New symmetries and electro-weak symmetry breaking

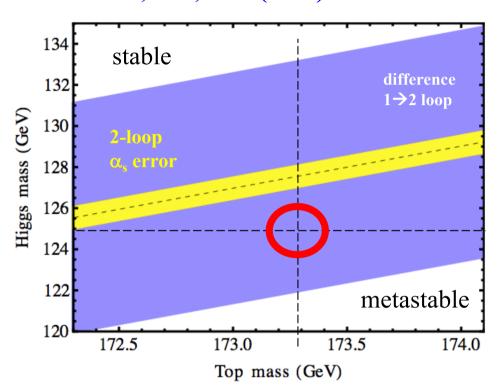
Manfred Lindner

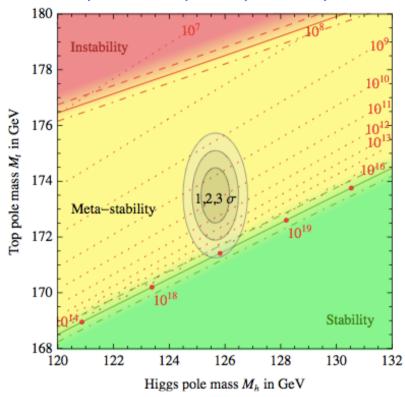
Scalars 2017

from 30 November 2017 to 3 December 2017 (Europe/Warsaw)
University of Warsaw
Europe/Warsaw timezone

Is the Higgs Potential at M_{Planck} flat?

Holthausen, ML, Lim (2011) Buttazzo, Degrassi, Giardino, Giudice, Sala, Salvio, Strumia



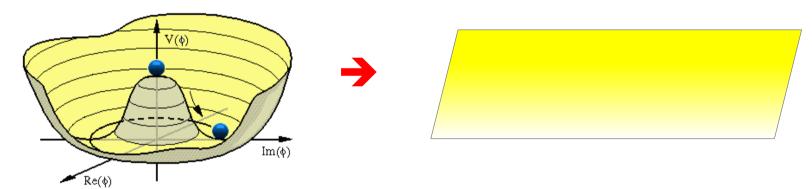


Experimental values point to metastability. Is it fully established?

- → we need to include DM, neutrino masses, ...? are all errors (EX+TH) fully included?
- → be cautious about claiming that metastability is established
- → An important aspect:
- a remarkable relation between weak scale, m_t , couplings and $M_{Planck} \leftarrow \rightarrow$ precision
- remarkable interplay between gauge, Higgs and top loops (log divergences not Λ^2)

Is there a Message?

- $\lambda(M_{Planck}) \simeq 0$? \rightarrow remarkable log cancellations M_{planck} , M_{weak} , gauge, Higgs & Yukawa couplings are unrelated
- remember: μ is the only single scale of the SM \rightarrow special role
 - \rightarrow if in addition $\mu^2 = 0 \rightarrow V(M_{Planck}) \simeq 0$
 - → flat Mexican hat (<1%) at the Planck scale!

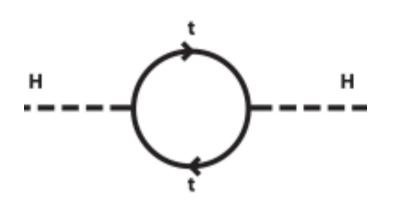


- → conformal (or shift) symmetry as solution to the HP
- → combined conformal & EW symmetry breaking
 - conceptual issues
 - realizations

Generic Questions

- Isn't the Planck-scale spoiling things (explicit scale, cut-off, ...)?
 - → renormalizable QFTs (SM) don't have cut-offs
 - explicit scales in embeddings act like a cut-off
 - important: no cutoff if the emebedding has no explicit scale
 - → non-linear realization of conformal symmetry... → ~conformal gravity...
 - → protected by conformal symmetry up to conformal anomaly
 - \rightarrow some mechanism that generates M_{Planck} by dimensional transmutation
 - **→** working assumption: M_{Planck} somehow generated in a conformal setting
- Are M_{planck} and M_{weak} connected?
 - → maybe ...
 - → here assumed to be an independently generated scales
- UV: ultimate solution should be asymptotically safe → UV-FPs...
- Conceptual change for scale setting:
 So far a rollover of scale generation: SM → BSM → GUT → gravity (M_{Planck}) here: only relative scales absolute scale is meaningless

Non-linear Realization of Conformal Symmetry



If conformal symmetry is realized in a non-linear way:

