Primordial Black Holes as a probe of EW phase transition

Shinya KANEMURA Osaka University

Scalars2023, Sep 13-16, 2023

Higgs sector remains unknown

Non-minimal Higgs sectors

- Multi-plet structure
- Symmetries
- Strength of interaction

Important bound from data vev, M_{h,} SM-like (nearly aligned)

Phase transition BAU **CP** Violation DM candidate Models for tiny neutrino masses Inflatons . . . **Rich Phenomenology**

Example: 2HDM with softly broken Z_2

$$\begin{split} V_{\mathsf{THDM}} &= +m_1^2 \left| \Phi_1 \right|^2 + m_2^2 \left| \Phi_2 \right|^2 - \frac{m_3^2 \left(\Phi_1^{\dagger} \Phi_2 + \Phi_2^{\dagger} \Phi_1 \right)}{\left| \Phi_1 \right|^4 + \frac{\lambda_2}{2} \left| \Phi_2 \right|^4 + \lambda_3 \left| \Phi_1 \right|^2 \left| \Phi_2 \right|^2} \\ &+ \lambda_4 \left| \Phi_1^{\dagger} \Phi_2 \right|^2 + \frac{\lambda_5}{2} \left[\left(\Phi_1^{\dagger} \Phi_2 \right)^2 + (\text{h.c.}) \right] \end{split}$$

 $\Phi_1 \text{ and } \Phi_2 \Rightarrow \underline{h}, \quad \underline{H}, \quad A^0, \ \underline{H^{\pm}} \oplus \text{ Goldstone bosons}$ $\uparrow \qquad \uparrow \qquad \uparrow \text{charged}$ CPeven CPodd

$$egin{aligned} & m_h^2 = v^2 \left(\lambda_1 \cos^4eta + \lambda_2 \sin^4eta + rac{\lambda}{2} \sin^2 2eta
ight) + \mathcal{O}(rac{v^2}{M_{ ext{soft}}^2}), \ & m_H^2 = M_{ ext{soft}}^2 + v^2 \left(\lambda_1 + \lambda_2 - 2\lambda
ight) \sin^2eta \cos^2eta + \mathcal{O}(rac{v^2}{M_{ ext{soft}}^2}), \end{aligned}$$

masses

$$\begin{split} m_{H\pm}^2 &= M_{\rm soft}^2 - \frac{\lambda_4 + \lambda_5}{2} v^2, \\ m_A^2 &= M_{\rm soft}^2 - \lambda_5 v^2. \end{split} \qquad \qquad M_{\rm soft}: \text{ soft breaking scale} \end{split}$$

$$\Phi_i = \begin{bmatrix} w_i^+ \\ \frac{1}{\sqrt{2}}(h_i + v_i + ia_i) \end{bmatrix} \quad (i = 1, 2)$$

Diagonalization

$$\begin{bmatrix} h_1 \\ h_2 \end{bmatrix} = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} \begin{bmatrix} H \\ h \end{bmatrix} \begin{bmatrix} z_1^0 \\ z_2^0 \end{bmatrix} = \begin{bmatrix} \cos \beta & -\sin \beta \\ \sin \beta & \cos \beta \end{bmatrix} \begin{bmatrix} z^0 \\ A^0 \end{bmatrix}$$
$$\begin{bmatrix} w_1^{\pm} \\ w_2^{\pm} \end{bmatrix} = \begin{bmatrix} \cos \beta & -\sin \beta \\ \sin \beta & \cos \beta \end{bmatrix} \begin{bmatrix} w^{\pm} \\ H^{\pm} \end{bmatrix}$$

soft-breaking scale of the discrete symm.

How SM-like is realized?

