
phase in the sense defined above, is by setting X 2 = X 3 
= 0, thus implying 0 = rr/2. Assuming these coupling 
constants equal to zero is natural in the technical 
sense, since then the potential acquires an extra sym- 
metry under which: 

(ki ~ Gi/c~l" , (6) 

where 

o:(; 2) 
This transformation G, needed in order to implement 
a calculable 0 phase, supplies us with the T transfor- 

mation defined in eq. (4) * 1 : 

( l  i([011 ( [o  11 

- 1  !\1o21 exp(irr/2)) = \1o21 exp(irr/2) ) '  (8) 

and therefore implies a T-conserving solution. From 
the previous considerations, we conclude that more 
than two scalar doublets have to be introduced in 
order to achieve both calculability and spontaneous 
T violation * 1. It is also clear that calculability re- 
quires the presence of an extra symmetry in the scalar 
potential. This requirement was necessary in the case 
of  two scalar doublets and it applies a for t ior i  to the 
case of  more than two scalar doublets. 

Let us consider first the case where the scalar po- 
tential is invariant under an abelian group. We will 
show that then calculable phases always correspond 
to T conservation. In the case of  an abelian group, we 
can always choose a special basis where each scalar 
doublet ~j (] = 1 ... . .  n) transforms as a one-dimension- 
al representation of  the group. Then the unitary matrix 

fexp(-2i01) )/  
U = " . .  , (9) 

exp( -2 i0  n 

obviously satisfies eq. (2) and, as we will see, it corre- 
sponds to a symmetry of the potential. In order to 
achieve calculability, each individual term I s of  the 
scalar potential, together with its hermitian conjugate, 
has to be minimized separately with respect to the 
0 i phases. The minimization of  each function .2 
cos [0(Io)], where 0(I~) denotes the linear combina- 
tion of Oi's associated with the fields occurring in I s, 
trivially gives O(Ic~ ) -- 0, 7. In this case the transforma- 
tion (9) corresponds to a symmetry of the scalar po- 
tential and the vacuum is Tinvariant. 

In view of the previous result, we consider next the 
case of  non-abelian symmetries. In the following, we 
will confine ourselves to three Higgs doublets and for 
simplicity we first analyse the case of an S 3 symmetry,  
with the scalar doublets transforming as a three-dimen- 
sional reducible representation. The most  general re- 
normalizable scalar potential can be written [6] as, 

,1 We assume that the scalar potential has no (discrete or 
continuous) accidental symmetries. 

,2 The fact that only functions of this type appear is a conse- 
quence of having assumed real coupling constants. 
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8 Spontaneous CP violation

The S3-symmetric potential offers a very rich phenomenology, and can accommodate a
variety of physical situations, as outlined in sections 4 and 5, where we classified the
different vacua.

We assumed, for simplicity, that all parameters of the potential are real. Therefore our
discussion is done in the framework of explicit CP conservation. This raises the question
of whether or not CP can be violated spontaneously. For that purpose we can inspect the
list of complex solutions presented in Table 2. CP can only be spontaneously violated if
the Lagrangian is invariant under CP and if at the same time there is no transformation
that can be identified with a CP transformation, leaving both the Lagrangian and the
vacuum invariant. The idea of spontaneous CP violation was first proposed by T. D.
Lee [3] in the context of two Higgs doublets. In the context of the SM, with a single Higgs
doublet, a CP transformation of the scalar doublet amounts to its complex conjugation
and the scalar sector cannot violate CP. In models with several Higgs doublets complex
conjugation may be combined with a unitary transformation acting on the set of doublets,
since this transformation leaves the kinetic energy term of the Lagrangian invariant. In
this case the most general CP transformation is given by:

Φi
CP−→ UijΦ

∗
j (8.1)

with U an arbitrary unitary matrix4. This equation together with the assumption that
the vacuum is CP invariant:

CP|0⟩ = |0⟩ (8.2)

leads to the following condition [32]:

Uij⟨0|Φj|0⟩∗ = ⟨0|Φi|0⟩ (8.3)

implying that there is spontaneous CP violation if none of the CP symmetries allowed
by the Lagrangian satisfy this equation. For real vevs this condition is obviously verified.
If the Lagrangian has a discrete symmetry one must take it into consideration before
drawing conclusions. In the discussion that follows we do not take the Yukawa sector into
consideration. We now comment on each one of the cases presented in Table 2 concerning
the possibility of having spontaneous CP violation:

• The case C-I-a is a familiar one that has been discussed long ago in the framework
of the reducible representation [32]. It was pointed out that it has complex vacuum
expectation values with calculable non-trivial phases, assuming geometrical values,
entirely determined by the symmetry of the scalar potential. These phases cannot
be rotated away and yet they do not lead to spontaneous CP violation, since there
is a matrix U satisfying the constraint of Eq. (8.3), namely:

U =

⎛

⎝

1 0 0
0 0 1
0 1 0

⎞

⎠ , (8.4)

4Some authors refer to this transformation as a “generalized” CP transformation. This is somewhat
misleading since it suggests that there is also a “non-generalized” CP transformation.
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We assumed, for simplicity, that all parameters of the potential are real. Therefore our
discussion is done in the framework of explicit CP conservation. This raises the question
of whether or not CP can be violated spontaneously. For that purpose we can inspect the
list of complex solutions presented in Table 2. CP can only be spontaneously violated if
the Lagrangian is invariant under CP and if at the same time there is no transformation
that can be identified with a CP transformation, leaving both the Lagrangian and the
vacuum invariant. The idea of spontaneous CP violation was first proposed by T. D.
Lee [3] in the context of two Higgs doublets. In the context of the SM, with a single Higgs
doublet, a CP transformation of the scalar doublet amounts to its complex conjugation
and the scalar sector cannot violate CP. In models with several Higgs doublets complex
conjugation may be combined with a unitary transformation acting on the set of doublets,
since this transformation leaves the kinetic energy term of the Lagrangian invariant. In
this case the most general CP transformation is given by:

Φi
CP−→ UijΦ

∗
j (8.1)

with U an arbitrary unitary matrix4. This equation together with the assumption that
the vacuum is CP invariant:

CP|0⟩ = |0⟩ (8.2)

leads to the following condition [32]:

Uij⟨0|Φj|0⟩∗ = ⟨0|Φi|0⟩ (8.3)

implying that there is spontaneous CP violation if none of the CP symmetries allowed
by the Lagrangian satisfy this equation. For real vevs this condition is obviously verified.
If the Lagrangian has a discrete symmetry one must take it into consideration before
drawing conclusions. In the discussion that follows we do not take the Yukawa sector into
consideration. We now comment on each one of the cases presented in Table 2 concerning
the possibility of having spontaneous CP violation:

• The case C-I-a is a familiar one that has been discussed long ago in the framework
of the reducible representation [32]. It was pointed out that it has complex vacuum
expectation values with calculable non-trivial phases, assuming geometrical values,
entirely determined by the symmetry of the scalar potential. These phases cannot
be rotated away and yet they do not lead to spontaneous CP violation, since there
is a matrix U satisfying the constraint of Eq. (8.3), namely:

U =

⎛

⎝

1 0 0
0 0 1
0 1 0

⎞

⎠ , (8.4)

4Some authors refer to this transformation as a “generalized” CP transformation. This is somewhat
misleading since it suggests that there is also a “non-generalized” CP transformation.
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List of all possible Symmetries of the 2HDM
The complete list of such symmetries is known:

Deshpande and Ma 1978, Ivanov 2007, Ferreira, Haber and Silva 2009, Ferreira,  
Haber, Maniatis, Nachtmann and Silva 2011, Battye, Brawn, Pilaftsis 2011,  
Pilaftsis 2011

There are three possible Higgs family symmetries (first three rows) and three  
classes of CP symmetries with different U matrices (next three rows) 
There are seven additional accidental symmetries of the 2HDM scalar  

potential Battye, Brawn, Pilaftsis 2011, Pilaftsis 2012
which are not exact symmetries since they are violated by the U(1) gauge  
kinetic term of the scalar potential, as well as by the Yukawa couplings,  
therefore, not considered here.

symmetry transformation law

Z2 �1 ! �1 �2 ! ��2

U(1) �1 ! �1 �2 ! e2i✓�2

SO(3) �a ! Uab�b U 2 U(2)/U(1)Y (for a, b = 1, 2 )
GCP1 �1 ! �⇤

1 �2 ! �⇤
2

GCP2 �1 ! �⇤
2 �2 ! ��⇤

1

GCP3 �1 ! �⇤
1 cos ✓ + �⇤

2 sin ✓ �2 ! ��⇤
1 sin ✓ + �⇤

2 cos ✓ (for 0 < ✓ < 1
2⇡)

⇧2 �1 ! �2 �2 ! �1

1



List of all possible Symmetries of the 2HDM (cont.)
Starting from a generic scalar potential given by Eq. (2.1) if the  
scalar potential respects one of the symmetries listed in Table 1, the  
coefficients of the scalar potential are constrained according to Table 2,  
in the basis where the symmetry  is manifest
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symmetry m2
11 m2

22 m2
12 �1 �2 �3 �4 Re �5 Im �5 �6 �7

Z2 - - 0 - - - - - - 0 0
U(1) - - 0 - - - - 0 0 0 0
SO(3) - m2

11 0 - �1 - �1 � �3 0 0 0 0
GCP1 - - real - - - - - 0 real real
GCP2 - m2

11 0 - �1 - - - - - ��6

GCP3 - m2
11 0 - �1 - - �1 � �3 � �4 0 0 0

⇧2 - m2
11 real - �1 - - - 0 - �⇤

6

Z2 � ⇧2 - m2
11 0 - �1 - - - 0 0 0

U(1)�⇧2 - m2
11 0 - �1 - - 0 0 0 0

Table 2: Impact of the symmetries defined in Table 1 on the coe�cients of the 2HDM scalar poten-
tial [cf. Eq. (2.1)] in a basis where the symmetry is manifest. A short dash indicates the absence of
a constraint. Note that a scalar potential that is simultaneously invariant under Z2 and ⇧2 is also
invariant under GCP2 in another scalar field basis [55]. Likewise, a scalar potential that is simultane-
ously invariant under U(1) and ⇧2 is also invariant under GCP3 in another scalar field basis [55]. The
symbol � is being used above to indicate that two symmetries are enforced simultaneously within the
same scalar field basis.

when mH± = mA [23–26]. However, this class of symmetries is violated by the U(1)Y gauge
kinetic term of the scalar potential (as well as by the Yukawa couplings that are responsible
for mass di↵erences between up and down-type fermions). Hence, any exact mass degeneracies
arising from these seven accidental symmetries will be spoiled, in the absence of an artificial
fine tuning of the Higgs scalar potential parameters.15

Possible natural mass degeneracy of the 2HDM must be the consequence of one of the
symmetries listed in Table 1. Starting from a generic scalar potential given by Eq. (2.1), if the
scalar potential respects one of the symmetries listed in Table 1, then a scalar basis is picked
out in which the symmetry is manifest. In this basis, the coe�cients of the scalar potential
are constrained according to Table 2.16 It is straightforward to check that the possible discrete
symmetries of the 2HDM, namely Z2, GCP1, GCP2 (or equivalently, Z2 � ⇧2), do not yield
scalar potentials that lead to scalar mass degeneracies. Thus, we henceforth focus on U(1),
SO(3) and GCP3 (and the related U(1)�⇧2 symmetry).

Given a 2HDM scalar potential with a Peccei-Quinn [U(1)PQ] symmetry [59] (or equivalently
the U(1) transformation specified in Table 117) that is spontaneously broken by the vacuum,
the scalar sector will contain a massless CP-odd (Goldstone) scalar [60, 61]. In such cases, no

15In cases of accidental symmetries, i.e. symmetries of the scalar potential that are not respected by the full
theory, the would-be mass degeneracies are only approximate, with calculable mass splittings. The possibility
of such approximate mass degeneracies, although technically natural, is not the subject of this paper.

16It can be shown that for each of the symmetries listed in Table 2, a scalar field basis exists in which all
scalar potential parameters and the neutral scalar field vacuum expectation values are simultaneously real, in
which case CP (as defined by GCP1 in Table 1) is conserved by the scalar sector Lagrangian and vacuum.

17In Ref. [59], a U(1)PQ transformation of the 2HDM scalar fields is given by �1 ! e�i✓�1 and �2 ! ei✓�2.
The U(1) transformation specified in Table 1 corresponds to a combining the U(1)PQ transformation with a
hypercharge U(1)Y transformation, �i ! ei✓�i (for i = 1, 2).

10

In all these cases the imposed symmetry leads to explicit CP conservation
In all cases GCP1, and also 2 and 3 there is invariance under hermitian  
conjugation Ferreira, Haber and Silva  2009

Branco and Rebelo 1985
Possibility of spontaneous CP violation with Z_2 softly broken



Natural 2HDM mass degeneracies
Analysis of explicit expressions of the neutral scalar masses

Consider all possible symmetries of the 2HDM
or

Mass degenerate neutral scalars can only arise naturally in the 2HDM  
in the case of the IDM with Z_5 = 0

Natural scalar mass degeneracies in the 2HDM

Consider the 2HDM with two hypercharge-one, doublet scalar fields. It is

convenient to work in the Higgs basis in which the two Higgs doublet fields,

denoted by H1 and H2, satisfy ⟨H0
1⟩ = v/

√
2 and ⟨H0

2⟩ = 0 (i.e., the vacuum

expectation value, v = 246 GeV, resides entirely in the neutral component of

the Higgs basis field H1.)

We can immediately identify the physical charged Higgs field, H+ ≡ H+
2 , and

the neutral and charged Goldstone fields, G0 =
√
2 ImH0

1 and G+ ≡ H+
1 . In

the Higgs basis, the scalar potential is given by:

V = Y1H
†
1H1 + Y2H

†
2H2 + [Y3H

†
1H2 + h.c.] + 1

2Z1(H
†
1H1)

2

+1
2Z2(H

†
2H2)

2 + Z3(H
†
1H1)(H

†
2H2) + Z4(H

†
1H2)(H

†
2H1)

+
{

1
2Z5(H

†
1H2)

2 +
[
Z6(H

†
1H1) + Z7(H

†
2H2)

]
H†

1H2 + h.c.
}
,

where Y1, Y2 and Z1,2,3,4 are real, whereas Y3, Z5,6,7 are potentially complex.

After minimizing the scalar potential, Y1 = −1
2Z1v2 and Y3 = −1

2Z6v2.

Specializing to the Inert doublet model (IDM)

Suppose that the Higgs basis of the 2HDM exhibits an exact Z2 symmetry,

H1 → +H1 and H2 → −H2. This symmetry is also preserved by the vacuum.

It then follows that Y3 = Z6 = Z7 = 0. The one remaining complex parameter,

Z5 can be chosen real by rephasing the Higgs basis field H2. Thus, the IDM

scalar potential is CP-conserving.

