TRI-RESONANT LEPTOGENESIS

Thomas McKelvey With A. Pilaftsis and D. Karamitros

The University of Manchester

OUTLINE

- Introduce TRL Model
- Introduce Relativistic Degrees of Freedom

 Study the Impact of the Relativistic Degrees of Freedom

Discuss Observation Bounds

MOTIVATION

• WMAP and Planck observatory observe a matter-antimatter asymmetry

$$\eta_B^{CMB} = \frac{n_B - n_{\overline{B}}}{n_{\gamma}} = (6.104 \pm 0.058) \times 10^{-10}$$

 Observations of flavour oscillations in SM neutrinos implies the existence of neutrino masses

• Degrees of freedom are typically ignored in models at higher mass scales

TRL MODEL

Minimal seesaw extension of the SM with three singlet neutrinos

$$\mathcal{L} \supset h_{i\alpha}^{\nu} L_i \widetilde{\Phi} N_{\alpha} - \frac{1}{2} \overline{N_{\alpha}^c} m_{\alpha} N_{\alpha} + H.c.$$

$$h^{\nu} = \begin{pmatrix} a & a\omega & a\omega^2 \\ b & b\omega & b\omega^2 \\ c & c\omega & c\omega^2 \end{pmatrix}$$

~ \

 Heavy neutrino mass spectrum has a resonant structure, with mass splittings

$$m_{\alpha} - m_{\beta} \sim \frac{1}{2} \Gamma_{\alpha,\beta}$$
 $m^{\nu} \to 0$ $\eta_B \neq 0!$

• Yukawa symmetry motivated with \mathbb{Z}_3 or \mathbb{Z}_6 structure.

TRANSPORT EQUATIONS

- We require a set of Quantum Transport Equations with Oscillation and Mixing Phenomena included
- Much of the interesting dynamics occur close to equilibrium, so we introduce the matrices

$$\Delta = \frac{\eta^{N}}{\eta^{N}_{eq}} - \mathbb{I} \quad \delta = \frac{\delta \eta^{N}}{\eta^{N}_{eq}}$$

• We also require a transport equation for the Lepton asymmetry

TRANSPORT EQUATIONS

$$\frac{d\Delta}{d\,\ln z} = \frac{\delta_h}{H} \left(-\frac{i}{2} \left[\mathcal{E}, \delta \right] - \frac{1}{2\eta_{eq}^N} \left\{ \Delta, \mathcal{R} \left[\gamma_{L\Phi}^N \right] \right\} \right) - \left(\frac{d\,\ln h_{eff}}{d\,\ln z} - \frac{d\,\ln \eta_{eq}^N}{d\,\ln z} \right) \left(\Delta + \mathbb{I} \right)$$

$$\frac{d\delta}{d\ln z} = \frac{\delta_h}{H} \left(-\frac{i}{2} [\mathcal{E}, \delta] - \frac{i}{\eta_{eq}^N} \{\Delta, \mathcal{I}[\delta\gamma]\} - \frac{1}{2\eta_{eq}^N} \{\delta, \mathcal{R}[\gamma_{L\Phi}^N]\} \right) - \left(\frac{d\ln h_{eff}}{d\ln z} - \frac{d\ln \eta_{eq}^N}{d\ln z} \right) \delta$$

$$\frac{d\Delta}{d\,\ln z} = \frac{\delta_h}{H} \left(-\frac{i}{2} \left[\mathcal{E}, \delta \right] - \frac{1}{2\eta_{eq}^N} \left\{ \Delta, \mathcal{R} \left[\gamma_{L\Phi}^N \right] \right\} \right) - \left(\frac{d\,\ln h_{eff}}{d\,\ln z} - \frac{d\,\ln \eta_{eq}^N}{d\,\ln z} \right) \left(\Delta + \mathbb{I} \right)$$

$$\frac{d\delta}{d\ln z} = \frac{\delta_h}{H} \left(-\frac{i}{2} [\mathcal{E}, \delta] - \frac{i}{\eta_{eq}^N} \{\Delta, \mathcal{I}[\delta\gamma]\} - \frac{1}{2\eta_{eq}^N} \{\delta, \mathcal{R}[\gamma_{L\Phi}^N]\} \right) - \left(\frac{d\ln h_{eff}}{d\ln z} - \frac{d\ln \eta_{eq}^N}{d\ln z} \right) \delta$$

Degrees of Freedom Effects

Thermal Leptogenesis Terms

LEPTON ASYMMETRY EQUATION

$$\frac{d(\delta\eta_L)_{ij}}{d\ln z} = \frac{\delta_h}{H} \Big(\Delta_{\alpha\beta} \ (\delta\gamma)_{i\alpha j\beta} - \delta_{\alpha\beta} \big(\gamma_{L\Phi}^N\big)_{i\alpha j\beta} \Big) + (2 \to 2) - \left(\frac{d\ln h_{eff}}{d\ln z}\right) (\delta\eta_L)_{ij}$$

LEPTON ASYMMETRY EQUATION

$$h_{eff}$$
 VS. η^N_{eq}

- Reduction in the effective degrees of freedom washout the number density
- Cooling of the Universe due to expansion makes the number density over abundant

EVOLUTION OF THE BAU

50 GEV

EVOLUTION OF THE BAU

50 GEV

Significant Impact on BAU from degrees of freedom at low-scale

High scale is largely protected from variations in the degrees of freedom

BAU DEVIATIONS

- Above 100 GeV the deviations are small – degrees of freedom are of low significance
- Below 100 GeV the BAU is suppressed and may even fall below zero.

SPHALERON TEMPERATURE DEPENDENCE

- Inclusion of degrees of freedom induces large dependence on T_{Sph} at low heavy neutrino mass scales
- Deviations increase as the mass scales decrease

ATTRACTOR PROPERTIES

- The transport equations we use exhibit attractor properties
- Provides independence from initial conditions
- Impact of degrees of freedom are present regardless of initial conditions.

OBSERVATION LIMITS

- Suppression of the mixing due to the impact of the degrees of freedom.
- Much of the parameter space is out of the range of current experiments
- Possible observations at PRISM

SUMMARY

- We accounted for the variations in the relativistic degrees of freedom in Leptogenesis models
- Showed that the inclusion of the degrees of freedom can have a significant impact for models with sub-100 GeV heavy neutrinos
- Identified that the inclusion of degrees of freedom effects can induce large dependence on T_{Sph} .
- Discussed the observation limits at current and projected experiments