Decoupling

Alignment and Non-Decoupling

4

Alignment and non-decoupling case

- To study physics of this case is interesting
- New physics appears at TeV scale
- Testable at experiments

```
EWSB (Higgs physics)
WIMP
Hierarchy problem
EW Phase Transition
...
```

g-2, B-anomalies,

- 1st OPT for EW baryogenesis is a concrete example
- Today's subject

EW phase transition

EWSB -> EWPT exists in thermal history of Universe

Aspect of PT is crucial for EW Baryogenesis

EW Baryogenesis

Sakharov Conditions

Kuzmin, Ruvakov, Shaposhnikov (1985)

Extension of the Higgs sector is required

Condition of Strongly First OPT

In the broken phase, sphaleron should quickly decouple to avoid wash out

Physics of Higgs potential

Extended Higgs can satisfy the condition

Effective Potential at finite T (HTE) $$V_{\rm eff}$$

$$V_{\rm eff}(\varphi,T) \simeq D(T^2 - T_0^2)\varphi^2 - ET\varphi^3 + \frac{\lambda_T}{4}\varphi^4 + \cdots$$

 $\begin{array}{ll} \mathsf{SM} & \quad \mbox{The condition} \\ & \quad \mbox{cannot be satisfied} \end{array} & \quad \frac{\varphi_c}{T_c} = \frac{2E}{\lambda_T} \simeq \frac{6m_W^3 + 3m_Z^3 + \cdots}{3\pi v m_h^2} \ll 1 \end{array}$

Extended Higgs: Strong 1st OPT possible due to quantum effect

$$\frac{\varphi_C}{T_C} \simeq \frac{1}{3\pi v m_h^2} \left\{ 6m_W^3 + 3m_Z^3 + \sum_{\underline{\Phi}} m_{\Phi}^3 \left(1 - \frac{M^2}{m_{\Phi}^2} \right)^3 \left(1 + \frac{3M^2}{2m_{\Phi}^2} \right) \right\} > 1$$

Quantum effects of Φ (= H, A, H⁺, …)

Prediction: Large deviation in the hhh coupling

$$\lambda_{hhh} \simeq \frac{3m_h^2}{v^2} \left\{ 1 - \frac{m_t^4}{\pi^2 v^2 m_h^2} + \sum_{\Phi} \frac{m_{\Phi}^4}{12\pi^2 v^2 m_h^2} \left(1 - \frac{M^2}{m_{\Phi}^2} \right)^3 \right\} > \lambda_{hhh}^{\text{SM}}$$

SK, Y. Okada, E. Senaha, 2005

Grojean, Servant, Wells, 2005

(nearly aligned) $\mathcal{L}_{naHEFT} = \mathcal{L}_{SM} - \frac{\kappa_0}{64\pi^2} [\mathcal{M}^2(\varphi)]^2 \ln \frac{\mathcal{M}^2(\varphi)}{\mu^2}$ $\mathcal{M}^2(h) = \mathcal{M}^2 + \frac{\mathcal{K}_{P}}{2} \varphi^2$ $\mathcal{M}^2(h) = M^2 + \frac{\mathcal{K}_{P}}{2} \varphi^2$ $= M^2 + \frac{\mathcal{K}_{P}}{2} (h + v)^2$ In the decoupling region $(M^2 \gg \kappa v^2)$

the decoupling region $(M^2 \gg \kappa_p v^2)$, $V_{\rm BSM}(\varphi) \simeq \frac{\lambda_{\Phi}^3}{64\pi^2 M^2} \oint M^2 = \frac{2}{\Lambda^2} \oint V^2 \Rightarrow \text{SMEFT} \text{ is a good approximation}$

SMEFT is not good in the non-decoupling region ($M^2 < \kappa_p v^2$)

[Falkowski, Rattazzi, JHEP 10 (2019), Cohen et. al, JHEP 03 (2021)]