The Higgs basis doublet fields are also mass eigenstate fields,

H1 =

(

G+

1√
2

[

v + h + iG0]

)

, H2 =

(

H+

1√
2

[

H + iA
]

)

,

where G± and G0 are the Goldstone bosons that provide the longitudinal

degrees of freedom of the massive W± and Z0 gauge bosons. The tree-level

properties of the scalar h are precisely those of the SM Higgs boson. The

physical scalar mass spectrum is,

m2
h = Z1v

2 , m2
H± = Y2 + 1

2Z3v
2 ,

m2
A = m2

H± + 1
2(Z4 − Z5)v

2 , m2
H = m2

A + Z5v
2 .
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Physical scalar mass spectrum

Specializing to the Inert doublet model (IDM)

Suppose that the Higgs basis of the 2HDM exhibits an exact Z2 symmetry,

H1 → +H1 and H2 → −H2. This symmetry is also preserved by the vacuum.

It then follows that Y3 = Z6 = Z7 = 0. The one remaining complex parameter,

Z5 can be chosen real by rephasing the Higgs basis field H2. Thus, the IDM

scalar potential is CP-conserving.

The Higgs basis doublet fields are also mass eigenstate fields,

H1 =

(

G+

1√
2

[

v + h + iG0]

)

, H2 =

(

H+

1√
2

[

H + iA
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,

where G± and G0 are the Goldstone bosons that provide the longitudinal

degrees of freedom of the massive W± and Z0 gauge bosons. The tree-level

properties of the scalar h are precisely those of the SM Higgs boson. The

physical scalar mass spectrum is,

m2
h = Z1v

2 , m2
H± = Y2 + 1

2Z3v
2 ,

m2
A = m2

H± + 1
2(Z4 − Z5)v

2 , m2
H = m2

A + Z5v
2 .

A natural mass degeneracy of the IDM

mH = mA, due to Z5 = 0.

This mass degeneracy is due to an exact continuous U(1) symmetry, H1 → H1

and H2 → eiθH2, which is preserved by the vacuum. One can now define

eigenstates of U(1) charge (not to be confused with electric charge),

φ± =
1√
2

[
H ± iA

]
.

The physical scalar mass spectrum of the mass-degenerate IDM is,

m2
h = Z1v

2 ,

m2
H± = Y2 +

1
2Z3v

2 ,

m2
φ± = Y2 +

1
2(Z3 + Z4)v

2 .

Remark: If Z4 = 0, then the H± are degenerate in mass with the φ± at

tree-level. But, this mass-degeneracy is broken by radiative corrections (due to

the interactions with gauge bosons).
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Natural 2HDM mass degeneracies (cont.)
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the interactions with gauge bosons).



Natural 2HDM mass degeneracies (cont.)
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Models with three Higgs doublets

There is not yet a full study of all possible symmetries 

Three Higgs doublet models with S3 Symmetry
(extended to flavour)

many works aiming at explaining neutrino masses and  
leptonic mixing

a lot of work already done analysing the Higgs potential

inert dark matter candidates from S3 3HDM considered 

 Interesting open questions still remain!

Despite

Ma, Koide, Kubo, Mondragon, Rodriguez-Jauregui, Chen, Wolfenstein, Mohapatra, Nasri,
Yu, Harrison, Scott, Frigerio, Grimus, Lavoura, Branco, Silva-Marcos…  

Derman, Tsao, Pakvasa, Sugawra, Wyler, Branco, Gerard, Grimus, Das, Dey, Bhattacharyya, Leser, 
Pas, Ivanov, Nishi…  

Fortes, Machado, Montano, Pleitez…  

Harari, Haut, Weyers, Meloni, Teshima, Melic, Canales, S Salazar, Velasco-Sevilla ,…  

several works addressing masses and mixing in the quark sector 

e.g. Ivanov et al

In what follows we consider 

An Interesting model: 
A CP-conserving multi-Higgs Model with irremovable complex coefficients    

The Ivanov-Silva Model

Ivanov and Silva (IS) introduced a particular 3HDM model with some curious
properties.∗ In the Higgs basis of the 3HDM, we are free to make an arbitrary

U(2) rotation to define the Higgs basis fields, H2 and H3. We have made use
of this freedom to make a minor alteration of the IS scalar potential,

VIS = VRIDM + Z′
3(H

†
2H2)(H

†
3H3) + Z′

4(H
†
2H3)(H

†
3H2)

+
[

Z8(H
†
2H3)

2 + Z9(H
†
2H3)(H

†
2H2 − H†

3H3) + h.c.
]

,

where VRIDM is the replicated IDM scalar potential, and Z8 and Z9 are

potentially complex.

The IS model still yields mass-degenerate inert doublets, since none of the extra

terms involve the Higgs basis field H1. Hence, these terms do not contribute

to the tree-level scalar squared-mass matrices.

∗I.P. Ivanov and J.P. Silva, Phys. Rev. D 93, 095014 (2016) [arXiv:1512.09276],

Was analysed by H. Haber, O. M. Ogreid, P. Osland, MNR, 2018



The Scalar potential
S3 is the permutation group involving three objects, 

here all fields appear on equal footing
this representation is not irreducible, for instance, the combination

remains invariant, it splits into two irreducible representations, 

Derman, 1979
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The scalar potential in terms of fields from irreducible representations

M2

13

= M2

12

,

M2

23

=
1

4(v
1

+ 2v
2

)
[(4A� 2C � 2C̄)v

1

v
2

(v
1

+ v
2

)� 2Dv
2

(v2
1

� v
1

v
2

� 4v2
2

)

+ (E
2

+ E
3

� E
1

)(v3
1

+ v2
1

v
2

� 4v
1

v2
2

� 2v3
2

) + E
4

(�v3
1

+ v2
1

v
2

+ 4v
1

v2
2

� 2v3
2

)].
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2.3 The potential in terms of the S3 singlet and doublet

In terms of the S
3

singlet and doublet fields, the potential can be written as [2, 3, 4, 5, 6, 7]
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The vacuum conditions give µ2

0

and µ2

1

in terms of the quartic coe�cients:
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)ṽ
2

⇤

, (2.21a)

µ2

1

=
1

2

h

�(�
5

+ �
6

+ 2�
7
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ṽ
2

ṽS
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)ṽ
2
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The two equations (2.21b) and (2.21c) are not automatically consistent.
For the charged sector, the mass-squared matrix is given by

M2

11

= 1

2

[�
5
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ṽ
2

+ �
6
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For the CP-odd sector, the mass-squared matrix is given by
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(ṽ2
1

+ ṽ2
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no symmetry under the interchange of 

however there is symmetry for  

equivalent doublet representation

Das and Dey

h1 and h2

h1 ! �h1

2 The scalar potential

S3 is the permutation group involving three objects, {�a,�b,�c}. The three dimensional representation of S3 is
not an irreducible one simply because we can easily construct a linear combination of the elements, �a+�b+�c,
which remains unaltered under the permutation of the indices. We choose to decompose the three dimensional
representation into a singlet and doublet as follows :

1 : �3 =
1p
3
(�a + �b + �c) , (1a)

2 :

✓
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�2

◆

=

 

1p
2
(�a � �b)

1p
6
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!

. (1b)

The elements of S3 for this particular doublet representation are given by :
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� sin ✓ cos ✓

◆

,

✓

cos ✓ sin ✓
sin ✓ � cos ✓

◆
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✓ = 0,±2⇡

3

◆

. (2)

The most general renormalizable potential invariant under S3 can be written in terms of �3, �1 and �2 as
follows [27–31]:

V (�) = V2(�) + V4(�) , (3a)
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In general �4 and �7 can be complex, but we assume them to be real so that CP symmetry is not broken
explicitly. For the stability of the vacuum in the asymptotic limit we impose the requirement that there should
be no direction in the field space along which the potential becomes infinitely negative. The necessary and
su�cient conditions for this is well known in the context of two Higgs-doublet models (2HDMs) [32]. For the
potential of Eq. (3), a 2HDM equivalent situation arise if one of the doublets is made identically zero. Then
it is quite straightforward to find the following necessary conditions for the global stability in the asymptotic
limit :

�1 > 0 , (4a)

�8 > 0 , (4b)

�1 + �3 > 0 , (4c)
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has also been used in the literature. In terms of this new doublet, the quartic part of the scalar potential is
written as [33–35]:
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now there is symmetry for 

In the special case 

�1 $ �2

�4 = 0 the potential has SO(2) symmetry: 

m2
1+ = �

⇢

2�3 sin
2 � +

1

2
(�6 + 2�7) cos

2 �

�

v2 , (13b)

with, tan� =

p

v21 + v22
v3

. (13c)

The second charged Higgs (H+
2 ) along with the massless Goldstone (!+), which will appear as the longitudinal

component of the W -boson, can be obtained by diagonalizing the remaining 2⇥ 2 block :
✓
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2

!+

◆

=

✓
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sin� cos�

◆✓

w0+
2

w+
3

◆

with, w0+
2 = sin � w+

1 + cos � w+
2 . (14)

The mass of the second charged Higgs is given by :

m2
2+ = �1

2
(�6 + 2�7)v

2 . (15)

Similar considerations for the pseudoscalar part gives :

XM2
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T =

0

@

1
2m

2
A1 0 0
0 �v23�7 v3

p

v21 + v22�7

0 v3
p

v21 + v22�7 �(v21 + v22)�7

1

A , (16)

where, the pseudoscalar state (A1) with mass eigenvalue mA1 is defined as :
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m2
A1 = �2

�

(�2 + �3) sin
2 � + �7 cos

2 �
 

v2 , (17b)
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✓

A2

⇣

◆

=

✓
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◆
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Finally, for the CP-even part we have :

XM2
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S �B0
S

0 �B0
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S

1

A , (19a)

where, A0
S = (�1 + �3)(v

2
1 + v22) , (19b)

B0
S = �1

2
v3

q

v21 + v22(�5 + �6 + 2�7) , (19c)

C 0
S = �8v

2
3 . (19d)

The massless state (h0), as also noted in [36], is given by :

h0 = cos � h1 � sin � h2 . (20)

But we wish to add here that the appearance of a massless scalar is not surprising. One can easily verify that
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�0
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cos ✓ � sin ✓
sin ✓ cos ✓

◆✓

�1

�2

◆

(21)

Since SO(2) is a continuous symmetry isomorphic to U(1), a massless physical state is expected. Other two
physical scalars are obtained as follows :

✓

h
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◆
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sin↵ cos↵
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◆
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✓
h1

h2

◆✓
h0
1

h0
2

◆
= Danger: massless scalar!



Constraining the potential by the vevs

Possibility of SCPV - real parameters

Let us start with real vacua (no CP violation)

Three minimisation conditions:
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0,λ2,λ3,λ5), (λ2,λ3,λ5,λ8), and (λ3,λ4,λ5,λ8), as

well as sets where in the above list λ5 is replaced by λ6. Among these, the sets (λ5,λ6), and
(λ1,λ2,λ3) correspond to (C,C) and (E2, E3) in the reducible-representation framework.

We shall distinguish the real and complex cases.

4 Real vacua

For a real vacuum, the five equations (3.7) discussed above reduce to a set of three. Again,
they are not necessarily all independent. If we, for example, try to solve for λ, γ and A,
the 3× 3 determinant corresponding to (3.8) is particularly simple:

detA3×3 = −(ρ1 + ρ2 + ρ3)(ρ2 − ρ1)(ρ3 − ρ2)(ρ1 − ρ3). (4.1)

Thus, when this quantity is non-zero, we can solve for λ, γ and A. Conversely, when
detA3×3 = 0 (meaning the sum of the vevs is zero, or two are equal), then we have at
most two independent equations, and can for example only solve for λ and γ.

In the irreducible-representation framework, the three vacuum conditions (3.3)–(3.5)
can be solved to give µ2

0 and µ2
1 in terms of the quartic coefficients:1

µ2
0 =

1

2wS

[

λ4(w
2
2 − 3w2

1)w2 − (λ5 + λ6 + 2λ7)(w
2
1 + w2

2)wS − 2λ8w
3
S

]

, (4.2a)

µ2
1 = −

1

2

[

2(λ1 + λ3)(w
2
1 + w2

2) + 6λ4w2wS + (λ5 + λ6 + 2λ7)w
2
S

]

, (4.2b)

µ2
1 = −

1

2

[

2(λ1 + λ3)(w
2
1 + w2

2)− 3λ4(w
2
2 − w2

1)
wS

w2
+ (λ5 + λ6 + 2λ7)w

2
S

]

. (4.2c)

The two equations (4.2b) and (4.2c) are not valid when w1 = 0 and w2 = 0, since they were
derived from (3.4) and (3.5) dividing by w1 = 0 and w2 = 0, respectively. Furthermore,
they are not automatically consistent. Consistency requires

w1 = 0, or else (4.3a)

λ4(3w
2
2 − w2

1)wS = 0. (4.3b)

For w1 = 0 the derivative of the potential with respect to w1 is identically zero and
therefore there is no clash in the determination of µ2

1 from the derivative with respect to
w2. From equation (4.3b) we see that these two derivatives are consistent if either λ4 = 0
or w1 = ±

√
3w2 or else wS = 0. The case wS = 0 is special since if we now take into

account the derivative of the potential with respect to wS, which is given by Eq. (3.3), we
are left in the real case with

λ4w2(3w
2
1 − w2

2) = 0, (4.4)

which is the only term in Eq. (3.3) where wS does not appear as a factor. As a result,
solutions with wS = 0 require in addition that λ4 = 0 or w2 = ±

√
3w1, or else w2 = 0.

See cases R-I-2 in Table 1. These do not require λ4 = 0, while case R-II-3 has wS = 0
and requires λ4 = 0.

1There are misprints in the corresponding expressions given in Ref. [24], their Eq. (9): (i) a factor of
1/2 is missing on the right-hand side of all three expressions, and (ii) in µ2

0 (µ2
3 in their notation) the

coefficient of λ4 should be (v2/2v3)(v22 − 3v21). These misprints were corrected in the Erratum provided
by the authors and included in Ref. [24].
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account the derivative of the potential with respect to wS, which is given by Eq. (3.3), we
are left in the real case with
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which is the only term in Eq. (3.3) where wS does not appear as a factor. As a result,
solutions with wS = 0 require in addition that λ4 = 0 or w2 = ±
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3w1, or else w2 = 0.

See cases R-I-2 in Table 1. These do not require λ4 = 0, while case R-II-3 has wS = 0
and requires λ4 = 0.

1There are misprints in the corresponding expressions given in Ref. [24], their Eq. (9): (i) a factor of
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derived from (3.4) and (3.5) dividing by w1 = 0 and w2 = 0, respectively. Furthermore,
they are not automatically consistent. Consistency requires

w1 = 0, or else (4.3a)

λ4(3w
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For w1 = 0 the derivative of the potential with respect to w1 is identically zero and
therefore there is no clash in the determination of µ2
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w2. From equation (4.3b) we see that these two derivatives are consistent if either λ4 = 0
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3w2 or else wS = 0. The case wS = 0 is special since if we now take into

account the derivative of the potential with respect to wS, which is given by Eq. (3.3), we
are left in the real case with

λ4w2(3w
2
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2) = 0, (4.4)

which is the only term in Eq. (3.3) where wS does not appear as a factor. As a result,
solutions with wS = 0 require in addition that λ4 = 0 or w2 = ±

√
3w1, or else w2 = 0.