- protection by conformal symmetry
- only log sensitivity
 - **←→** conformal anomaly
 - $\leftarrow \rightarrow \beta$ -functions

- Avoids hierarchy problem, even though there is the the conformal anomaly only logs $\leftarrow \rightarrow \beta$ -functions
- Dimensional transmutation by log running like in QCD
 - → scalar QCD: scalars can condense and set scales like fermions
 - → also for massless scalar QCD: scale generation; no hierarchy

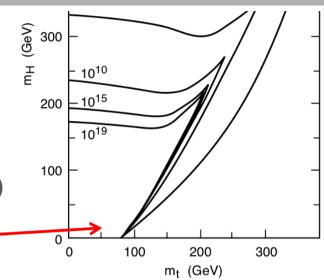
Why the minimalistic SM does not work

Minimalistic version: → "SM-"

SM + with μ = 0 $\leftarrow \rightarrow$ CS

Coleman Weinberg: effective potential

- **→** CS breaking (dimensional transmutation)
- \rightarrow induces for $m_t < 79 \text{ GeV}$ a Higgs mass $m_H = 8.9 \text{ GeV}$

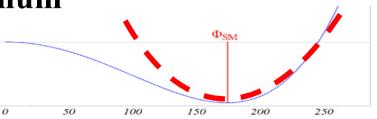


This would conceptually realize the idea, but:

Higgs too light and the idea does not work for m_t > 79 GeV

Reason for $m_H \ll v$: V_{eff} flat around minimum

 \leftrightarrow m_H ~ radiative loop factor ~ $1/16\pi^2$



AND: We need neutrino masses, dark matter, ...

Realizing the Idea via Higgs Portals

- SM scalar Φ plus some new scalar φ (or more scalars)
- $CS \rightarrow no scalar mass terms$
- the scalar portal $\lambda_{mix}(\varphi^+\varphi)(\Phi^+\Phi)$ must exist
 - \Rightarrow a condensate of $\langle \varphi^+ \varphi \rangle$ produces $\lambda_{mix} \langle \varphi^+ \varphi \rangle (\Phi^+ \Phi) = \mu^2 (\Phi^+ \Phi)$
 - \rightarrow effective mass term for Φ
- CS anomalous ... \rightarrow breaking \rightarrow only $\ln(\Lambda)$
 - \rightarrow implies a TeV-ish condensate for φ to obtain $\langle \Phi \rangle = 246$ GeV
- Model building possibilities / phenomenological aspects:
 - φ could be an effective field of some hidden sector DSB
 - further particles could exist in hidden sector; e.g. confining...
 - extra hidden U(1) potentially problematic $\leftarrow \rightarrow$ U(1) mixing
 - avoid Yukawas which couple visible and hidden sector
 - → phenomenology safe due to Higgs portal, but there is TeV-ish new physics!

