Precision And New Physics After LHC Run2

ROBERTO FRANCESCHINI

PLANCK 2017, WARSAW, MAY 25^{TH} 2017

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: Moriond 2014

	Model	e, μ, τ, γ	Jets	$E_{ m T}^{ m miss}$	$\int \mathcal{L} dt [f]$	Mass limit	Reference
Inclusive Searches	MSUGRA/CMSSM MSUGRA/CMSSM MSUGRA/CMSSM $\tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q \bar{q} \tilde{\chi}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_{1}^{\pm} \rightarrow q q W^{\pm} \tilde{\chi}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q q (\ell \ell / \ell \nu / \nu \nu) \tilde{\chi}_{1}^{0}$ GMSB (ℓ NLSP) GMSB (ℓ NLSP) GGM (bino NLSP) GGM (bino NLSP) GGM (higgsino-bino NLSP) GGM (higgsino NLSP) GGM (higgsino NLSP)	$\begin{array}{c} 0 \\ 1 \ e, \mu \\ 0 \\ 0 \\ 0 \\ 1 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 1 - 2 \ \tau \\ 2 \ \gamma \\ 1 \ e, \mu + \gamma \\ \gamma \\ 2 \ e, \mu \ (Z) \\ 0 \end{array}$	2-6 jets 3-6 jets 7-10 jets 2-6 jets 2-6 jets 3-6 jets 0-3 jets 0-2 jets -1 b 0-3 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 4.7 20.7 20.7 20.3 4.8 4.8 5.8 10.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ATLAS-CONF-2013-047 ATLAS-CONF-2013-062 1308.1841 ATLAS-CONF-2013-047 ATLAS-CONF-2013-047 ATLAS-CONF-2013-062 ATLAS-CONF-2013-089 1208.4688 ATLAS-CONF-2013-026 ATLAS-CONF-2013-026 ATLAS-CONF-2012-144 1211.1167 ATLAS-CONF-2012-152 ATLAS-CONF-2012-147
$\frac{3^{rd}}{\tilde{g}}$ gen.	$ \begin{array}{c} \tilde{g} \rightarrow b \bar{b} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow b \bar{t} \tilde{\chi}_{1}^{+} \end{array} $	0 0 0-1 <i>e</i> , µ 0-1 <i>e</i> , µ	3 <i>b</i> 7-10 jets 3 <i>b</i> 3 <i>b</i>	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	\tilde{g} $m(\tilde{\chi}_1^0) < 600 \text{ GeV}$ \tilde{g} $m(\tilde{\chi}_1^0) < 350 \text{ GeV}$ \tilde{g} $m(\tilde{\chi}_1^0) < 400 \text{ GeV}$ \tilde{g} $m(\tilde{\chi}_1^0) < 400 \text{ GeV}$ \tilde{g} $m(\tilde{\chi}_1^0) < 300 \text{ GeV}$	ATLAS-CONF-2013-061 1308.1841 ATLAS-CONF-2013-061 ATLAS-CONF-2013-061
3 rd gen. squarks direct production	$\begin{split} \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow b\tilde{\chi}_{1}^{0} \\ \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow t\tilde{\chi}_{1}^{\pm} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{light}), \tilde{t}_{1} \rightarrow b\tilde{\chi}_{1}^{\pm} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{light}), \tilde{t}_{1} \rightarrow Wb\tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{medium}), \tilde{t}_{1} \rightarrow t\tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{medium}), \tilde{t}_{1} \rightarrow t\tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{heavy}), \tilde{t}_{1} \rightarrow t\tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow c\tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{2}, \tilde{t}_{2} \rightarrow \tilde{t}_{1} + Z \end{split}$	$\begin{array}{c} 0 \\ 2 \ e, \mu \ (SS) \\ 1-2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 0 \\ 1 \ e, \mu \\ 0 \\ 0 \\ 1 \ e, \mu \\ 0 \\ 3 \ e, \mu \ (Z) \end{array}$	2 b 0-3 b 1-2 b 0-2 jets 2 jets 2 b 1 b 2 b ono-jet/c-ta 1 b 1 b	Yes Yes Yes Yes Yes Yes Yes ag Yes Yes	20.1 20.7 4.7 20.3 20.3 20.1 20.7 20.5 20.3 20.3 20.3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1308.2631 ATLAS-CONF-2013-007 1208.4305, 1209.2102 1403.4853 1403.4853 1308.2631 ATLAS-CONF-2013-037 ATLAS-CONF-2013-024 ATLAS-CONF-2013-068 1403.5222 1403.5222