See cases R-I-2 in Table 1. These do not require λ4 = 0, while case R-II-3 has wS = 0
and requires λ4 = 0.

1There are misprints in the corresponding expressions given in Ref. [24], their Eq. (9): (i) a factor of
1/2 is missing on the right-hand side of all three expressions, and (ii) in µ2

0 (µ2
3 in their notation) the

coefficient of λ4 should be (v2/2v3)(v22 − 3v21). These misprints were corrected in the Erratum provided
by the authors and included in Ref. [24].
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derived from (3.4) and (3.5) dividing by w1 = 0 and w2 = 0, respectively. Furthermore,
they are not automatically consistent. Consistency requires

w1 = 0, or else (4.3a)

λ4(3w
2
2 − w2

1)wS = 0. (4.3b)

For w1 = 0 the derivative of the potential with respect to w1 is identically zero and
therefore there is no clash in the determination of µ2

1 from the derivative with respect to
w2. From equation (4.3b) we see that these two derivatives are consistent if either λ4 = 0
or w1 = ±

√
3w2 or else wS = 0. The case wS = 0 is special since if we now take into

account the derivative of the potential with respect to wS, which is given by Eq. (3.3), we
are left in the real case with

λ4w2(3w
2
1 − w2

2) = 0, (4.4)

which is the only term in Eq. (3.3) where wS does not appear as a factor. As a result,
solutions with wS = 0 require in addition that λ4 = 0 or w2 = ±

√
3w1, or else w2 = 0.

See cases R-I-2 in Table 1. These do not require λ4 = 0, while case R-II-3 has wS = 0
and requires λ4 = 0.

1There are misprints in the corresponding expressions given in Ref. [24], their Eq. (9): (i) a factor of
1/2 is missing on the right-hand side of all three expressions, and (ii) in µ2

0 (µ2
3 in their notation) the

coefficient of λ4 should be (v2/2v3)(v22 − 3v21). These misprints were corrected in the Erratum provided
by the authors and included in Ref. [24].
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i. e., 
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1
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6
 
v
1

(µ2
1,λ5,λ8), (λ1,λ2,λ3), (λ1,λ5,λ8), (µ

2
0,λ2,λ3,λ5), (λ2,λ3,λ5,λ8), and (λ3,λ4,λ5,λ8), as

well as sets where in the above list λ5 is replaced by λ6. Among these, the sets (λ5,λ6), and
(λ1,λ2,λ3) correspond to (C,C) and (E2, E3) in the reducible-representation framework.

We shall distinguish the real and complex cases.

4 Real vacua

For a real vacuum, the five equations (3.7) discussed above reduce to a set of three. Again,
they are not necessarily all independent. If we, for example, try to solve for λ, γ and A,
the 3× 3 determinant corresponding to (3.8) is particularly simple:

detA3×3 = −(ρ1 + ρ2 + ρ3)(ρ2 − ρ1)(ρ3 − ρ2)(ρ1 − ρ3). (4.1)

Thus, when this quantity is non-zero, we can solve for λ, γ and A. Conversely, when
detA3×3 = 0 (meaning the sum of the vevs is zero, or two are equal), then we have at
most two independent equations, and can for example only solve for λ and γ.

In the irreducible-representation framework, the three vacuum conditions (3.3)–(3.5)
can be solved to give µ2

0 and µ2
1 in terms of the quartic coefficients:1

µ2
0 =

1

2wS

[

λ4(w
2
2 − 3w2

1)w2 − (λ5 + λ6 + 2λ7)(w
2
1 + w2

2)wS − 2λ8w
3
S

]

, (4.2a)

µ2
1 = −

1

2

[

2(λ1 + λ3)(w
2
1 + w2

2) + 6λ4w2wS + (λ5 + λ6 + 2λ7)w
2
S

]

, (4.2b)

µ2
1 = −

1

2

[

2(λ1 + λ3)(w
2
1 + w2

2)− 3λ4(w
2
2 − w2

1)
wS

w2
+ (λ5 + λ6 + 2λ7)w

2
S

]

. (4.2c)

The two equations (4.2b) and (4.2c) are not valid when w1 = 0 and w2 = 0, since they were
derived from (3.4) and (3.5) dividing by w1 = 0 and w2 = 0, respectively. Furthermore,
they are not automatically consistent. Consistency requires

w1 = 0, or else (4.3a)

λ4(3w
2
2 − w2

1)wS = 0. (4.3b)

For w1 = 0 the derivative of the potential with respect to w1 is identically zero and
therefore there is no clash in the determination of µ2

1 from the derivative with respect to
w2. From equation (4.3b) we see that these two derivatives are consistent if either λ4 = 0
or w1 = ±

√
3w2 or else wS = 0. The case wS = 0 is special since if we now take into

account the derivative of the potential with respect to wS, which is given by Eq. (3.3), we
are left in the real case with

λ4w2(3w
2
1 − w2

2) = 0, (4.4)

which is the only term in Eq. (3.3) where wS does not appear as a factor. As a result,
solutions with wS = 0 require in addition that λ4 = 0 or w2 = ±

√
3w1, or else w2 = 0.

See cases R-I-2 in Table 1. These do not require λ4 = 0, while case R-II-3 has wS = 0
and requires λ4 = 0.

1There are misprints in the corresponding expressions given in Ref. [24], their Eq. (9): (i) a factor of
1/2 is missing on the right-hand side of all three expressions, and (ii) in µ2

0 (µ2
3 in their notation) the

coefficient of λ4 should be (v2/2v3)(v22 − 3v21). These misprints were corrected in the Erratum provided
by the authors and included in Ref. [24].
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1
1
6
 
v
1

(µ2
1,λ5,λ8), (λ1,λ2,λ3), (λ1,λ5,λ8), (µ

2
0,λ2,λ3,λ5), (λ2,λ3,λ5,λ8), and (λ3,λ4,λ5,λ8), as

well as sets where in the above list λ5 is replaced by λ6. Among these, the sets (λ5,λ6), and
(λ1,λ2,λ3) correspond to (C,C) and (E2, E3) in the reducible-representation framework.

We shall distinguish the real and complex cases.

4 Real vacua

For a real vacuum, the five equations (3.7) discussed above reduce to a set of three. Again,
they are not necessarily all independent. If we, for example, try to solve for λ, γ and A,
the 3× 3 determinant corresponding to (3.8) is particularly simple:

detA3×3 = −(ρ1 + ρ2 + ρ3)(ρ2 − ρ1)(ρ3 − ρ2)(ρ1 − ρ3). (4.1)

Thus, when this quantity is non-zero, we can solve for λ, γ and A. Conversely, when
detA3×3 = 0 (meaning the sum of the vevs is zero, or two are equal), then we have at
most two independent equations, and can for example only solve for λ and γ.

In the irreducible-representation framework, the three vacuum conditions (3.3)–(3.5)
can be solved to give µ2

0 and µ2
1 in terms of the quartic coefficients:1

µ2
0 =

1

2wS

[

λ4(w
2
2 − 3w2

1)w2 − (λ5 + λ6 + 2λ7)(w
2
1 + w2

2)wS − 2λ8w
3
S

]

, (4.2a)

µ2
1 = −

1

2

[

2(λ1 + λ3)(w
2
1 + w2

2) + 6λ4w2wS + (λ5 + λ6 + 2λ7)w
2
S

]

, (4.2b)

µ2
1 = −

1

2

[

2(λ1 + λ3)(w
2
1 + w2

2)− 3λ4(w
2
2 − w2

1)
wS

w2
+ (λ5 + λ6 + 2λ7)w

2
S

]

. (4.2c)

The two equations (4.2b) and (4.2c) are not valid when w1 = 0 and w2 = 0, since they were
derived from (3.4) and (3.5) dividing by w1 = 0 and w2 = 0, respectively. Furthermore,
they are not automatically consistent. Consistency requires

w1 = 0, or else (4.3a)

λ4(3w
2
2 − w2

1)wS = 0. (4.3b)

For w1 = 0 the derivative of the potential with respect to w1 is identically zero and
therefore there is no clash in the determination of µ2

1 from the derivative with respect to
w2. From equation (4.3b) we see that these two derivatives are consistent if either λ4 = 0
or w1 = ±

√
3w2 or else wS = 0. The case wS = 0 is special since if we now take into

account the derivative of the potential with respect to wS, which is given by Eq. (3.3), we
are left in the real case with

λ4w2(3w
2
1 − w2

2) = 0, (4.4)

which is the only term in Eq. (3.3) where wS does not appear as a factor. As a result,
solutions with wS = 0 require in addition that λ4 = 0 or w2 = ±

√
3w1, or else w2 = 0.

See cases R-I-2 in Table 1. These do not require λ4 = 0, while case R-II-3 has wS = 0
and requires λ4 = 0.

1There are misprints in the corresponding expressions given in Ref. [24], their Eq. (9): (i) a factor of
1/2 is missing on the right-hand side of all three expressions, and (ii) in µ2

0 (µ2
3 in their notation) the

coefficient of λ4 should be (v2/2v3)(v22 − 3v21). These misprints were corrected in the Erratum provided
by the authors and included in Ref. [24].
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or
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F
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D
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T
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3
P
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0
1
1
6
 
v
1

(µ2
1,λ5,λ8), (λ1,λ2,λ3), (λ1,λ5,λ8), (µ

2
0,λ2,λ3,λ5), (λ2,λ3,λ5,λ8), and (λ3,λ4,λ5,λ8), as

well as sets where in the above list λ5 is replaced by λ6. Among these, the sets (λ5,λ6), and
(λ1,λ2,λ3) correspond to (C,C) and (E2, E3) in the reducible-representation framework.

We shall distinguish the real and complex cases.

4 Real vacua

For a real vacuum, the five equations (3.7) discussed above reduce to a set of three. Again,
they are not necessarily all independent. If we, for example, try to solve for λ, γ and A,
the 3× 3 determinant corresponding to (3.8) is particularly simple:

detA3×3 = −(ρ1 + ρ2 + ρ3)(ρ2 − ρ1)(ρ3 − ρ2)(ρ1 − ρ3). (4.1)

Thus, when this quantity is non-zero, we can solve for λ, γ and A. Conversely, when
detA3×3 = 0 (meaning the sum of the vevs is zero, or two are equal), then we have at
most two independent equations, and can for example only solve for λ and γ.

In the irreducible-representation framework, the three vacuum conditions (3.3)–(3.5)
can be solved to give µ2

0 and µ2
1 in terms of the quartic coefficients:1

µ2
0 =

1

2wS

[

λ4(w
2
2 − 3w2

1)w2 − (λ5 + λ6 + 2λ7)(w
2
1 + w2

2)wS − 2λ8w
3
S

]

, (4.2a)

µ2
1 = −

1

2

[

2(λ1 + λ3)(w
2
1 + w2

2) + 6λ4w2wS + (λ5 + λ6 + 2λ7)w
2
S

]

, (4.2b)

µ2
1 = −

1

2

[

2(λ1 + λ3)(w
2
1 + w2

2)− 3λ4(w
2
2 − w2

1)
wS

w2
+ (λ5 + λ6 + 2λ7)w

2
S

]

. (4.2c)

The two equations (4.2b) and (4.2c) are not valid when w1 = 0 and w2 = 0, since they were
derived from (3.4) and (3.5) dividing by w1 = 0 and w2 = 0, respectively. Furthermore,
they are not automatically consistent. Consistency requires

w1 = 0, or else (4.3a)

λ4(3w
2
2 − w2

1)wS = 0. (4.3b)

For w1 = 0 the derivative of the potential with respect to w1 is identically zero and
therefore there is no clash in the determination of µ2

1 from the derivative with respect to
w2. From equation (4.3b) we see that these two derivatives are consistent if either λ4 = 0
or w1 = ±

√
3w2 or else wS = 0. The case wS = 0 is special since if we now take into

account the derivative of the potential with respect to wS, which is given by Eq. (3.3), we
are left in the real case with

λ4w2(3w
2
1 − w2

2) = 0, (4.4)

which is the only term in Eq. (3.3) where wS does not appear as a factor. As a result,
solutions with wS = 0 require in addition that λ4 = 0 or w2 = ±

√
3w1, or else w2 = 0.

See cases R-I-2 in Table 1. These do not require λ4 = 0, while case R-II-3 has wS = 0
and requires λ4 = 0.

1There are misprints in the corresponding expressions given in Ref. [24], their Eq. (9): (i) a factor of
1/2 is missing on the right-hand side of all three expressions, and (ii) in µ2

0 (µ2
3 in their notation) the

coefficient of λ4 should be (v2/2v3)(v22 − 3v21). These misprints were corrected in the Erratum provided
by the authors and included in Ref. [24].
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- for 
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S
T
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1
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v
1

(µ2
1,λ5,λ8), (λ1,λ2,λ3), (λ1,λ5,λ8), (µ

2
0,λ2,λ3,λ5), (λ2,λ3,λ5,λ8), and (λ3,λ4,λ5,λ8), as

well as sets where in the above list λ5 is replaced by λ6. Among these, the sets (λ5,λ6), and
(λ1,λ2,λ3) correspond to (C,C) and (E2, E3) in the reducible-representation framework.

We shall distinguish the real and complex cases.

4 Real vacua

For a real vacuum, the five equations (3.7) discussed above reduce to a set of three. Again,
they are not necessarily all independent. If we, for example, try to solve for λ, γ and A,
the 3× 3 determinant corresponding to (3.8) is particularly simple:

detA3×3 = −(ρ1 + ρ2 + ρ3)(ρ2 − ρ1)(ρ3 − ρ2)(ρ1 − ρ3). (4.1)

Thus, when this quantity is non-zero, we can solve for λ, γ and A. Conversely, when
detA3×3 = 0 (meaning the sum of the vevs is zero, or two are equal), then we have at
most two independent equations, and can for example only solve for λ and γ.