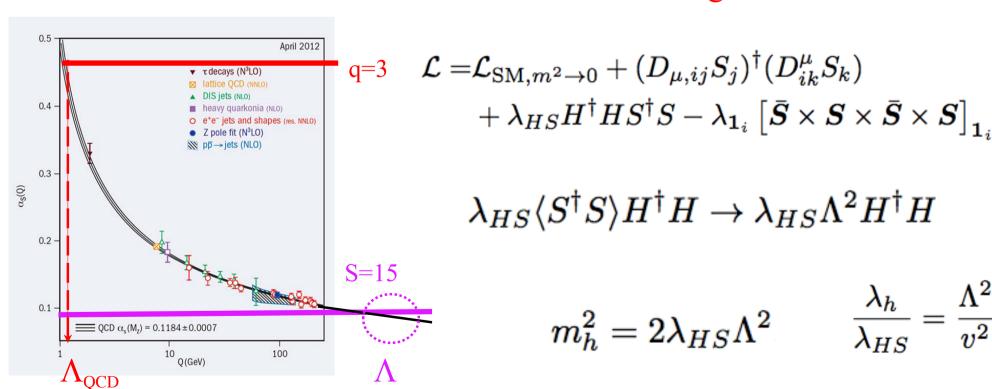
Rather minimalistic: SM + QCD Scalar S

J. Kubo, K.S. Lim, ML New scalar representation $S \rightarrow QCD$ gap equation:

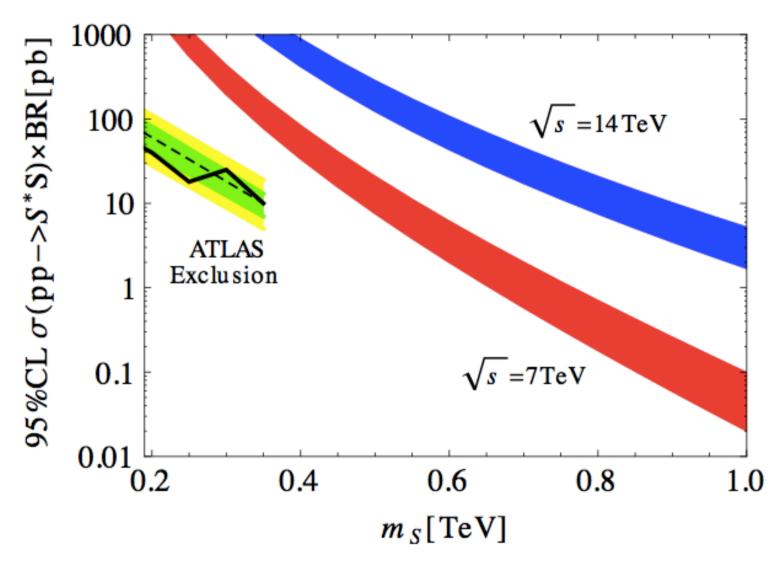
$$C_2(S) lpha(\Lambda) \gtrsim X_1$$

 $C_2(\Lambda)$ increases with larger representations

 $\leftarrow \rightarrow$ condensation for smaller values of running α



Phenomenology



S pair production cross section from gluon fusion (assumed: 100% BR into two jets)

Realizing this Idea: Left-Right Extension

M. Holthausen, ML, M. Schmidt

Radiative SB in conformal LR-extension of SM

(use isomorphism $SU(2) \times SU(2) \simeq Spin(4) \rightarrow representations$)

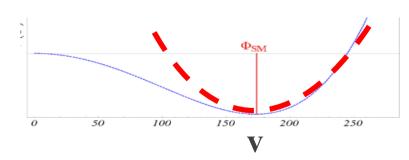
particle	parity \mathcal{P}	\mathbb{Z}_4	$\operatorname{Spin}(1,3) \times (\operatorname{SU}(2)_L \times \operatorname{SU}(2)_R) \times (\operatorname{SU}(3)_C \times \operatorname{U}(1)_{B-L})$
$\mathbb{L}_{1,2,3} = \left(egin{array}{c} L_L \ -\mathrm{i} L_R \end{array} ight)$	$P\mathbb{PL}(t,-x)$	$L_R o \mathrm{i} L_R$	$\left[\left(\frac{1}{2},\underline{0}\right)(\underline{2},\underline{1}) + \left(\underline{0},\frac{1}{2}\right)(\underline{1},\underline{2})\right](\underline{1},-1)$
$\mathbb{Q}_{1,2,3}=\left(egin{array}{c}Q_L\ -\mathrm{i}Q_R\end{array} ight)$	$P\mathbb{PQ}(t,-x)$	$Q_R ightarrow -\mathrm{i} Q_R$	$\left[\left(\underline{\frac{1}{2}},\underline{0}\right)(\underline{2},\underline{1}) + \left(\underline{0},\underline{\frac{1}{2}}\right)(\underline{1},\underline{2})\right]\left(\underline{3},\frac{1}{3}\right)$
$\Phi = \left(egin{array}{cc} 0 & \Phi \ - ilde{\Phi}^\dagger & 0 \end{array} ight)$	$\mathbb{P}^{\Phi^{\dagger}}\mathbb{P}(t,-x)$	$\Phi \to i\Phi$	$(\underline{0},\underline{0})\ (\underline{2},\underline{2})\ (\underline{1},0)$
$\Psi = \left(egin{array}{c} \chi_L \ -\mathrm{i}\chi_R \end{array} ight)$	$\mathbb{P}\Psi(t,-x)$	$\chi_R \to -\mathrm{i}\chi_R$	$(\underline{0},\underline{0})\left[(\underline{2},\underline{1})+(\underline{1},\underline{2})\right](\underline{1},-1)$

- **→** the usual fermions, one bi-doublet, two doublets
- \rightarrow a \mathbb{Z}_4 symmetry
- \rightarrow no scalar mass terms $\leftarrow \rightarrow$ CS