Three free parameters
$$\Lambda$$
, κ_0 , \mathbf{r}

$$M^2 \ll \kappa_p v^2$$

$$\Lambda = \sqrt{M^2 + \frac{\kappa_p}{2}v^2}, \kappa_0, \ \mathbf{r} = \frac{\frac{\kappa_p v^2}{2}}{\Lambda^2} \quad \mathbf{r} : \text{non-decouplingness} \qquad \mathbf{r} \sim 0 \Rightarrow M^2 \gg \frac{\kappa_p}{2}v^2 \quad \text{Decoupling}$$
Mass of new particles
$$\mathbf{r} \sim 1 \Rightarrow M^2 \ll \frac{\kappa_p}{2}v^2 \quad \text{Non-decoupling}$$

• The naHEFT at finite temperatures

SK, R. Nagai, M. Tanaka (2022)

$$V_{\rm EFT} = V_{\rm SM} + \frac{\kappa_0}{64\pi^2} \left[\mathcal{M}^2(\phi)\right]^2 \ln\frac{\mathcal{M}^2(\phi)}{\mu^2} + \frac{\kappa_0}{2\pi^2} T^4 J_{\rm BSM}\left(\frac{\mathcal{M}^2(\phi)}{T^2}\right)$$

$$J_{\rm BSM}(a^2) = \int_0^\infty dk^2 k^2 \ln\left[1 - \text{sign}\left(\kappa_0\right) e^{-\sqrt{k^2 + a^2}}\right] \quad \mathcal{M}^2(\phi) = M^2 + \frac{\kappa_p}{2}\phi^2$$

Consistent with results in the SM with a singlet M. Kakizaki, SK, T.Matsui (2015)

Large deviation in v_n/T_n exists b/w the SMEFT and naHEFT

SMEFT may not be appropriate when we discuss the strongly first order EWPT

$$r \sim 0 \Rightarrow M^2 \gg \frac{\kappa_p}{2} v^2$$
 Decoupling
 $r \sim 1 \Rightarrow M^2 \ll \frac{\kappa_p}{2} v^2$ Non-decoupling

GW from 1st order EWPT in naHEFT

Nucleation rate Linde 1983

ate
$$\Gamma(T) \sim A(T) \exp\left(-\frac{S_3}{T}\right)$$

$$S_3(T) = \int d^3x \left[\frac{1}{2} (\vec{\nabla} \varphi^b)^2 + V_{\text{EFT}}(\varphi^b, T; \Lambda, \kappa_0, r) \right]$$

Nucleation completion condition (\rightarrow transition temp T_t)

$$\frac{\Gamma}{H^4}\bigg|_{T=T_t} \simeq 1 \qquad \frac{S_3(T_t)}{T_t} = 4\ln(T_t/H_t) \simeq 140$$

α Latent heat (released *E* of false vacuum)
 β Inverse of duration of phase transition

GW Spectrum C.Caprini et al., arXiv:1512.06239

$$\widetilde{\Omega}_{\rm sw}h^2 \simeq 2.65 \times 10^{-6} \frac{v_b}{\widetilde{\beta}} \left(\frac{\kappa(v_b, \alpha)\alpha}{1+\alpha}\right)^2$$

Test of EWPT

• Colliders (hhh, …)

HL-LHC2028? ~ILC(500)2040s??~

Space based GW interferometer LISA 2037? ~
 DECIGO 2040s??~

A new possibility of testing EWPT by earlier experiment?

Primordial Black Holes?

PBH Formation

Primordial black holes (PBH) : BHs formed before the star formation

Condition for the PBH formation

 $\delta = \frac{\rho_{\text{over}} - \rho_{\text{back}}}{\delta} > \delta_C$

 $\rho_{\rm back}$

[Hawking, Mon. Not. Roy. Astron. Soc. 152 (1971), Hawking and Carr, Mon. Not. Roy. Astron. Soc. 168 (1974), Harada, Yoo and Kohri, PRD 88 (2013)]

$\delta > \delta_C$ can be satisfied when the FOPT occurs

→ PBHs might be produced by the FOPT

[Kodama, Sasaki and Sato, PTP 68 (1982); Hawking, Moss and Stewart, PRD 26 (1982) Liu et al., PRD105 (2022)]