In the irreducible-representation framework, the three vacuum conditions (3.3)–(3.5)
can be solved to give µ2

0 and µ2
1 in terms of the quartic coefficients:1

µ2
0 =

1

2wS

[

λ4(w
2
2 − 3w2

1)w2 − (λ5 + λ6 + 2λ7)(w
2
1 + w2

2)wS − 2λ8w
3
S

]

, (4.2a)

µ2
1 = −

1

2

[

2(λ1 + λ3)(w
2
1 + w2

2) + 6λ4w2wS + (λ5 + λ6 + 2λ7)w
2
S

]

, (4.2b)

µ2
1 = −

1

2

[

2(λ1 + λ3)(w
2
1 + w2

2)− 3λ4(w
2
2 − w2

1)
wS

w2
+ (λ5 + λ6 + 2λ7)w

2
S

]

. (4.2c)

The two equations (4.2b) and (4.2c) are not valid when w1 = 0 and w2 = 0, since they were
derived from (3.4) and (3.5) dividing by w1 = 0 and w2 = 0, respectively. Furthermore,
they are not automatically consistent. Consistency requires

w1 = 0, or else (4.3a)

λ4(3w
2
2 − w2

1)wS = 0. (4.3b)

For w1 = 0 the derivative of the potential with respect to w1 is identically zero and
therefore there is no clash in the determination of µ2

1 from the derivative with respect to
w2. From equation (4.3b) we see that these two derivatives are consistent if either λ4 = 0
or w1 = ±

√
3w2 or else wS = 0. The case wS = 0 is special since if we now take into

account the derivative of the potential with respect to wS, which is given by Eq. (3.3), we
are left in the real case with

λ4w2(3w
2
1 − w2

2) = 0, (4.4)

which is the only term in Eq. (3.3) where wS does not appear as a factor. As a result,
solutions with wS = 0 require in addition that λ4 = 0 or w2 = ±

√
3w1, or else w2 = 0.

See cases R-I-2 in Table 1. These do not require λ4 = 0, while case R-II-3 has wS = 0
and requires λ4 = 0.

1There are misprints in the corresponding expressions given in Ref. [24], their Eq. (9): (i) a factor of
1/2 is missing on the right-hand side of all three expressions, and (ii) in µ2

0 (µ2
3 in their notation) the

coefficient of λ4 should be (v2/2v3)(v22 − 3v21). These misprints were corrected in the Erratum provided
by the authors and included in Ref. [24].
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special condition:
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v
1

(µ2
1,λ5,λ8), (λ1,λ2,λ3), (λ1,λ5,λ8), (µ

2
0,λ2,λ3,λ5), (λ2,λ3,λ5,λ8), and (λ3,λ4,λ5,λ8), as

well as sets where in the above list λ5 is replaced by λ6. Among these, the sets (λ5,λ6), and
(λ1,λ2,λ3) correspond to (C,C) and (E2, E3) in the reducible-representation framework.

We shall distinguish the real and complex cases.

4 Real vacua

For a real vacuum, the five equations (3.7) discussed above reduce to a set of three. Again,
they are not necessarily all independent. If we, for example, try to solve for λ, γ and A,
the 3× 3 determinant corresponding to (3.8) is particularly simple:

detA3×3 = −(ρ1 + ρ2 + ρ3)(ρ2 − ρ1)(ρ3 − ρ2)(ρ1 − ρ3). (4.1)

Thus, when this quantity is non-zero, we can solve for λ, γ and A. Conversely, when
detA3×3 = 0 (meaning the sum of the vevs is zero, or two are equal), then we have at
most two independent equations, and can for example only solve for λ and γ.

In the irreducible-representation framework, the three vacuum conditions (3.3)–(3.5)
can be solved to give µ2

0 and µ2
1 in terms of the quartic coefficients:1

µ2
0 =

1

2wS

[

λ4(w
2
2 − 3w2

1)w2 − (λ5 + λ6 + 2λ7)(w
2
1 + w2

2)wS − 2λ8w
3
S

]

, (4.2a)

µ2
1 = −

1

2

[

2(λ1 + λ3)(w
2
1 + w2

2) + 6λ4w2wS + (λ5 + λ6 + 2λ7)w
2
S

]

, (4.2b)

µ2
1 = −

1

2

[

2(λ1 + λ3)(w
2
1 + w2

2)− 3λ4(w
2
2 − w2

1)
wS

w2
+ (λ5 + λ6 + 2λ7)w

2
S

]

. (4.2c)

The two equations (4.2b) and (4.2c) are not valid when w1 = 0 and w2 = 0, since they were
derived from (3.4) and (3.5) dividing by w1 = 0 and w2 = 0, respectively. Furthermore,
they are not automatically consistent. Consistency requires

w1 = 0, or else (4.3a)

λ4(3w
2
2 − w2

1)wS = 0. (4.3b)

For w1 = 0 the derivative of the potential with respect to w1 is identically zero and
therefore there is no clash in the determination of µ2

1 from the derivative with respect to
w2. From equation (4.3b) we see that these two derivatives are consistent if either λ4 = 0
or w1 = ±

√
3w2 or else wS = 0. The case wS = 0 is special since if we now take into

account the derivative of the potential with respect to wS, which is given by Eq. (3.3), we
are left in the real case with

λ4w2(3w
2
1 − w2

2) = 0, (4.4)

which is the only term in Eq. (3.3) where wS does not appear as a factor. As a result,
solutions with wS = 0 require in addition that λ4 = 0 or w2 = ±

√
3w1, or else w2 = 0.

See cases R-I-2 in Table 1. These do not require λ4 = 0, while case R-II-3 has wS = 0
and requires λ4 = 0.

1There are misprints in the corresponding expressions given in Ref. [24], their Eq. (9): (i) a factor of
1/2 is missing on the right-hand side of all three expressions, and (ii) in µ2

0 (µ2
3 in their notation) the

coefficient of λ4 should be (v2/2v3)(v22 − 3v21). These misprints were corrected in the Erratum provided
by the authors and included in Ref. [24].
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i. e., in addition: 
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v
1

(µ2
1,λ5,λ8), (λ1,λ2,λ3), (λ1,λ5,λ8), (µ

2
0,λ2,λ3,λ5), (λ2,λ3,λ5,λ8), and (λ3,λ4,λ5,λ8), as

well as sets where in the above list λ5 is replaced by λ6. Among these, the sets (λ5,λ6), and
(λ1,λ2,λ3) correspond to (C,C) and (E2, E3) in the reducible-representation framework.

We shall distinguish the real and complex cases.

4 Real vacua

For a real vacuum, the five equations (3.7) discussed above reduce to a set of three. Again,
they are not necessarily all independent. If we, for example, try to solve for λ, γ and A,
the 3× 3 determinant corresponding to (3.8) is particularly simple:

detA3×3 = −(ρ1 + ρ2 + ρ3)(ρ2 − ρ1)(ρ3 − ρ2)(ρ1 − ρ3). (4.1)

Thus, when this quantity is non-zero, we can solve for λ, γ and A. Conversely, when
detA3×3 = 0 (meaning the sum of the vevs is zero, or two are equal), then we have at
most two independent equations, and can for example only solve for λ and γ.

In the irreducible-representation framework, the three vacuum conditions (3.3)–(3.5)
can be solved to give µ2

0 and µ2
1 in terms of the quartic coefficients:1

µ2
0 =

1

2wS

[

λ4(w
2
2 − 3w2

1)w2 − (λ5 + λ6 + 2λ7)(w
2
1 + w2

2)wS − 2λ8w
3
S

]

, (4.2a)

µ2
1 = −

1

2

[

2(λ1 + λ3)(w
2
1 + w2

2) + 6λ4w2wS + (λ5 + λ6 + 2λ7)w
2
S

]

, (4.2b)

µ2
1 = −

1

2

[

2(λ1 + λ3)(w
2
1 + w2

2)− 3λ4(w
2
2 − w2

1)
wS

w2
+ (λ5 + λ6 + 2λ7)w

2
S

]

. (4.2c)

The two equations (4.2b) and (4.2c) are not valid when w1 = 0 and w2 = 0, since they were
derived from (3.4) and (3.5) dividing by w1 = 0 and w2 = 0, respectively. Furthermore,
they are not automatically consistent. Consistency requires

w1 = 0, or else (4.3a)

λ4(3w
2
2 − w2

1)wS = 0. (4.3b)

For w1 = 0 the derivative of the potential with respect to w1 is identically zero and
therefore there is no clash in the determination of µ2

1 from the derivative with respect to
w2. From equation (4.3b) we see that these two derivatives are consistent if either λ4 = 0
or w1 = ±

√
3w2 or else wS = 0. The case wS = 0 is special since if we now take into

account the derivative of the potential with respect to wS, which is given by Eq. (3.3), we
are left in the real case with

λ4w2(3w
2
1 − w2

2) = 0, (4.4)

which is the only term in Eq. (3.3) where wS does not appear as a factor. As a result,
solutions with wS = 0 require in addition that λ4 = 0 or w2 = ±

√
3w1, or else w2 = 0.

See cases R-I-2 in Table 1. These do not require λ4 = 0, while case R-II-3 has wS = 0
and requires λ4 = 0.

1There are misprints in the corresponding expressions given in Ref. [24], their Eq. (9): (i) a factor of
1/2 is missing on the right-hand side of all three expressions, and (ii) in µ2

0 (µ2
3 in their notation) the

coefficient of λ4 should be (v2/2v3)(v22 − 3v21). These misprints were corrected in the Erratum provided
by the authors and included in Ref. [24].
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respectively
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Table 1. Possible real vacua (partly after Derman and Tsao [46]). This classification uses the
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letter y is used to distinguish di↵erent vev’s that have the same X, and �a is defined in Eq. (11).
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Derman and Tsao [46] analysed spontaneous symmetry breaking with real vacua taking also
into account the residual symmetries. Their work was done in the reducible framework where
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notation R-X-y, where R refers to “real”. The roman numeral X gives the number of constraints
on the parameters of the potential that arise from solving the stationary-point equations. The
letter y is used to distinguish di↵erent vev’s that have the same X, and �a is defined in Eq. (11).
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Table 1. Possible real vacua (partly after Derman and Tsao [46]). This classification uses the
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letter y is used to distinguish di↵erent vev’s that have the same X, and �a is defined in Eq. (11).
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Table 1. Possible real vacua (partly after Derman and Tsao [46]). This classification uses the
notation R-X-y, where R refers to “real”. The roman numeral X gives the number of constraints
on the parameters of the potential that arise from solving the stationary-point equations. The
letter y is used to distinguish di↵erent vev’s that have the same X, and �a is defined in Eq. (11).
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Derman and Tsao [46] analysed spontaneous symmetry breaking with real vacua taking also
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three possible real solutions [46]:
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Table 1. Possible real vacua (partly after Derman and Tsao [46]). This classification uses the
notation R-X-y, where R refers to “real”. The roman numeral X gives the number of constraints
on the parameters of the potential that arise from solving the stationary-point equations. The
letter y is used to distinguish di↵erent vev’s that have the same X, and �a is defined in Eq. (11).
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Derman and Tsao [46] analysed spontaneous symmetry breaking with real vacua taking also
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was not clear that it was associated to an additional symmetry. With �
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three possible real solutions [46]:
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unbroken and translating into the doublet-singlet notation as (0, 0, wS);
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with all three vevs di↵erent from each other, unless one imposes 4A� 2(C +C +D)�E
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Table 1 summarises all the possible real solutions together with the constraints imposed on the
parameters of the potential. The following abbreviation was introduced:

�a = �
5

+ �
6

+ 2�
7

. (11)

Table 2. Complex vacua. Notation: ✏ = 1 and �1 for C-III-d and C-III-e, respectively;
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, ŵS rei⇢ ± ix, rei⇢ ⌥ ix, 3
2

re�i⇢ � 1

2

rei⇢

C-III-g ±iŵ
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C-IV-a⇤ ŵ
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1

,±iŵ
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ei�2 , ŵS rei⇢ � r
p
3(1 + 2 cos2 ⇢) + x,�2rei⇢ + x

C-IV-d⇤ ŵ
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2.3. Complex vacuum solutions

In the discussion of possible complex vacua we now adopt a convention where wS is real and
non-negative and take

w
1

= ŵ
1

ei�1 , w
2

= ŵ
2

ei�2 , (12)

with the ŵi also real and non-negative. With this convention wS is also denoted by ŵS . A
systematic analysis of possible solutions was performed in [35]. The results are summarised in
Table 2. The list of the constraints on the potential that are consistent with each solution is not
given here, it can be found in Ref. [35].

Several solutions require �
4

= 0. This is not a new feature, it also happened in the context
of real solutions. For �

4

= 0 the potential acquires a continuous SO(2) symmetry which can be

Table 1. Possible real vacua (partly after Derman and Tsao [46]). This classification uses the
notation R-X-y, where R refers to “real”. The roman numeral X gives the number of constraints
on the parameters of the potential that arise from solving the stationary-point equations. The
letter y is used to distinguish di↵erent vev’s that have the same X, and �a is defined in Eq. (11).
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Derman and Tsao [46] analysed spontaneous symmetry breaking with real vacua taking also
into account the residual symmetries. Their work was done in the reducible framework where
the condition �

4

= 0 corresponds to 4A�2(C+C+D)�E
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2

+E
3
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4

= 0. This condition
was obtained before by Derman [45] who considered it very unnatural, since in his context it
was not clear that it was associated to an additional symmetry. With �

4

6= 0 there were only
three possible real solutions [46]:

• (x, x, x) leaving S
3

unbroken and translating into the doublet-singlet notation as (0, 0, wS);
consistency condition: w
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= 0 (also verifies w
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= ±
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).

• (x, x, y) leaving a residual S
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symmetry. In terms of the reducible representation any
ordering of the vevs is equivalent, however, in the definition of the doublet of S
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symmetry. This is the only possible real solution
with all three vevs di↵erent from each other, unless one imposes 4A� 2(C +C +D)�E
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Table 1. Possible real vacua (partly after Derman and Tsao [46]). This classification uses the
notation R-X-y, where R refers to “real”. The roman numeral X gives the number of constraints
on the parameters of the potential that arise from solving the stationary-point equations. The
letter y is used to distinguish di↵erent vev’s that have the same X, and �a is defined in Eq. (11).
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letter y is used to distinguish di↵erent vev’s that have the same X, and �a is defined in Eq. (11).
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SSB, real vacua, residual symmetries
Derman, Tsao Phys. Rev. D20 (1979) 1207:

(x, x, y) S2 ; (x, y, z) = (x, -x, 0) S2 �4 6= 0

Translation into doublet singlet notation
(x, x, x) S3 ; 

(x, x, x)  ! (0,0,  

!
!
!

!
!
!

!S ) !1 =
p
3!2

!1 =
p
3!2

!1 = �
p
3!2

(two zeros)

(x, -x, 0) (!1, 0, 0) !S = 0

!S = 0

!S = 0

(!1,!2, 0)
(!1,!2, 0)

would require 
(!1,�

p
3!1,!S)
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(y, x, x)

For �4 = 0 SO(2) symmetry implies (x, y, z) possible solution
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The different solutions can be summarised as given in Table 1, where the descriptions
in terms of both the reducible- and irreducible-representation frameworks are given. For
the purpose of making this table as well as the corresponding one for complex vacua more
compact, we introduce the abbreviations

λa = λ5 + λ6 + 2λ7, (4.5a)

λb = λ5 + λ6 − 2λ7. (4.5b)

Table 1: Possible real vacua (partly after Derman and Tsao [21]). The classification of
vacua uses the notation R-X-y, where R means that the vacuum is real. The roman
numeral X is the number of constraints on the parameters of the potential that arise from
solving the stationary-point equations. The letter y is used for distinguishing different
vev’s that have the same X, and λa is defined in Eq. (4.5).