→ Most general gauge and scale invariant potential respecting Z4

$$\begin{split} \mathcal{V}(\Phi, \Psi) &= \frac{\kappa_1}{2} \left(\overline{\Psi} \Psi \right)^2 + \frac{\kappa_2}{2} \left(\overline{\Psi} \Gamma \Psi \right)^2 + \lambda_1 \left(\mathrm{tr} \Phi^\dagger \Phi \right)^2 + \lambda_2 \left(\mathrm{tr} \Phi \Phi + \mathrm{tr} \Phi^\dagger \Phi^\dagger \right)^2 + \lambda_3 \left(\mathrm{tr} \Phi \Phi - \mathrm{tr} \Phi^\dagger \Phi^\dagger \right)^2 \\ &+ \beta_1 \, \overline{\Psi} \Psi \mathrm{tr} \Phi^\dagger \Phi + f_1 \, \overline{\Psi} \Gamma [\Phi^\dagger, \Phi] \Psi \; , \end{split}$$

- \rightarrow calculate V_{eff}
- → Gildner-Weinberg formalism (RG improvement of flat directions)
 - anomaly breaks CS
 - spontaneous breaking of parity, Z₄, LR and EW symmetry
 - m_H << v ; typically suppressed by 1-2 orders of magnitude Reason: $V_{\rm eff}$ flat around minimum
 - \leftrightarrow m_H ~ loop factor ~ $1/16\pi^2$
 - → generic feature → predictions
 - everything works nicely...



→ requires moderate parameter adjustment for the separation of the LR and EW scale... PGB...?

SM ⊗ hidden SU(3)_H Gauge Sector

Holthausen, Kubo, Lim, ML

• hidden $SU(3)_H$:

$$\mathcal{L}_{H} = -\frac{1}{2} \operatorname{Tr} F^{2} + \operatorname{Tr} \bar{\psi} (i\gamma^{\mu} D_{\mu} - yS) \psi$$

gauge fields; $\psi = 3_H$ with $SU(3)_F$; S = real singlet scalar

• SM coupled by S via a Higgs portal:

$$V_{\text{SM}+S} = \lambda_H (H^{\dagger}H)^2 + \frac{1}{4}\lambda_S S^4 - \frac{1}{2}\lambda_{HS} S^2 (H^{\dagger}H)$$

- no scalar mass terms
- · use similarity to QCD, use NJL approximation, ...
- χ -ral symmetry breaking in hidden sector: SU(3)_LxSU(3)_R \rightarrow SU(3)_V \rightarrow generation of TeV scale
- → transferred into the SM sector through the singlet S
- → dark pions are PGBs: naturally stable → DM

Realizing the Idea: Specific Realizations

SM + extra singlet: Φ, φ

Nicolai, Meissner, Farzinnia, He, Ren, Foot, Kobakhidze, Volkas, ...

SM + extra SU(N) with new N-plet in a hidden sector

Ko, Carone, Ramos, Holthausen, Kubo, Lim, ML, (Hambye, Strumia), ...

SM embedded into larger symmetry (CW-type LR) Holthausen, ML, M. Schmidt

SM + QCD colored scalar which condenses at TeV scale Kubo, Lim, ML

Since the SM-only version does not work \rightarrow observable effects:

- Higgs coupling to other scalars (singlet, hidden sector, ...)
- dark matter candidates ←→ hidden sectors & Higgs portals
- consequences for neutrino masses

Conformal Symmetry & Neutrino Masses

ML, S. Schmidt and J. Smirnov

- No explicit scale → no explicit (Dirac or Majorana) mass term
 → only Yukawa couplings ⊗ generic scales
- Enlarge the Standard Model field spectrum like in 0706.1829 R. Foot, A. Kobakhidze, K.L. McDonald, R. Volkas
- Consider direct product groups: SM ⊗ HS
- Two scales: CS breaking scale at O(TeV) + induced EW scale

Important consequence for fermion mass terms:

- **→** spectrum of Yukawa couplings ⊗ TeV or EW scale
- **→** interesting consequences ← → Majorana mass terms are no longer expected at the generic L-breaking scale → anywhere

Examples

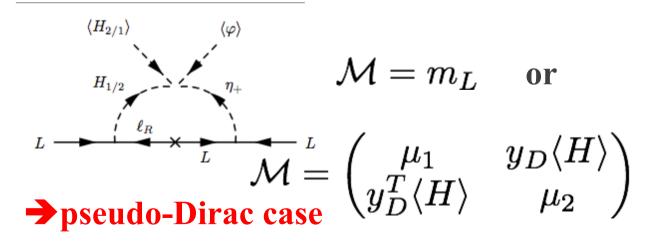
$$\mathcal{M} = \begin{pmatrix} 0 & y_D \langle H \rangle \\ y_D^T \langle H \rangle & y_M \langle \phi \rangle \end{pmatrix}$$