EW direct	$\begin{split} \tilde{\ell}_{\mathrm{L,R}} \tilde{\ell}_{\mathrm{L,R}}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{\dagger} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell} \nu (\ell \tilde{\nu}) \\ \tilde{\chi}_{1}^{\dagger} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\tau} \nu (\tau \tilde{\nu}) \\ \tilde{\chi}_{1}^{\pm} \tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{\mathrm{L}} \nu \tilde{\ell}_{\mathrm{L}} \ell (\tilde{\nu}\nu), \ell \tilde{\nu} \tilde{\ell}_{\mathrm{L}} \ell (\tilde{\nu}\nu) \\ \tilde{\chi}_{1}^{\pm} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} Z \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{\pm} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} h \tilde{\chi}_{1}^{0} \end{split}$	2 e, μ 2 e, μ 2 τ 3 e, μ 2-3 e, μ 1 e, μ	0 0 - 0 2 b	Yes Yes Yes Yes Yes Yes	20.3 20.3 20.7 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1403.5294 1403.5294 ATLAS-CONF-2013-028 1402.7029 1403.5294, 1402.7029 ATLAS-CONF-2013-093
Long-lived particles	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$ Stable, stopped \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{\chi}_1^0 \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(e,$ GMSB, $\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}$, long-lived $\tilde{\chi}_1^0$ $\tilde{q}\tilde{q}, \tilde{\chi}_1^0 \rightarrow qq\mu$ (RPV)	Disapp. trk 0 μ) 1-2 μ 2 γ 1 μ , displ. vtx	1 jet 1-5 jets - - -	Yes Yes - Yes -	20.3 22.9 15.9 4.7 20.3	$\begin{array}{c c} \tilde{\chi}_{1}^{\pm} & 270 \ \text{GeV} \\ \tilde{g} & & & \\ \tilde{g} & & & \\ \tilde{\chi}_{1}^{0} & & & \\ \tilde{\chi}_{1}^{0} & & & \\ \tilde{q} & & & \\ \end{array} \\ \begin{array}{c} m(\tilde{\chi}_{1}^{\pm}) - m(\tilde{\chi}_{1}^{0}) = 160 \ \text{MeV}, \ \tau(\tilde{\chi}_{1}^{\pm}) = 0.2 \ \text{ns} \\ m(\tilde{\chi}_{1}^{0}) = 100 \ \text{GeV}, \ 10 \ \mu \text{s} < \tau(\tilde{g}) < 1000 \ \text{s} \\ 10 < & & \\ 10 < & & \\ 1.0 \ \text{TeV} \end{array} \\ \begin{array}{c} m(\tilde{\chi}_{1}^{\pm}) - m(\tilde{\chi}_{1}^{0}) = 160 \ \text{MeV}, \ \tau(\tilde{\chi}_{1}^{\pm}) = 0.2 \ \text{ns} \\ m(\tilde{\chi}_{1}^{0}) = 100 \ \text{GeV}, \ 10 \ \mu \text{s} < \tau(\tilde{g}) < 1000 \ \text{s} \\ 10 < & & \\ 10 < & & \\ 1.5 < c\tau < 156 \ \text{mm}, \ \text{BR}(\mu) = 1, \ m(\tilde{\chi}_{1}^{0}) = 108 \ \text{GeV} \end{array}$	ATLAS-CONF-2013-069 ATLAS-CONF-2013-057 ATLAS-CONF-2013-058 1304.6310 ATLAS-CONF-2013-092
RPV	LFV $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e + \mu$ LFV $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e(\mu) + \tau$ Bilinear RPV CMSSM $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow ee \tilde{v}_{\mu}, e\mu \tilde{v}_{e}$ $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow \tau \tau \tilde{v}_{e}, e \tau \tilde{v}_{\tau}$ $\tilde{g} \rightarrow qqq$ $\tilde{g} \rightarrow \tilde{t}_{1}t, \tilde{t}_{1} \rightarrow bs$	2 e, μ 1 $e, \mu + \tau$ 1 e, μ 4 e, μ 3 $e, \mu + \tau$ 0 2 e, μ (SS)	- 7 jets - - 6-7 jets 0-3 <i>b</i>	- Yes Yes Yes - Yes	4.6 4.7 20.7 20.7 20.3 20.7	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1212.1272 1212.1272 ATLAS-CONF-2012-140 ATLAS-CONF-2013-036 ATLAS-CONF-2013-036 ATLAS-CONF-2013-091 ATLAS-CONF-2013-007
Other	Scalar gluon pair, sgluon $\rightarrow q\bar{q}$ Scalar gluon pair, sgluon $\rightarrow t\bar{t}$ WIMP interaction (D5, Dirac χ)	$\begin{array}{c} 0\\ 2 \ e, \mu \ (SS)\\ 0 \end{array}$	4 jets 2 <i>b</i> mono-jet	Yes Yes	4.6 14.3 10.5	sgluon 100-287 GeV incl. limit from 1110.2693 sgluon 350-800 GeV m(\chi)<80 GeV, limit of <687 GeV for D8	1210.4826 ATLAS-CONF-2013-051 ATLAS-CONF-2012-147
	$v_s = 7 \text{ lev}$ full data p	vs = 8 IeV artial data	$\sqrt{s} = \int full d$	8 IeV data		10 ⁻¹ Mass scale [TeV]	