Vacuum ρ1, ρ2, ρ3 w1, w2, wS Comment

R-0 0, 0, 0 0, 0, 0 Not interesting

R-I-1 x, x, x 0, 0, wS µ2
0 = −λ8w2

S

R-I-2a x,−x, 0 w, 0, 0 µ2
1 = − (λ1 + λ3)w2

1

R-I-2b x, 0,−x w,
√
3w, 0 µ2

1 = −4
3 (λ1 + λ3)w2

2

R-I-2c 0, x,−x w,−
√
3w, 0 µ2

1 = −4
3 (λ1 + λ3)w2

2

R-II-1a x, x, y 0, w, wS µ2
0 =

1
2λ4

w3
2

wS
− 1

2λaw
2
2 − λ8w2

S,
µ2
1 = − (λ1 + λ3)w2

2 +
3
2λ4w2wS − 1

2λaw
2
S

R-II-1b x, y, x w,−w/
√
3, wS µ2

0 = −4λ4
w3

2
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1 = −4 (λ1 + λ3)w2

2 − 3λ4w2wS − 1
2λaw
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R-II-1c y, x, x w,w/
√
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R-II-2 x, x,−2x 0, w, 0 µ2
1 = − (λ1 + λ3)w2

2, λ4 = 0
R-II-3 x, y,−x− y w1, w2, 0 µ2

1 = − (λ1 + λ3) (w2
1 + w2

2),λ4 = 0

R-III ρ1, ρ2, ρ3 w1, w2, wS µ2
0 = −1

2λa(w
2
1 + w2

2)− λ8w2
S,

µ2
1 = − (λ1 + λ3) (w2

1 + w2
2)− 1

2λaw
2
S,

λ4 = 0

One should note that

• Vacuum R-I-1 is a special case of Vacuum R-II-1. In this case, the vacuum value x
is determined by

λ− γ = x2[A+ C + C +D + 2E1 + E2 + E3 + E4]. (4.6)

• For Vacuum R-I-1, in the irreducible framework, we have

µ2
0 = −w2

Sλ8, (4.7)

which corresponds to Eq. (4.6), with w2
S = 3x2.
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2)− 1

2λaw
2
S,

λ4 = 0

One should note that

• Vacuum R-I-1 is a special case of Vacuum R-II-1. In this case, the vacuum value x
is determined by

λ− γ = x2[A+ C + C +D + 2E1 + E2 + E3 + E4]. (4.6)

• For Vacuum R-I-1, in the irreducible framework, we have

µ2
0 = −w2

Sλ8, (4.7)

which corresponds to Eq. (4.6), with w2
S = 3x2.
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Splitting this equation into real and imaginary parts, we find

(λ2 + λ3)(ŵ1 − ŵ2){1− cos[2(σ1 − σ2)]} = 0, and (5.4a)

(λ2 + λ3) sin[2(σ1 − σ2)] = 0. (5.4b)

The solutions are

λ2 + λ3 = 0, or (5.5a)

σ2 = σ1 ± nπ, n integer. (5.5b)

Table 2: Complex vacua. Notation: ϵ = 1 and −1 for C-III-d and C-III-e, respectively;
ξ =

√

−3 sin 2ρ1/ sin 2ρ2, ψ =
√

[3 + 3 cos(ρ2 − 2ρ1)]/(2 cos ρ2). With the constraints of
Table 4 the vacua labelled with an asterisk (∗) are in fact real.

IRF (Irreducible Rep.) RRF (Reducible Rep.)
w1, w2, wS ρ1, ρ2, ρ3

C-I-a ŵ1,±iŵ1, 0 x, xe±
2πi

3 , xe∓
2πi

3

C-III-a 0, ŵ2eiσ2 , ŵS y, y, xeiτ

C-III-b ±iŵ1, 0, ŵS x+ iy, x− iy, x
C-III-c ŵ1eiσ1 , ŵ2eiσ2 , 0 xeiρ − y

2 ,−xeiρ − y
2 , y

C-III-d,e ±iŵ1, ϵŵ2, ŵS xeiτ , xe−iτ , y
C-III-f ±iŵ1, iŵ2, ŵS reiρ ± ix, reiρ ∓ ix, 32re

−iρ − 1
2re

iρ

C-III-g ±iŵ1,−iŵ2, ŵS re−iρ ± ix, re−iρ ∓ ix, 32re
iρ − 1

2re
−iρ

C-III-h
√
3ŵ2eiσ2 ,±ŵ2eiσ2 , ŵS xeiτ , y, y

y, xeiτ , y

C-III-i
√

3(1+tan2 σ1)
1+9 tan2 σ1

ŵ2eiσ1 , x, yeiτ , ye−iτ

±ŵ2e−i arctan(3 tanσ1), ŵS yeiτ , x, ye−iτ

C-IV-a∗ ŵ1eiσ1 , 0, ŵS reiρ + x,−reiρ + x, x
C-IV-b ŵ1,±iŵ2, ŵS reiρ + x,−re−iρ + x,−reiρ + re−iρ + x

C-IV-c
√
1 + 2 cos2 σ2ŵ2, reiρ + r

√

3(1 + 2 cos2 ρ) + x,
ŵ2eiσ2 , ŵS reiρ − r

√

3(1 + 2 cos2 ρ) + x,−2reiρ + x
C-IV-d∗ ŵ1eiσ1 ,±ŵ2eiσ1 , ŵS r1eiρ + x, (r2 − r1)eiρ + x,−r2eiρ + x

C-IV-e
√

− sin 2σ2

sin 2σ1
ŵ2eiσ1 , reiρ2 + reiρ1ξ + x, reiρ2 − reiρ1ξ + x,

ŵ2eiσ2 , ŵS −2reiρ2 + x

C-IV-f
√

2 + cos(σ1−2σ2)
cosσ1

ŵ2eiσ1 , reiρ1 + reiρ2ψ + x,

ŵ2eiσ2 , ŵS reiρ1 − reiρ2ψ + x,−2reiρ1 + x

C-V∗ ŵ1eiσ1 , ŵ2eiσ2 , ŵS xeiτ1 , yeiτ2 , z

Likewise, the condition λ4 = 0 must be supplemented by

(λ2 + λ3)e
i(σ1+σ2)[ŵ2

1(1− e2i(σ1−σ2)) + ŵ2
2(e

−2i(σ1−σ2) − 1)]

+ λ7w
2
S(e

−i(σ1−σ2) − ei(σ1−σ2)) = 0. (5.6)
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Splitting this equation into real and imaginary parts, we find

(λ2 + λ3)(ŵ1 − ŵ2){1− cos[2(σ1 − σ2)]} = 0, and (5.4a)

(λ2 + λ3) sin[2(σ1 − σ2)] = 0. (5.4b)

The solutions are

λ2 + λ3 = 0, or (5.5a)

σ2 = σ1 ± nπ, n integer. (5.5b)

Table 2: Complex vacua. Notation: ϵ = 1 and −1 for C-III-d and C-III-e, respectively;
ξ =

√

−3 sin 2ρ1/ sin 2ρ2, ψ =
√

[3 + 3 cos(ρ2 − 2ρ1)]/(2 cos ρ2). With the constraints of
Table 4 the vacua labelled with an asterisk (∗) are in fact real.

IRF (Irreducible Rep.) RRF (Reducible Rep.)
w1, w2, wS ρ1, ρ2, ρ3

C-I-a ŵ1,±iŵ1, 0 x, xe±
2πi

3 , xe∓
2πi

3

C-III-a 0, ŵ2eiσ2 , ŵS y, y, xeiτ

C-III-b ±iŵ1, 0, ŵS x+ iy, x− iy, x
C-III-c ŵ1eiσ1 , ŵ2eiσ2 , 0 xeiρ − y

2 ,−xeiρ − y
2 , y

C-III-d,e ±iŵ1, ϵŵ2, ŵS xeiτ , xe−iτ , y
C-III-f ±iŵ1, iŵ2, ŵS reiρ ± ix, reiρ ∓ ix, 32re

−iρ − 1
2re

iρ

C-III-g ±iŵ1,−iŵ2, ŵS re−iρ ± ix, re−iρ ∓ ix, 32re
iρ − 1

2re
−iρ

C-III-h
√
3ŵ2eiσ2 ,±ŵ2eiσ2 , ŵS xeiτ , y, y

y, xeiτ , y

C-III-i
√

3(1+tan2 σ1)
1+9 tan2 σ1

ŵ2eiσ1 , x, yeiτ , ye−iτ

±ŵ2e−i arctan(3 tanσ1), ŵS yeiτ , x, ye−iτ

C-IV-a∗ ŵ1eiσ1 , 0, ŵS reiρ + x,−reiρ + x, x
C-IV-b ŵ1,±iŵ2, ŵS reiρ + x,−re−iρ + x,−reiρ + re−iρ + x

C-IV-c
√
1 + 2 cos2 σ2ŵ2, reiρ + r

√

3(1 + 2 cos2 ρ) + x,
ŵ2eiσ2 , ŵS reiρ − r

√

3(1 + 2 cos2 ρ) + x,−2reiρ + x
C-IV-d∗ ŵ1eiσ1 ,±ŵ2eiσ1 , ŵS r1eiρ + x, (r2 − r1)eiρ + x,−r2eiρ + x

C-IV-e
√

− sin 2σ2

sin 2σ1
ŵ2eiσ1 , reiρ2 + reiρ1ξ + x, reiρ2 − reiρ1ξ + x,

ŵ2eiσ2 , ŵS −2reiρ2 + x

C-IV-f
√

2 + cos(σ1−2σ2)
cosσ1

ŵ2eiσ1 , reiρ1 + reiρ2ψ + x,

ŵ2eiσ2 , ŵS reiρ1 − reiρ2ψ + x,−2reiρ1 + x

C-V∗ ŵ1eiσ1 , ŵ2eiσ2 , ŵS xeiτ1 , yeiτ2 , z

Likewise, the condition λ4 = 0 must be supplemented by

(λ2 + λ3)e
i(σ1+σ2)[ŵ2

1(1− e2i(σ1−σ2)) + ŵ2
2(e

−2i(σ1−σ2) − 1)]

+ λ7w
2
S(e

−i(σ1−σ2) − ei(σ1−σ2)) = 0. (5.6)
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Table 3: Constraints on complex vacua. Notation: ϵ = 1 and −1 for C-III-d and C-III-e,
respectively. Where two possible signs (± or ∓) are given, they correspond to those of
Table 2. Here, λb is defined in Eq. (4.5).

Vacuum Constraints

C-I-a µ2
1 = −2 (λ1 − λ2) ŵ2

1

C-III-a µ2
0 = −1

2λbŵ
2
2 − λ8ŵ2

S,
µ2
1 = − (λ1 + λ3) ŵ2

2 − 1
2 (λb − 8 cos2 σ2λ7) ŵ2

S,
λ4 =

4 cosσ2ŵS

ŵ2
λ7

C-III-b µ2
0 = −1

2λbŵ
2
1 − λ8ŵ2

S,
µ2
1 = − (λ1 + λ3) ŵ2

1 − 1
2λbŵ

2
S,

λ4 = 0
C-III-c µ2

1 = −(λ1 + λ3)(ŵ2
1 + ŵ2

2),
λ2 + λ3 = 0,λ4 = 0

C-III-d,e µ2
0 = (λ2 + λ3)

(ŵ2
1
−ŵ2

2
)2

ŵ2
S

− ϵλ4
(ŵ2

1
−ŵ2

2
)(ŵ2

1
−3ŵ2

2
)

4ŵ2ŵS

−1
2 (λ5 + λ6) (ŵ2

1 + ŵ2
2)− λ8ŵ2

S,

µ2
1 = − (λ1 − λ2) (ŵ2

1 + ŵ2
2)− ϵλ4

ŵS(ŵ2
1
−ŵ2

2
)

4ŵ2
− 1

2 (λ5 + λ6) ŵ2
S,

λ7 =
ŵ2

1
−ŵ2

2

ŵ2
S

(λ2 + λ3)− ϵ (ŵ
2
1
−5ŵ2

2
)

4ŵ2ŵS
λ4

C-III-f,g µ2
0 = −1

2λb (ŵ
2
1 + ŵ2

2)− λ8ŵ2
S,

µ2
1 = − (λ1 + λ3) (ŵ2

1 + ŵ2
2)− 1

2λbŵ
2
S,λ4 = 0

C-III-h µ2
0 = −2λbŵ2

2 − λ8ŵ2
S,

µ2
1 = −4 (λ1 + λ3) ŵ2

2 − 1
2 (λb − 8 cos2 σ2λ7) ŵ2

S,
λ4 = ∓2 cosσ2ŵS

ŵ2
λ7

C-III-i µ2
0 =

16(1−3 tan2 σ1)2
(1+9 tan2 σ1)2

(λ2 + λ3)
ŵ4

2

ŵ2
S

± 6(1−tan2 σ1)(1−3 tan2 σ1)

(1+9 tan2 σ1)
3
2

λ4
ŵ3

2

ŵS

−2(1+3 tan2 σ1)
1+9 tan2 σ1

(λ5 + λ6)ŵ2
2 − λ8ŵ2

S,

µ2
1 = −4(1+3 tan2 σ1)

1+9 tan2 σ1
(λ1 − λ2)ŵ2

2 ∓
(1−3 tan2 σ1)
2
√

1+9 tan2 σ1

λ4ŵ2ŵS

−1
2(λ5 + λ6)ŵ2

S,

λ7 = −4(1−3 tan2 σ1)ŵ2
2

(1+9 tan2 σ1)ŵ2
S

(λ2 + λ3)∓
(5−3 tan2 σ1)ŵ2

2
√

1+9 tan2 σ1ŵS

λ4

h2 would allow to remove the phase of λ7, rendering all coefficients of the potential real.
Another way of achieving the same result would be by rephasing hS alone. Neither of
these transformations alters the specifications of the vacuum corresponding to this case.

Cases C-IV-a, C-IV-d and C-V are listed in Table 2 for completeness and to allow
for an enlightening discussion. Once one takes into consideration the constraints given in
Table 4 they become real.

Solution C-IV-d is more general than solution C-IV-a and reduces to C-IV-a once we
fix w2 = 0, so it suffices to discuss C-IV-d. Both of these require λ4 = 0 and λ7 = 0,
and as a result the potential acquires symmetry for the transformation of h1, h2 and hS

under a unitary transformation of the form U = diag(eiτ , eiτ , 1) which allows to remove
the phase σ1 from the vacuum, making it real.

At first glance case C-V looks like the most general case, however we are assuming
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Table 4: Constraints on complex vacua, continued. The vacua labelled with an asterisk
(∗) are in fact real.