Yukawa seesaw:

$$\mathrm{SM} + \mathrm{v_R} + \mathrm{singlet}$$
 $\langle \phi \rangle \approx \mathrm{TeV}$ $\langle H \rangle \approx 1/4\,\mathrm{TeV}$

- **→** generically expect a TeV seesaw
- BUT: y_M can be tiny
- → wide range of sterile masses → including pseudo-Dirac case
- → suppressed 0vββ

Radiative masses



The punch line: all usual neutrino mass terms can be generated

- → suitable scalars
- → no explicit masses all via Yukawa couplings
- → different numerical expectations

Another Example: Inverse Seesaw

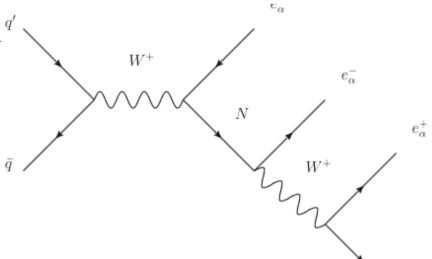
$$SU(3)_{c} \times SU(2)_{L} \times U(1)_{Y} \times U(1)_{X}$$

Humbert, ML, J. Smirnov

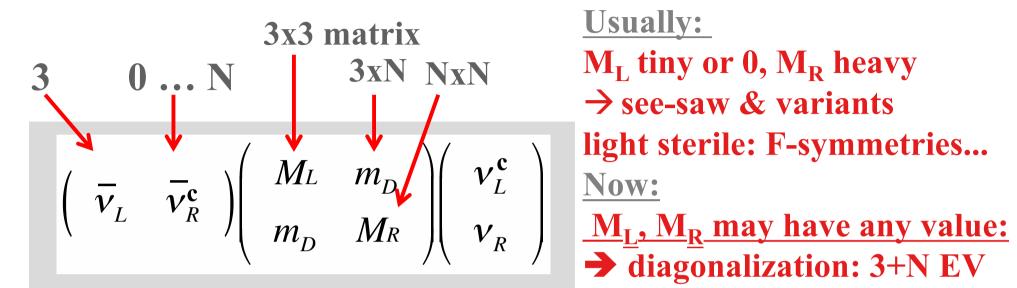
	H	ϕ_1	ϕ_2	L	ν_R	N_R	N_L
$U(1)_X$		1	2	0	0	1	1
Lepton Number	0	0	0	1	1	0	0
$U(1)_Y$	1	0	0	-1	0	0	0
$SU(2)_L$		1	1	2	1	1	1

$$\mathcal{M} = \begin{pmatrix} 0 & y_D \langle H \rangle & 0 & 0 \\ y_D \langle H \rangle & 0 & y_1 \langle \phi_1 \rangle & \tilde{y}_1 \langle \phi_1 \rangle \\ 0 & y_1 \langle \phi_1 \rangle & y_2 \langle \phi_2 \rangle & 0 \\ 0 & \tilde{y}_1 \langle \phi_1 \rangle & 0 & \tilde{y}_2 \langle \phi_2 \rangle \end{pmatrix}$$

- → light eV "active" neutrino(s)
- → two pseudo-Dirac neutrinos; m~TeV
- \rightarrow sterile state with $\mu \approx keV$
- → tiny non-unitarty of PMNS matrix
- → tiny lepton universality violation
- \rightarrow suppressed $0\nu\beta\beta$ decay \leftarrow !
- → lepton flavour violation
- → tri-lepton production could show up at the LHC
- → keV neutrinos as warm dark matter →



Implications for Neutrino Mass Spectra



Usually:

 $M_{\rm I}$ tiny or 0, $M_{\rm R}$ heavy

→ see-saw & variants

light sterile: F-symmetries...

- → diagonalization: 3+N EV
- **→** 3x3 active almost unitary

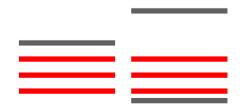
$$M_L=0$$
, $m_D=M_W$, $M_R=$ high: see-saw

$$M_R$$
 singular singular-SS

$$M_L = M_R = 0$$
 $M_L = M_R = \varepsilon$
Dirac pseudo Dirac

$$M_L = M_R = \varepsilon$$

pseudo Dirac



Conformal Symmetry & Dark Matter

Different natural and viable options:

- 1) A keV sterile neutrino is in all cases easily possible
- 2) New particles which are fundamental or composite DM candidates:
 - hidden sector pseudo-Goldstone-bosons
 - stable color neutral bound states from new QCD representations
- → some look like WIMPs
- → others are extremely weakly coupled (via Higgs portal)
- → or even coupled to QCD (threshold suppressed...)