ATLAS Preliminary

$\int \mathcal{L} dt = (4.6 - 22.9) \text{ fb}^{-1}$ $\sqrt{s} = 7, 8 \text{ TeV}$

Mass I	imit
--------	------

SEARCHES IN FINAL STATES : HARD

No Signals Of Susy

LEPTONS+PHOTONS+JETS+MET

SEARCHES IN FINAL STATES : HARD

No Signals Of Susy

LEPTONS+PHOTONS+JETS+MET

ã Majozaha Mass

SM,

even in non-standard scenarios $m_{susy} > 500 \text{ GeV}$

After Run2...

MORE SUBTLE SIGNALS \Rightarrow

Majozaha Mass

PRECISION

MORE SUBTLE SIGNALS \Rightarrow

Run2 ~ Subtle New Physics

Run2 -> Precision Physics

DIFFICULT SPECTRA

SM-LIKE SIGNALS

NON-MINIMAL MODELS

EXOTIC SIGNALS

NON-MINIMAL MODELS

LOWER CROSS-SECTION FOR NEW PHYSICS

HEAVY NEW PHYSICS

DIFFICULT SPECTRA

SM-LIKE SIGNALS

NON-MINIMAL MODELS

EXOTIC SIGNALS

NON-MINIMAL MODELS

LOWER CROSS-SECTION FOR NEW PHYSICS

HEAVY NEW PHYSICS

SOFTER FINAL-STATES

NewPhysicsInThe "TopQuarkSample"

RF - in preparation

Why Top Quarks?

Motivated in many BSM scenarios (hierarchy problem)

- differential distributions *

NLO+PS and NNLO precision recently achieved for

Blindspots of SUSY due to top quark background

Search Approach

Search Approach

$\{\tilde{t}, \tilde{\chi}^+, \tilde{\chi}^0\} = \{200, 150, 100\}$ GeV blindspot The

NEW PHYSICS IS SM-LIKE

BETTER PRECISION

Resolution

PRECISION AT THE LHC

- NLO and NNLO precision top quark physics is a reality
- SM precision predictions for many observables
- Useful per se
- Can show deviations from SM in subtle features

NewPhysicsEffectOn mbe

cuts TOP-14-014

mt̃,mχ⁺,mχ=(200,150,100)

10-15% Deviation In A Distribution, IsItEnoughTo ClaimNewPhysics/PutABound?

THEORY UNCERTAINTIES

Resolution

PRECISION AT THE LHC

Resolution

PRECISION AT THE LHC

NLO + PARTON SHOWER (1202.1251)

POWHEG V2 (1412.1828)

 $H = h^2 / (h^2 + p_T^2)$

POWHEG-RES (1607.04538)

$$\Delta(Q_{\circ}) + \frac{R}{B} \Delta(P_{\tau}) d\phi_{pd} \int d\phi_{B}$$

$$(Q_{o}) + \frac{R}{B} \Delta(P_{r}) d\phi_{M} H d\phi_{B} + R d\phi_{R} (1-$$

h→0 Fixed Order

 $h \rightarrow \infty$ Parton Shower + Matrix Element

 $\overline{B} \cdot \Delta(Q_{\circ}) + \frac{R}{B} \Delta(P_{T}) d\phi_{M} H d\phi_{B} + R d\phi_{R} (1-H)$

 \overline{B} . $\Delta(Q_{\circ}) + \frac{R}{B} \Delta(P_{\circ}) d\phi_{M} H d\phi_{B} + R d\phi_{R} (1-H)$

m(bl) and other observables used in precision top quark physics can probe still uncovered new physics scenarios

Precision Di-Bosons At The Hi-Lumi LHC

RF, Panico, Pomarol, Riva, Wulzer - in preparation

Search Approach

pp -> Goldstones

directly relevant for EWSB

- $G \subset V \Rightarrow$ never large S/B (unless strong coupling)

precision SM di-bosons distributions (NNLO)