Vacuum Constraints

C-IV-a∗ µ2
0 = −1

2 (λ5 + λ6) ŵ2
1 − λ8ŵ2

S,
µ2
1 = − (λ1 + λ3) ŵ2

1 − 1
2 (λ5 + λ6) ŵ2

S,
λ4 = 0,λ7 = 0

C-IV-b µ2
0 = (λ2 + λ3)

(ŵ2
1
−ŵ2

2)2
ŵ2

S

− 1
2 (λ5 + λ6) (ŵ2

1 + ŵ2
2)− λ8ŵ2

S,

µ2
1 = − (λ1 − λ2) (ŵ2

1 + ŵ2
2)− 1

2 (λ5 + λ6) ŵ2
S,

λ4 = 0,λ7 = −(ŵ2
1
−ŵ2

2)
ŵ2

S

(λ2 + λ3)

C-IV-c µ2
0 = 2 cos2 σ2 (1 + cos2 σ2) (λ2 + λ3)

ŵ4
2

ŵ2
S

− (1 + cos2 σ2) (λ5 + λ6) ŵ2
2 − λ8ŵ2

S,
µ2
1 = − [2 (1 + cos2 σ2)λ1 − (2 + 3 cos2 σ2)λ2 − cos2 σ2λ3] ŵ2

2

−1
2 (λ5 + λ6) ŵ2

S,

λ4 = −2 cosσ2ŵ2

ŵS
(λ2 + λ3) ,λ7 =

cos2 σ2ŵ2
2

ŵ2
S

(λ2 + λ3)

C-IV-d∗ µ2
0 = −1

2 (λ5 + λ6) (ŵ2
1 + ŵ2

2)− λ8ŵ2
S,

µ2
1 = − (λ1 + λ3) (ŵ2

1 + ŵ2
2)− 1

2 (λ5 + λ6) ŵ2
S,

λ4 = 0,λ7 = 0

C-IV-e µ2
0 =

sin2(2(σ1−σ2))
sin2(2σ1)

(λ2 + λ3)
ŵ4

2

ŵ2
S

−1
2

(

1− sin 2σ2

sin 2σ1

)

(λ5 + λ6) ŵ2
2 − λ8ŵ2

S,

µ2
1 = −

(

1− sin 2σ2

sin 2σ1

)

(λ1 − λ2) ŵ2
2 − 1

2 (λ5 + λ6) ŵ2
S,

λ4 = 0,λ7 = − sin(2(σ1−σ2))ŵ2
2

sin 2σ1ŵ2
S

(λ2 + λ3)

C-IV-f µ2
0 = − (cos(σ1−2σ2)+3 cosσ1) cos(σ2−σ1)

2 cos2 σ1
λ4

ŵ3
2

ŵS

− cos(σ1−2σ2)+3 cosσ1

2 cosσ1
(λ5 + λ6) ŵ2

2 − λ8ŵ2
S,

µ2
1 = − cos(σ1−2σ2)+3 cosσ1

cosσ1
(λ1 + λ3) ŵ2

2

−3 cos 2σ1+2 cos(2(σ1−σ2))+cos 2σ2+4
4 cos(σ1−σ2) cosσ1

λ4ŵ2ŵS − 1
2 (λ5 + λ6) ŵ2

S,

λ2 + λ3 = − cosσ1ŵS

2 cos(σ2−σ1)ŵ2
λ4,λ7 = − cos(σ2−σ1)ŵ2

2 cosσ1ŵS
λ4

C-V∗ µ2
0 = −1

2 (λ5 + λ6) (ŵ2
1 + ŵ2

2)− λ8ŵ2
S,

µ2
1 = − (λ1 + λ3) (ŵ2

1 + ŵ2
2)− 1

2 (λ5 + λ6) ŵ2
S,

λ2 + λ3 = 0,λ4 = 0,λ7 = 0

that it does not fall into any of the previous cases, so, as a result, full generality requires
λ2 + λ3 = 0, λ4 = 0 and λ7 = 0 and there is no term in the potential sensitive to
independent rephasing of each of the h fields. As a result any phase in the vevs can be
rotated away. Under these circumstances, it is equivalent to a real set of vacua.

There are, in particular, two possible complex vacua that have been discussed previ-
ously in the literature. One of them is:

ŵeiσ, ŵe−iσ, ŵS, (5.10)

by Pakvasa and Sugawara [18]. We shall refer to this as the PS vacuum, assuming ŵ ̸= 0
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Complex vacua, Spontaneous CP Violation 

Table 1: Spontaneous CP violation

Vacuum �4 SCPV Vacuum �4 SCPV Vacuum �4 SCPV

C-I-a X no C-III-f,g 0 no C-IV-c X yes

C-III-a X yes C-III-h X yes C-IV-d 0 no

C-III-b 0 no C-III-i X no C-IV-e 0 no

C-III-c 0 no C-IV-a 0 no C-IV-f X yes

C-III-d,e X no C-IV-b 0 no C-V 0 no

C-I-a

h2 $ �h2

�2 $ �3

h1 $ �h1

ej HjZZ, HjHjZ

qj HjH
+H�

(w1, w2, wS) = (v, 0, 0) (6)

Uijh0|�j|0i⇤ = h0|�i|0i, (7)

(ŵ1e
i�1 , ŵ2e

i�2 , wS) ! (aei�, ae�i�, wS) (8)

h1 $ h2 (9)

(ŵ1e
i�1 , ŵ2e

i�2 , 0) ! (aei�1 , aei�2 , 0) (10)

(aei�1 , aei�2 , 0) ! (aei�, ae�i�, 0) (11)

U =

0

@
0 1 0

1 0 0

0 0 1

1

A
(12)

5

No spontaneous CP violation in any of the cases with 

Table 2: Real vacua, for the unbroken S
3

case, with massless states and degeneracies
indicated. The first entry in the parenthesis refers to the charged sector, the second one
to the neutral sector.

Vacuum name �
4

symmetry # massless states degeneracies

R
00x R-I-1

p
none (1,2)

R
0x0 R-II-2 0 SO(2) (none,1) none

Rx00 R-I-2a
p

none none
R

0xy R-II-1a
p

none none
Rx0y 0 SO(2) (none,1) none
Rxy0 R-I-2b,2c

p
none none

Rxy0 R-II-3 0 SO(2) (none,1) none
Rxyz R-II-1b,1c

p
none none

Rxyz R-III 0 SO(2) (none,1) none

4 Goldstone bosons

Several of the possible vacuum solutions of the S
3

-symmetric potential have massless
scalars. These result from the spontaneous breakdown of accidental continuous symmetries
that arise when we impose the constraints required for the di↵erent these solutions. In ta-
bles 2 and 3 we list the number of massless scalars for each case, together with whether
or not �

4

is required to be zero. For �
4

= 0 the potential acquires an additional SO(2)
symmetry between the two members of the S

3

doublet. When this symmetry is broken by
the vacuum, one massless scalar state appears. In some cases, �

7

is also required to be
zero and the potential acquires an additional U(1) symmetry which we denote by U(1)s.
This corresponds to the freedom of rephasing hS independently from h

1

and h
2

. Once
again, an additional massless scalar state appears when this symmetry is spontaneously
broken. In the C-III-c case, the condition �

4

= 0 is accompanied by �
2

+ �
3

= 0. This last
condition does not increase the symmetry. However, the fact that hS has zero vev, leads
to an additional massless state. Note that there is no vacuum which requires �

2

+ �
3

= 0
or �

7

= 0 without also having �
4

= 0. In the C-V case, all of these are required to be
zero, and another U(1) symmetry arises, which we denoted by U(1)d, corresponding to the
independent rephasing of h

1

and h
2

.

5 The C-III-c model without soft breaking terms

The C-III-c model has some peculiar properties. As mentioned above, it has two massless
states in the neutral sector (apart from the would-be Goldstone boson). Removing them
is the main purpose of introducing soft S

3

-breaking terms (in the next section). But a
more interesting property is the fact that the relative phase of the two vevs, �, is totally
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The question of relating complex vacua to real ones is relevant for the discussion of global
minima [28, 29] as well as to understand the possible correlations of different parameters
of the potential.

7 The case of λ4 = 0

As mentioned in section 2.3, in the case of λ4 = 0 the potential has an additional,
continuous SO(2) symmetry. This case was dismissed by Derman [20], as being “un-
natural”. This was due to the fact that this condition, when expressed in terms of the
parameters of the potential written by Derman, given by Eqs. (2.9), acquires the form
given by Eq. (4.10), which is not instructive and the resulting symmetry is not apparent.
Spontaneous breaking of this SO(2) symmetry leads to massless particles. In this case,
one way to promote this to a viable model is to break this symmetry softly, by adding a
term to the bilinear part of the potential:

V = V2 + V ′
2 + V4, (7.1)

with V2 and V4 as defined by equations (2.10), and

V ′
2 =

1

2
ν2(h†

2h1 + h†
1h2). (7.2)

The minimisation conditions (3.3)–(3.5) will now become

∂V

∂w∗
S

=
1

2
wSµ

2
0 +

1

4
wS(|w1|2 + |w2|2)(λ5 + λ6)

+
1

4
w∗

S(w
2
1 + w2

2)λ7 +
1

2
w∗

Sw
2
Sλ8 = 0, (7.3)

∂V

∂w∗
1

=
1

2
w1µ

2
1 +

1

2
w2ν

2 +
1

2
w1(|w1|2 + |w2|2)λ1 +

1

2
w2(w

∗
1w2 − w1w

∗
2)λ2

+
1

2
w∗

1(w
2
1 + w2

2)λ3 +
1

4
w1|wS|2(λ5 + λ6) +

1

2
w∗

1w
2
Sλ7 = 0, (7.4)

∂V

∂w∗
2

=
1

2
w2µ

2
1 +

1

2
w1ν

2 +
1

2
w2(|w1|2 + |w2|2)λ1 −

1

2
w1(w

∗
1w2 − w1w

∗
2)λ2

+
1

2
w∗

2(w
2
1 + w2

2)λ3 +
1

4
w2|wS|2(λ5 + λ6) +

1

2
w∗

2w
2
Sλ7 = 0. (7.5)

With these new conditions there will be some changes in the solutions. In particular,
the new term will bring new sources of CP violation, and spontaneous CP violation may
be easier to achieve. Notice that such a term also softly breaks some types of discrete
symmetries of the S3 doublet h1 and h2 that might otherwise be present. This feature
was exploited long ago in the context of two-Higgs-doublet models [30]. Soft breaking
of the S3 symmetry of the scalar potential has been applied in [31] in order to obtain a
special relation among the vevs of the three doublets that would allow to account for the
observed charged lepton masses.

An important implication of the type of vacuum solution and of the corresponding
allowed region of parameter space is the resulting different possible spectra for the physical
scalars.
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Potential has additional continuous SO(2) symmetry

�4 = 4A� 2(C + C̄ +D)� E1 � E2 + E4 = 0

Derman (1979), “unnatural”

Spontaneous breaking of this SO(2) symmetry leads to massless 
particles

Possible solution: break the symmetry softly. 
The most general quadratic potential can be written:

correlations among certain physical couplings, and among those couplings and the mass
splitting in the neutral S
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-singlet sector. The mass splitting and couplings given above, by
Eqs. (5.4) and (5.13), assume a basis where ŵ
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2

= v/
p
2.

Clearly,
�2 ⌘ m2

S2
�m2

S1
(5.14)

is a physical quantity, expressed as 2 cos��
7

v2 in the adopted basis. Next, if we denote
the AS

1

S
2

coupling (v sin ��
7
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whereas � (in the chosen basis) parametrizes the ratio of the two physical quantities �2

and ĝ by
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6 The softly broken potential

We now replace the potential (2.1) by

V = V
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that softly break the S
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The vacua studied in Ref. [12] will then be modified. In the following we shall briefly
discuss some general properties of the di↵erent vacua that result from the inclusion of soft
S
3

-breaking terms, employing a more generic terminology to label them. The labelling will
specify how many and which vevs vanish, and our focus will be on massless states and
mass degeneracies. Our approach is to fix the zero vevs in all possible positions and derive
the resulting constraints.

6.1 Real vacua

We summarize in table 4 the di↵erent real vacua for the softly broken S
3

-symmetric po-
tential. In the following, we list some further properties, commenting also on the degen-
eracies that arise in the limit of no soft S

3

-breaking terms. This classification is based
on considering all vacua with two, or one or with no vanishing vevs, where the labels are
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Table 2: Real vacua, for the unbroken S
3

case, with massless states and degeneracies
indicated. The first entry in the parenthesis refers to the charged sector, the second one
to the neutral sector.

Vacuum name �
4

symmetry # massless states degeneracies

R
00x R-I-1

p
none (1,2)

R
0x0 R-II-2 0 SO(2) (none,1) none

Rx00 R-I-2a
p

none none
R

0xy R-II-1a
p

none none
Rx0y 0 SO(2) (none,1) none
Rxy0 R-I-2b,2c

p
none none

Rxy0 R-II-3 0 SO(2) (none,1) none
Rxyz R-II-1b,1c

p
none none

Rxyz R-III 0 SO(2) (none,1) none

4 Goldstone bosons

Several of the possible vacuum solutions of the S
3

-symmetric potential have massless
scalars. These result from the spontaneous breakdown of accidental continuous symmetries
that arise when we impose the constraints required for the di↵erent these solutions. In ta-
bles 2 and 3 we list the number of massless scalars for each case, together with whether
or not �

4

is required to be zero. For �
4

= 0 the potential acquires an additional SO(2)
symmetry between the two members of the S

3

doublet. When this symmetry is broken by
the vacuum, one massless scalar state appears. In some cases, �

7

is also required to be
zero and the potential acquires an additional U(1) symmetry which we denote by U(1)s.
This corresponds to the freedom of rephasing hS independently from h

1

and h
2

. Once
again, an additional massless scalar state appears when this symmetry is spontaneously
broken. In the C-III-c case, the condition �

4

= 0 is accompanied by �
2

+ �
3

= 0. This last
condition does not increase the symmetry. However, the fact that hS has zero vev, leads
to an additional massless state. Note that there is no vacuum which requires �

2

+ �
3

= 0
or �

7

= 0 without also having �
4

= 0. In the C-V case, all of these are required to be
zero, and another U(1) symmetry arises, which we denoted by U(1)d, corresponding to the
independent rephasing of h

1

and h
2

.

5 The C-III-c model without soft breaking terms

The C-III-c model has some peculiar properties. As mentioned above, it has two massless
states in the neutral sector (apart from the would-be Goldstone boson). Removing them
is the main purpose of introducing soft S

3

-breaking terms (in the next section). But a
more interesting property is the fact that the relative phase of the two vevs, �, is totally

6
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SO(2) symmetry plus symmetry under independent 

rephasing of each doublet

Table 1: Complex vacua, for the unbroken S3 case, with massless states and degeneracies
indicated. The first entry in the parenthesis refers to the charged sector, the second one
to the neutral sector. In the footnotes below, L indicates that a linear expression in its
arguments vanishes.