Emerging Internal Symmetries from Effective Spacetimes

1703.10188: ML, S. Ohmer

Can global internal and spacetime symmetries be connected without supersymmetry?

Re-visit ingredients of the Coleman-Mandula theorem: ...

→ G locally isomorphic to

Poincare group $P(1,3) \otimes$ "internal symmetries"

Important ingredient: fundamental 4d space-time

- → new directions if 4d Minkowski spacetime is effective:
 - external symmetries which induce internal symmetries in effective 4-d theories
 - internal degrees of freedom and spacetime symmetries can mix in agreement with the Coleman-Mandula theorem

A simple Example

Consider: D = 4 + d, i.e. d extra dimensions and $M_4 \times \Sigma_d$ spacetime with 4d Minkowski spacetime M_4 and d-dim. space Σ_d with internal symmetry G_d spacetime symmetry factorizes $G \rightarrow P(1,3) \otimes G_d$

If the space described by G_d is translational invariant

 \rightarrow (4+d) momentum $P^A = \int d^3x \, d^dy \, T^{0A}$ and energy-momentum tensor T^{AB} conserved

Assume $m^2 = P_A^{\dagger} * P^A$ commutes with all group generators

→ particle momenta in the extra dim. contribute to the energy-momentum relation

$$E^2 = m^2 + |\vec{p}|^2 + (p_4^2 + \dots + p_{D-1}^2)$$

although the generators Pa commute with all generators of P

The new conserved charges do not discretize 4d scattering processes:

→ from a 4d perspective: scattering respects additional internal symmetries

CM: Factorization of the general symmetry group of the S-matrix G can also include additional spacetime symmetries $G \rightarrow P(1,3) \otimes G_d \otimes$ "internal symmetries" **Examples:** KK theories with UEDs for dark matter ...

Rotational Symmetries

4d spacetime is also rotational invariant

→ natural to consider rotational symmetries in extra dimensions

simplest case: d=2, i.e. two extra space-like dimensions

extra spacetime $\Sigma_2\cong\mathbb{R}^2$ with spacetime symmetry $G_2\cong\mathbb{R}^2\rtimes SO(2)$

full spacetime $\mathcal{M}_4 \times \mathbb{R}^2$ with symmetry $\mathcal{P}(1,3) \otimes (\mathbb{R}^2 \rtimes SO(2))$

Again, we find two additional conserved momenta:

o "hidden" spin in the extra plane which, for d=2 can take values $s_h \in \mathbb{R}$

From a 4d perspective, this corresponds to a global U(1) symmetry

In other words: The 4d U(1) charge can be identified with the "hidden" spin s_h .

Mixed Symmetries

Cases where global internal and spacetime symmetries

- mix in agreement with the Coleman-Mandula theorem
- can be combined in a single global symmetry

assume that spacetime arises effectively elementary particles are irreducible representations of global spacetime symmetry

$$P(1,3) \otimes G_3$$
 with $G_3 \cong \mathbb{R}^3 \rtimes SU(3)$

of spacetime $M_4 \otimes \Sigma_3$

The global SU(3) symmetry mixes an internal global $U(1)_I$ symmetry and the rotational spacetime symmetry described by the **compact group SU(2)**

The fact that the SU(3) symmetry mixes global internal and spacetime symmetries becomes evident upon compactification of one extra dimension onto a circle \rightarrow spacetime breaks to

$$\mathcal{M}_4 \times \mathbb{R}^3 \to \mathcal{M}_4 \times \mathbb{R}^2 \times S^1 \quad \rightarrow \quad SU(3) \to U(1)_I \otimes U(1)_S$$

discrete "hidden" spin → copies with different mass → "generations"

Summary

- > SM works perfectly; (so far) no signs of new physics
- The old hierarchy problem...? No new physics observed $\lambda(M_{Planck}) = 0$? $\leftarrow \Rightarrow$ precise value for $m_t \Rightarrow$ is there a message?
- → Embedings into QFTs with conformal symmetry
 - → implications for BSM phenomenology
 - → implications for Higgs couplings, dark matter, ...
 - → implications for neutrino masses
 - → testable consequences: @LHC, dark matter, neutrinos
- > Emerging internal symmetries from effective spacetimes

→ interesting possibilities & phenomenology