• new physics can show-up at high-energy (e.g. $O_{Hq} \sim (q_L \sigma^a \gamma^\mu q_L)(HD_{\mu,a}H)$ grows with E)

$pp \rightarrow G^{\pm 0}G^{\pm 0}$

- pp → WW, ZW, ZZ, ZH, WH all potentially interesting
- however most processes have large background from other processes (e.g. tt fakes WW, V+jets fakes VH, ...)
- ZW stands out because can give a fully leptonic final state, hence S>B. Only then the chase for Gold starts...

compare to 0.1% at 100 GeV

 $d\bar{u} \to W^- Z$

- $u\bar{d} \to W^+ Z$
- $--- u\bar{u} \rightarrow W^+W^-$
- $d\bar{d} \rightarrow W^+ W^-$
 - $\quad d\bar{u} \to W^- Z$
- ---- $u\bar{d} \to W^+Z$
 - $u\bar{u} \to W^+W^-$
- $---- d\bar{d} \to W^+ W^-$

- at LO qq \rightarrow V V is **3** \oplus **1** of SU(2)
- antisymmetry of **3** at t=u makes $qq \rightarrow ZW$ be suppressed in the central region
- NLO corrections are important, but the LO effect is still noticeable

$pp \rightarrow Z^0 W^{\pm}$

- cosθ^{*}wz < 0.5
- $\sigma \sim 0.1$ fb for pTZ> 200 GeV

LHC, thanks to energy and large lumi, can catch O(10%) effects in TeV tails: a probe of new physics in EWSB at LEP-level.

• $(C_{Hq} / \Lambda^2) (q_L \gamma^\mu \sigma^a q_L) (HD_{\mu,a}H)$

Conclusions

- results for $m_{b\ell}$ distribution are very promising for $\tilde{t}, \chi^+, \chi^0$ SUSY spectra
- <u>di-boson</u> precision at high-energy sensitive probe of Goldstone bosons

in the NNLO QCD epoch, SM differential distribution are powerful probes of BSM

top quark precision is sweet-spot for <u>BSM motivation</u> and <u>QCD precision</u>

pp→ ZW might deliver limits at HL-LHC that can reach LEP on weakly coupled BSM

ThankYou!

Standard Signatures

APPLIES TO DIRAC GAUGINOS

EACH MODIFICATION MAY NEED NEW AD-HOC SEARCHES

e.g. NMSSM light Singlino: extra bb-resonance in a generic SUSY search

EACH MODIFICATION MAY NEED NEW AD-HOC SEARCHES

e.g. NMSSM light Singlino: extra bb-resonance in a generic SUSY search

Most Sensitive Analysis

NLO + PARTON SHOWER

POWHEG V2

POWHEG-RES

NLO + PARTON SHOWER

POWHEG V2

POWHEG-RES

NLO + PARTON SHOWER

POWHEG V2

POWHEG-RES

R

 \uparrow

+

NLO + PARTON SHOWER

POWHEG V2

POWHEG-RES

NLO + PARTON SHOWER (1202.1251)

POWHEG V2 (1412.1828)

 $H = h^2 / (h^2 + p_T^2)$

POWHEG-RES (1607.04538)

$$\Delta(Q_{\circ}) + \frac{R}{B} \Delta(P_{\tau}) d\phi_{pd} \int d\phi_{B}$$

$$(Q_{o}) + \frac{R}{B} \Delta(P_{r}) d\phi_{M} H d\phi_{B} + R d\phi_{R} (1-$$

h→0 Fixed Order

 $h \rightarrow \infty$ Parton Shower + Matrix Element

NonStandard Top Partners Decay

AFirstLookAtScaleUncertainties

NLO FIXED ORDER

MCFM 6.8

AFirstLookAtScaleUncertainties

NLO FIXED ORDER

MCFM 6.8

AFirstLookAtScaleUncertainties

NLO FIXED ORDER

MCFM 6.8

NewPhysics Effect On Mbl and Eb

N-Dim Global Analysis

NNLO top decay

NLO+PS w/top decay

encouraging results form "tt_dec"

NNLO top decay

NLO+PS w/top decay

encouraging results form "tt_dec"

Challenges

• compressed \Rightarrow little visible energy

- diluted
- delayed •

Dilution

Challenges

• compressed \Rightarrow little visible energy

- diluted \Rightarrow spread on many channels •
- delayed

Challenges

- compressed \Rightarrow little visible energy •
- diluted \Rightarrow spread on many channels •
- delayed \Rightarrow flavor tags may not work, signal is • different than what originally thought