Vacuum name �4 symmetry # massless states degeneracies

C0xy C-III-a
p

none none
C

x0y C-III-b 0 SO(2) (none,1) none
C

x0y C-IV-a 0↵ SO(2)⌦ U(1)
s

(none,2) (none,2)
C

xy0 C-I-a
p

none (none,2)
C

xy0 C-III-c 0� SO(2) (none,2) (none,2

C
xyz

C-III-d,e
p

none none
C

xyz

C-III-f,g 0 SO(2) (none,1) none
C

xyz

C-III-h,i
p

none none
C

xyz

C-IV-b 0 SO(2) (none,1) none
C

xyz

C-IV-c � x (none,1) none
C

xyz

C-IV-d 0↵ SO(2)⌦ U(1)
s

(none,2) (none,2)
C

xyz

C-IV-e 0 SO(2) (none,1) none
C

xyz

C-IV-f � x (none,1) none
C

xyz

C-V 0↵,� SO(2)⌦ U(1)1 ⌦ U(1)2 ⌦ U(1)
s

(none,3) (none,3)

↵
Also �7 = 0. �

Also �2 + �3 = 0. � L(�2 + �3,�4), L(�2 + �3,�7).

1

)



Vacuum C-III-c
A particularly interesting complex vacuum configuration

It is the only complex vacuum in the full list with a nontrivial phase 

that is not constrained by the minimisation conditions 

Splitting this equation into real and imaginary parts, we find

(λ2 + λ3)(ŵ1 − ŵ2){1− cos[2(σ1 − σ2)]} = 0, and (5.4a)

(λ2 + λ3) sin[2(σ1 − σ2)] = 0. (5.4b)

The solutions are

λ2 + λ3 = 0, or (5.5a)

σ2 = σ1 ± nπ, n integer. (5.5b)

Table 2: Complex vacua. Notation: ϵ = 1 and −1 for C-III-d and C-III-e, respectively;
ξ =

√

−3 sin 2ρ1/ sin 2ρ2, ψ =
√

[3 + 3 cos(ρ2 − 2ρ1)]/(2 cos ρ2). With the constraints of
Table 4 the vacua labelled with an asterisk (∗) are in fact real.

IRF (Irreducible Rep.) RRF (Reducible Rep.)
w1, w2, wS ρ1, ρ2, ρ3

C-I-a ŵ1,±iŵ1, 0 x, xe±
2πi

3 , xe∓
2πi

3

C-III-a 0, ŵ2eiσ2 , ŵS y, y, xeiτ

C-III-b ±iŵ1, 0, ŵS x+ iy, x− iy, x
C-III-c ŵ1eiσ1 , ŵ2eiσ2 , 0 xeiρ − y

2 ,−xeiρ − y
2 , y

C-III-d,e ±iŵ1, ϵŵ2, ŵS xeiτ , xe−iτ , y
C-III-f ±iŵ1, iŵ2, ŵS reiρ ± ix, reiρ ∓ ix, 3

2re
−iρ − 1

2re
iρ

C-III-g ±iŵ1,−iŵ2, ŵS re−iρ ± ix, re−iρ ∓ ix, 3
2re

iρ − 1
2re

−iρ

C-III-h
√
3ŵ2eiσ2 ,±ŵ2eiσ2 , ŵS xeiτ , y, y

y, xeiτ , y

C-III-i
√

3(1+tan2 σ1)
1+9 tan2 σ1

ŵ2eiσ1 , x, yeiτ , ye−iτ

±ŵ2e−i arctan(3 tan σ1), ŵS yeiτ , x, ye−iτ

C-IV-a∗ ŵ1eiσ1 , 0, ŵS reiρ + x,−reiρ + x, x
C-IV-b ŵ1,±iŵ2, ŵS reiρ + x,−re−iρ + x,−reiρ + re−iρ + x
C-IV-c

√
1 + 2 cos2 σ2ŵ2, reiρ + r

√

3(1 + 2 cos2 ρ) + x,
ŵ2eiσ2 , ŵS reiρ − r

√

3(1 + 2 cos2 ρ) + x,−2reiρ + x
C-IV-d∗ ŵ1eiσ1 ,±ŵ2eiσ1 , ŵS r1eiρ + x, (r2 − r1)eiρ + x,−r2eiρ + x

C-IV-e
√

− sin 2σ2

sin 2σ1
ŵ2eiσ1 , reiρ2 + reiρ1ξ + x, reiρ2 − reiρ1ξ + x,

ŵ2eiσ2 , ŵS −2reiρ2 + x

C-IV-f
√

2 + cos(σ1−2σ2)
cos σ1

ŵ2eiσ1 , reiρ1 + reiρ2ψ + x,

ŵ2eiσ2 , ŵS reiρ1 − reiρ2ψ + x,−2reiρ1 + x

C-V∗ ŵ1eiσ1 , ŵ2eiσ2 , ŵS xeiτ1 , yeiτ2, z

Likewise, the condition λ4 = 0 must be supplemented by

(λ2 + λ3)e
i(σ1+σ2)[ŵ2

1(1− e2i(σ1−σ2)) + ŵ2
2(e

−2i(σ1−σ2) − 1)]

+ λ7w
2
S(e

−i(σ1−σ2) − ei(σ1−σ2)) = 0. (5.6)
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Table 3: Constraints on complex vacua. Notation: ϵ = 1 and −1 for C-III-d and C-III-e,
respectively. Where two possible signs (± or ∓) are given, they correspond to those of
Table 2. Here, λb is defined in Eq. (4.5).

Vacuum Constraints

C-I-a µ2
1 = −2 (λ1 − λ2) ŵ2

1

C-III-a µ2
0 = −1

2λbŵ
2
2 − λ8ŵ2

S,
µ2
1 = − (λ1 + λ3) ŵ2

2 − 1
2 (λb − 8 cos2 σ2λ7) ŵ2

S,
λ4 =

4 cos σ2ŵS

ŵ2
λ7

C-III-b µ2
0 = −1

2λbŵ
2
1 − λ8ŵ2

S,
µ2
1 = − (λ1 + λ3) ŵ2

1 − 1
2λbŵ

2
S,

λ4 = 0
C-III-c µ2

1 = −(λ1 + λ3)(ŵ2
1 + ŵ2

2),
λ2 + λ3 = 0,λ4 = 0

C-III-d,e µ2
0 = (λ2 + λ3)

(ŵ2
1
−ŵ2

2
)2

ŵ2
S

− ϵλ4
(ŵ2

1
−ŵ2

2
)(ŵ2

1
−3ŵ2

2
)

4ŵ2ŵS

−1
2 (λ5 + λ6) (ŵ2

1 + ŵ2
2)− λ8ŵ2

S,

µ2
1 = − (λ1 − λ2) (ŵ2

1 + ŵ2
2)− ϵλ4

ŵS(ŵ2
1
−ŵ2

2
)

4ŵ2
− 1

2 (λ5 + λ6) ŵ2
S,

λ7 =
ŵ2

1
−ŵ2

2

ŵ2
S

(λ2 + λ3)− ϵ (ŵ
2
1
−5ŵ2

2
)

4ŵ2ŵS
λ4

C-III-f,g µ2
0 = −1

2λb (ŵ
2
1 + ŵ2

2)− λ8ŵ2
S,

µ2
1 = − (λ1 + λ3) (ŵ2

1 + ŵ2
2)− 1

2λbŵ
2
S,λ4 = 0

C-III-h µ2
0 = −2λbŵ2

2 − λ8ŵ2
S,

µ2
1 = −4 (λ1 + λ3) ŵ2

2 − 1
2 (λb − 8 cos2 σ2λ7) ŵ2

S,
λ4 = ∓2 cos σ2ŵS

ŵ2
λ7

C-III-i µ2
0 =

16(1−3 tan2 σ1)2
(1+9 tan2 σ1)2

(λ2 + λ3)
ŵ4

2

ŵ2
S

± 6(1−tan2 σ1)(1−3 tan2 σ1)

(1+9 tan2 σ1)
3
2

λ4
ŵ3

2

ŵS

−2(1+3 tan2 σ1)
1+9 tan2 σ1

(λ5 + λ6)ŵ2
2 − λ8ŵ2

S,

µ2
1 = −4(1+3 tan2 σ1)

1+9 tan2 σ1
(λ1 − λ2)ŵ2

2 ∓
(1−3 tan2 σ1)
2
√

1+9 tan2 σ1

λ4ŵ2ŵS

−1
2(λ5 + λ6)ŵ2

S,

λ7 = −4(1−3 tan2 σ1)ŵ2
2

(1+9 tan2 σ1)ŵ2
S

(λ2 + λ3)∓
(5−3 tan2 σ1)ŵ2

2
√

1+9 tan2 σ1ŵS

λ4

Solution C-IV-d is more general than solution C-IV-a and reduces to C-IV-a once we
fix w2 = 0, so it suffices to discuss C-IV-d. Both of these require λ4 = 0 and λ7 = 0,
and as a result the potential acquires symmetry for the transformation of h1, h2 and hS

under a unitary transformation of the form U = diag(eiτ , eiτ , 1) which allows to remove
the phase σ1 from the vacuum, making it real.

At first glance case C-V looks like the most general case, however we are assuming
that it does not fall into any of the previous cases, so, as a result, full generality requires
λ2 + λ3 = 0, λ4 = 0 and λ7 = 0 and there is no term in the potential sensitive to
independent rephasing of each of the h fields. As a result any phase in the vevs can be
rotated away. Under these circumstances, it is equivalent to a real set of vacua.

There are, in particular, two possible complex vacua that have been discussed previ-
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Constraints:

Does not violate CP spontaneously O. M. Ogreid, P. Osland, M. N. R. , 2017

(acquires SO(2) symmetry)

Can be rewritten as:

with ŵ1 and ŵ2 real and positive. The three conditions are:

µ2
1 = �(�1 + �3)(ŵ

2
1 + ŵ2

2), (5a)

�2 + �3 = 0, (5b)

�4 = 0 (5c)

In this solution, �4 is required to be zero. It should be pointed out that �4 plays a very
important role in this potential. In fact, without the �4 term, the potential acquires an
additional (continuous) SO(2) symmetry among the fields h1 and h2, as well as symmetry
under h2 ! �h2 and hS ! �hS, together with the symmetry under h1 ! �h1, which was
already present. This SO(2) symmetry allows for the rotation among h1 and h2 in such
a way that, together with appropriate overall rephasing, this vacuum can be transformed
into [8]

(w1, w2, wS) = (ŵei�/2, ŵe�i�/2, 0) = (ŵei�, ŵ, 0) (6)

so that it can be easily shown [9, 8] that this vacuum does not violate CP spontaneously.
The SO(2) symmetry is spontaneously broken by the C-III-c vacuum and therefore

we are left with massless neutral scalar fields which need to be removed. This can be
achieved by adding a term that breaks the S3 symmetry softly.

3 The C-III-c model

4 The softly broken C-III-c model

4.1 The C-III-c model with a ⌫2 term

4.2 The C-III-c model with a µ2 term

4.3 The C-III-c model with both ⌫2 and µ2 terms
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LV V HH =
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g cos 2✓W
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g cos 2✓W
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Z

◆µ

+
g2
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µ

�
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+ S2

2
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+
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2
{AµW

µ[H�(H + iA) + S�(S
1

+ iS
2
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� g2 sin2 ✓W
2 cos ✓W

{ZµW
µ[H�(H + iA) + S�(S

1

+ iS
2

)] + h.c.}. (5.12)

Note that LV V H contains no term linear in the singlet fields since it has a vanishing vev.

5.3 Trilinear couplings

The non-zero trilinear couplings are (as coe�cients of the potential):

hhh : v(�
1

� �
2

), (5.13a)

hAA : v(�
1

� �
2

), (5.13b)

hHH : v(�
1

� �
2

), (5.13c)

hH+H� : 2v(�
1

+ �
2

), (5.13d)

hS+S� : v�
5

, (5.13e)

hS
1

S
1

:
v

2
[�

5

+ �
6

+ 2 cos��
7

], (5.13f)

hS
2

S
2

:
v

2
[�

5

+ �
6

� 2 cos��
7

], (5.13g)

AS
1

S
1

: v sin ��
7

, (5.13h)

AS
2

S
2

: � v sin ��
7

, (5.13i)

HS
1

S
2

: � 2v sin ��
7

, (5.13j)

H+S�S
1

: � iv sin ��
7

, (5.13k)

H+S�S
2

: � v sin ��
7

. (5.13l)

We have here left out couplings involving the would-be Goldstone bosons. Couplings
involving H�S+ are obtained from those involving H+S� by complex conjugation. The
AAA, HHH, hhA, hhH, AAH, H+H�A, H+H�H, S+S�A and S+S�H couplings all
vanish. The dependence on the phase � only appears in couplings involving �

7

and two
fields from the S

3

-singlet sector.

5.4 The phase �

As mentioned above, in a basis where ŵ
1

= ŵ
2

, it is convenient to define � = �
1

� �
2

.
We recall that this phase � is not determined by the potential. However, it parametrizes

9Two massless states in the neutral sector apart from the would-be Goldstone boson  

Table 3: Complex vacua, for the unbroken S
3

case, with massless states and degeneracies
indicated. The first entry in the parenthesis refers to the charged sector, the second one
to the neutral sector. In the footnotes below, L indicates that a linear expression in its
arguments vanishes.

Vacuum name �
4

symmetry # massless states degeneracies

C
0xy C-III-a

p
none none

Cx0y C-III-b 0 SO(2) (none,1) none
Cx0y C-IV-a 0↵ SO(2)⌦ U(1)s (none,2) none
Cxy0 C-I-a

p
none (none,2)

Cxy0 C-III-c 0� SO(2) (none,2) none

Cxyz C-III-d,e
p

none none
Cxyz C-III-f,g 0 SO(2) (none,1) none
Cxyz C-III-h,i

p
none none

Cxyz C-IV-b 0 SO(2) (none,1) none
Cxyz C-IV-c � ? (none,1) none
Cxyz C-IV-d 0↵ SO(2)⌦ U(1)s (none,2) none
Cxyz C-IV-e 0 SO(2) (none,1) none
Cxyz C-IV-f � ? (none,1) none
Cxyz C-V 0↵,� SO(2)⌦ U(1)d ⌦ U(1)s (none,3) none

↵ Also �7 = 0. � Also �2 + �3 = 0. � L(�2 + �3,�4), L(�2 + �3,�7).

free, i.e., it is not determined by the parameters of the potential. However, it shows up in
the mass spectrum and in various trilinear couplings. This is paradoxical, since it looks
like exactly the same Lagrangian can describe di↵erent physical situations. In particular,
this phase governs the degeneracy among the two neutral fields coming from the S

3

-singlet
Higgs doublet.

5.1 Masses

Since �
4

= 0 and ŵS = 0, the S
3

doublet and the S
3

singlet do not mix in the mass terms.
In the charged sector, we have

m2

H± = 2�
2

v2, (5.1)

m2

S± = µ2

0

+ 1

2

�
5

v2, (5.2)

where v2 = ŵ2

1

+ ŵ2

2

and H± and S± refer to the charged states of the doublet and singlet
sector, respectively.

In the neutral sector of the S
3

-doublet, there is only one massive (CP-even) state,

m2

h = 2(�
1

� �
2

)v2, (5.3)
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to the neutral sector. In the footnotes below, L indicates that a linear expression in its
arguments vanishes.

Vacuum name �
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none none
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↵ Also �7 = 0. � Also �2 + �3 = 0. � L(�2 + �3,�4), L(�2 + �3,�7).

free, i.e., it is not determined by the parameters of the potential. However, it shows up in
the mass spectrum and in various trilinear couplings. This is paradoxical, since it looks
like exactly the same Lagrangian can describe di↵erent physical situations. In particular,
this phase governs the degeneracy among the two neutral fields coming from the S

3

-singlet
Higgs doublet.

5.1 Masses

Since �
4

= 0 and ŵS = 0, the S
3

doublet and the S
3

singlet do not mix in the mass terms.
In the charged sector, we have

m2

H± = 2�
2

v2, (5.1)

m2

S± = µ2

0

+ 1

2

�
5

v2, (5.2)

where v2 = ŵ2

1

+ ŵ2

2

and H± and S± refer to the charged states of the doublet and singlet
sector, respectively.

In the neutral sector of the S
3

-doublet, there is only one massive (CP-even) state,

m2

h = 2(�
1

� �
2

)v2, (5.3)
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which would have to be identified with the SM-like Higgs, since it appears in the doublet
where the would-be Goldstone bosons are. There is no further mixing with the other fields.
The S

3

-singlet sector has two massive states (S
1

and S
2

),

m2

S1
= µ2

0

+ 1

2

(�
5

+ �
6

)v2 � �
7

cos �v2, (5.4a)

m2

S2
= µ2

0

+ 1

2

(�
5

+ �
6

)v2 + �
7

cos �v2. (5.4b)

Thus, the phase �, which is left undetermined by the potential, is related to the mass
splitting of the neutral scalars in the S

3

-singlet sector.

5.2 Gauge couplings

For the di↵erent couplings, we should define the degenerate fields carefully. Thus, rather
than adopting the decomposition (2.4), we take

h
1

= ei�/2
✓

h+

1

(ŵ + ⌘
1

+ i�
1

)/
p
2

◆
, h

2

= e�i�/2

✓
h+

2

(ŵ + ⌘
2

+ i�
2

)/
p
2

◆
, (5.5)

and

hS =

✓
S+

(S
1

+ iS
2

)/
p
2

◆
, (5.6)

with ŵ2 = v2/2. Since the S
3

singlet has a vanishing vev, it is straightforward to transform
to a Higgs basis [27, 28]. A convenient choice is to leave the singlet fields as they are, and
take

h±
1

= (G± �H±)/
p
2, h±

2

= (G± +H±)/
p
2, (5.7)

⌘
1

= (h�H)/
p
2, ⌘

2

= (h+H)/
p
2, (5.8)

�
1

= (G0 � A)/
p
2, �

2

= (G0 + A)/
p
2. (5.9)

This choice fixes the definitions of the degenerate, massless Goldstone bosons H and A
(any orthogonal basis would be equally good).

The covariant derivatives induce gauge couplings, those linear in the gauge fields are

LV HH = ieAµ[(H+

$
@ µH

�) + (S+

$
@ µS

�)]

� g

2 cos ✓W
Zµ{(H

$
@ µA) + (S

1
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@ µS2

)� i cos 2✓W [(H+
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@ µH
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@ µS

�)]}

+
ig
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$
@ µH

�) + i(A
$
@ µH

�) + (S
1

$
@ µS

�) + i(S
2

$
@ µS

�)]� h.c.}, (5.10)

where ✓W is the weak mixing angle. Furthermore, H and A denote the CP-even and odd
massless states. Next, the terms bilinear in gauge fields are

LV V H =
g2v

4 cos2 ✓W
ZµZ

µh+
g2v

2
W †

µW
µh, (5.11)
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which would have to be identified with the SM-like Higgs, since it appears in the doublet
where the would-be Goldstone bosons are. There is no further mixing with the other fields.
The S
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Thus, the phase �, which is left undetermined by the potential, is related to the mass
splitting of the neutral scalars in the S

3

-singlet sector.
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For the di↵erent couplings, we should define the degenerate fields carefully. Thus, rather
than adopting the decomposition (2.4), we take
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(ŵ + ⌘
1

+ i�
1

)/
p
2

◆
, h

2

= e�i�/2

✓
h+

2
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with ŵ2 = v2/2. Since the S
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singlet has a vanishing vev, it is straightforward to transform
to a Higgs basis [27, 28]. A convenient choice is to leave the singlet fields as they are, and
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where ✓W is the weak mixing angle. Furthermore, H and A denote the CP-even and odd
massless states. Next, the terms bilinear in gauge fields are
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The phase sigma which is left undetermined by the potential is related 

to the mass splitting of these neutral scalars and also parametrises 

some of the triliniar couplings involving the scalar fields

5 The C-III-c model without soft breaking terms

The C-III-c model has some peculiar properties. As mentioned above, it has two massless
states in the neutral sector (apart from the would-be Goldstone boson). Removing them
is the main purpose of introducing soft S

3

-breaking terms (in the next section). But a
more interesting property is the fact that the relative phase of the two vevs, �, is totally
free, i.e., it is not determined by the parameters of the potential. However, it shows up in
the mass spectrum and in various trilinear couplings. This is paradoxical, since it looks
like exactly the same Lagrangian can describe di↵erent physical situations. In particular,
this phase governs the degeneracy among the two neutral fields coming from the S

3

-singlet
Higgs doublet.

5.1 Masses

Since �
4

= 0 and ŵS = 0, the S
3

doublet and the S
3

singlet do not mix in the mass terms.
In the charged sector, we have

m2

H± = 2�
2

v2, (5.1)

m2

S± = µ2

0

+ 1

2

�
5

v2, (5.2)

where v2 = ŵ2

1

+ ŵ2

2

and H± and S± refer to the charged states of the doublet and singlet
sector, respectively.

In the neutral sector of the S
3

-doublet, there is only one massive (CP-even) state,

m2

h = 2(�
1

� �
2

)v2, (5.3)

which would have to be identified with the SM-like Higgs, since it appears in the doublet
where the would-be Goldstone bosons are. There is no further mixing with the other fields.
The S

3

-singlet sector has two massive states (S
1

and S
2

),

m2

S1
= µ2

0

+ 1

2

(�
5

+ �
6

)v2 � �
7

cos �v2, (5.4a)

m2

S2
= µ2

0

+ 1

2

(�
5

+ �
6

)v2 + �
7

cos �v2. (5.4b)

Thus, the phase �, which is left undetermined by the potential, is related to the mass
splitting of the neutral scalars in the S

3

-singlet sector.

5.2 Gauge couplings

For the di↵erent couplings, we should define the degenerate fields carefully. Thus, rather
than adopting the decomposition (2.4), we take

h
1

= ei�/2
✓

h+

1

(ŵ + ⌘
1

+ i�
1

)/
p
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◆
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p
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◆
, (5.5)
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Table 6: Summary of softly-broken C-III-c-like vacua. Here, “SBT” stands for “Soft-
breaking terms”. When the two moduli are equal, we denote it ŵ. In the last column we
listed the symmetry responsible for no spontaneous CP violation.

Case Constraints Allowed SBT Vacuum CP

1 �
4

= 0, �
2

+ �
3

= 0 none (ŵ
1

ei�1 , ŵ
2

ei�2 , 0) conserving
C-III-c ⌘ (ŵei�/2, ŵe�i�/2, 0) SO(2)

2 �
4

= 0, �
2

+ �
3

6= 0 µ2
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� �
1

) = 0, ŵ
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6= ŵ
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+ �
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$ h
2

4 �
4

= 0, �
2

+ �
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(ŵ
1
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no other conditions

5 �
4

6= 0, �
2

+ �
3
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� �
1

) = 0, ŵ
1

= ŵ
2

h
1

! �h
1

C-I-a
6 �

4

6= 0, �
2

+ �
3

= 0 ⌫2

02

(±iŵ
1

, ŵ
2

, 0) conserving
cos(�

2

� �
1

) = 0, ŵ
1

6= ŵ
2

h
1

! �h
1

7 �
4

6= 0, �
2

+ �
3

= 0 ⌫2

01

(ŵei�, ŵ, 0) violating
cos(�

2

� �
1

) 6= 0, ŵ
1

= ŵ
2

8 �
4

6= 0, �
2

+ �
3

= 0 ⌫2

01

, ⌫2

02

(ŵ
1

ei�1 , ŵ
2

ei�2 , 0) violating
no other conditions

9 �
4

6= 0, �
2

+ �
3

6= 0 µ2

2

, ⌫2

02

(±iŵ
1

, ŵ
2

, 0) conserving
cos(�

2

� �
1

) = 0, ŵ
1

6= ŵ
2

h
1

! �h
1

10 �
4

6= 0, �
2

+ �
3

6= 0 ⌫2

12

, ⌫2

01

(ŵei�, ŵ, 0) violating
cos(�

2

� �
1

) 6= 0, ŵ
1

= ŵ
2

11 �
4

6= 0, �
2

+ �
3

6= 0 all (ŵ
1

ei�1 , ŵ
2

ei�2 , 0) violating
�
2

� �
1

6= 0, ŵ
1

6= ŵ
2
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Possible situations where we have three soft breaking terms are when we have ⌫2

12

, µ2

2

and ⌫2

02

or when we have ⌫2

12

, ⌫2

01

and ⌫2

02

. In either of these two situations there are no
massless neutral scalars. If all four soft breaking terms are present there are no massless
neutral scalars.

Next, let us assume �
1

= ±⇡
2

(C-III-b). In this case we immediately get ⌫2

12

= ⌫2

01

= 0,
so the only possible soft breaking terms are µ2

2

and ⌫2

02

. If there are no soft breaking terms
(this requires �

4

= 0) we have one massless scalar. If the µ2

2

or ⌫2

02

term is present, there
are no massless scalars.

6.2.3 (ŵ
1

ei�1 , ŵ
2

ei�2 , 0)

All soft breaking terms survive minimization.
Let us first assume �

1

� �
2

6= ±⇡
2

(C-III-c). If there are no soft breaking terms (this
requires �

2

+�
3

= 0 and �
4

= 0) we have two massless neutral scalars. Not all combinations
of soft breaking terms are allowed, but if at least one soft breaking term is present we have
no massless neutral scalars.

Next, let us assume �
1

� �
2

= ±⇡
2

. In this case we immediately get ⌫2

12

= ⌫2

01

= 0, so
the only possible soft breaking terms are µ2

2

and ⌫2

02

. If w
2

6= ±ŵ
1

and no soft breaking
terms are present, we have two massless scalars. If either of the soft breaking terms are
present, we have no massless neutral scalars.

Finally, if �
1

� �
2

= ±⇡
2

and ŵ
2

= ±ŵ
1

(C-I-a), there are no soft breaking terms and
also no massless neutral scalars.

(AK:There are no consistent models when three soft breaking terms are considered.
This follows from the requirement that �

2

+ �
3

= 0 or �
4

= 0. )

6.2.4 (ŵ
1

ei�1 , ŵ
2

ei�2 , ŵS)

All four soft breaking terms survive minimization. The case sin(�
2

� �
1

) requires special
attention, and is listed separately in Table 5 .

Finally, if �
1

� �
2

6= 0, then all soft terms are constrained by the parameters of the
unbroken potential, together with the vevs (moduli ŵ

1

, ŵ
2

, ŵS, and the phases �
1

and �
2

).

(AK:In terms of classification of Ref. [12], C-III-d,e models result in ⌫2

12

= ⌫2

01

= 0. )

7 The C-III-c model with soft S3-breaking

The C-III-c vacuum was characterized [12] as a vacuum with ŵS = 0 and with the other
two vevs arbitrary complex, (ŵ

1

ei�1 , ŵ
2

ei�2 , 0). It is worth stressing that the C-I-a vacuum
(ŵ

1

,±iŵ
1

, 0) is not a particular case of C-III-c. This is clearly seen by comparing the con-
straints arising from the stationary-point equations. Whereas there are three constraints
attached to C-III-c, there is only one constraint attached to C-I-a. The C-III-c vacuum
requires �

4

= 0, �
2

+ �
3

= 0, and µ2

1

= �(�
1

+ �
2

)(ŵ2

1

+ ŵ2

2

) and can in fact be simplified
to (ŵei�, ŵ, 0) due to the SO(2) symmetry resulting from �

4

= 0.
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correlations among certain physical couplings, and among those couplings and the mass
splitting in the neutral S

3

-singlet sector. The mass splitting and couplings given above, by
Eqs. (5.4) and (5.13), assume a basis where ŵ

1

= ŵ
2

= v/
p
2.

Clearly,
�2 ⌘ m2

S2
�m2

S1
(5.14)

is a physical quantity, expressed as 2 cos��
7

v2 in the adopted basis. Next, if we denote
the AS

1

S
2

coupling (v sin ��
7

) by the abbreviation ĝ, then we can identify the modulus of
�
7

as a physical quantity:

|�
7

| =

s✓
�2

2v2

◆
2

+

✓
ĝ

v

◆
2

, (5.15)

whereas � (in the chosen basis) parametrizes the ratio of the two physical quantities �2

and ĝ by

tan � =
2ĝv

�2

. (5.16)

6 The softly broken potential

We now replace the potential (2.1) by

V = V
2

+ V 0
2

+ V
4

, (6.1)

allowing for terms V 0
2

that softly break the S
3

-symmetry. The most general form of these
terms is

V 0
2

= µ2

2

⇣
h†
1

h
1

� h†
2

h
2

⌘
+

1

2
⌫2

12

⇣
h†
1

h
2

+ h.c.
⌘
+

1

2
⌫2

01

⇣
h†
Sh1

+ h.c.
⌘

+
1

2
⌫2

02

⇣
h†
Sh2

+ h.c.
⌘
. (6.2)

The vacua studied in Ref. [12] will then be modified. In the following we shall briefly
discuss some general properties of the di↵erent vacua that result from the inclusion of soft
S
3

-breaking terms, employing a more generic terminology to label them. The labelling will
specify how many and which vevs vanish, and our focus will be on massless states and
mass degeneracies. Our approach is to fix the zero vevs in all possible positions and derive
the resulting constraints.

6.1 Real vacua

We summarize in table 4 the di↵erent real vacua for the softly broken S
3

-symmetric po-
tential. In the following, we list some further properties, commenting also on the degen-
eracies that arise in the limit of no soft S

3

-breaking terms. This classification is based
on considering all vacua with two, or one or with no vanishing vevs, where the labels are
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CONCLUSIONS

Symmetries play a crucial rôle in multi-Higgs models

Multi-Higgs models provide interesting scenarios for Dark 
Matter 

Symmetries are needed to stabilise Dark Matter

Multi-Higgs Models have a rich phenomenology

The question of whether CP is violated spontaneously or 
explicitly is still open 

Discoveries at the LHC are eagerly awaited