PBH search

- Gravitational microlensing effect
- Brightness is up by passing PBH

Non-observation → constraint on the PBH abundance Subaru HSC、OGLE (Optical Gravitational Lensing Experiment)

Liu, et al. 2021, more

Rate of staying at the symmetric phase in a Hubble volume

$$F(t) = \exp\left[-\frac{4\pi}{3} \int_{t_i}^t dt' \Gamma(t') a^3(t') r^3(t,t')\right] \qquad r(t,t') \equiv \int_{t'}^t a^{-1}(\tau) d\tau$$

 $ho_{
m v} = F(t)\Delta V$ vacuum energy density is constant

 $\rho_r(t)$, H(t) are determined

Radiation Dominant $p = \rho/3$

Then, from the criterion $\delta c = 0.45$, T_{PBH} is determined

 $\delta > 0.45$ gravitational collapse!

PBH from 1st OEWPT

Strongly 1st OPT

Parameter region

Sphaleron decoupling

Bubble nucleation completion

- PBH (red)
- GW (LISA)
- GW (DECIGO)
- Only $\Delta \lambda_{hhh}$ (HL-LHC, ILC, …)

First order EWPT can be explored by PBH observations in addition to GW observations and collider experiments

Parameter Regions testable by PBH

Non-decouplingness r scanned 0.3 < r < 1

Summary

- EWPT is the next target
- If non-decoupling property, EWPT can be strongly first order

EW baryogenesis

- Test of strong 1st order EWPT
 - $\Delta \lambda_{hhh}$ HL-LHC, ILC
 - GWs LISA late 2030s, DECIGO 2040 or after …
- Observation of PBH may also be used (in several years)
 Interesting!
 Will make it more matured

Thank you!

From bubble dynamics to GW spectrum

ex) GW strength and peak frequency from sound waves (Fitting function)

$$\widetilde{\Omega}_{\rm sw}h^2 \simeq 2.65 \times 10^{-6} \frac{v_b}{\widetilde{\beta}} \left(\frac{\kappa(v_b, \alpha)\alpha}{1+\alpha}\right)^2 \qquad \widetilde{f}_{\rm sw} \simeq 1.9 \times 10^{-5} {\rm Hz} \frac{\widetilde{\beta}}{v_b} \qquad \qquad \mathbf{v_b: wall velocity}$$

 $\mathcal{L}_{\text{BSM}} = \xi \mathcal{L}_{\text{BSM}} = \xi \mathcal{L}_{\text{BS$ $+\frac{v^2}{2}\mathcal{F}(h)\operatorname{Tr}\left[D_{\mu}U^{\dagger}D^{\mu}U\right]+\frac{1}{2}\mathcal{K}(h)\left(\partial_{\mu}h\right)\left(\partial^{\mu}h\right)$ Higgs $\mathbf{E}_{\mathbf{E}} = \xi \left\| -\frac{\kappa_{\mathbf{e}}}{\mathbf{A}} \right\|$ $-v\left(\bar{q}_{L}^{i}N_{p}q_{q}(h)_{p}\hat{y}_{q}^{i}a_{l}i_{p}\hat{q}_{R}^{i}d_{l}i_{p}\hat{q}_{R}^{i}d_{l}d_{l}i_{q}\hat{q}_{l}d_{l}i_{q}\hat{q}_{l}i_{q}i_{q}i_{q}\hat{q}_{l}i_{q}i_{q}i_{q}i_{q}i_{q}i_{q}i_{q}i_{$ Fergulio (1928h) TrinDrie SK, R Nagai (2021) $\xi = \frac{1}{16\pi^2} U = \exp\left(\frac{i}{v}\pi^a\tau^a\right) - \frac{v}{\psi}$ $\mathcal{M}^2(h), \ \mathcal{F}(h), \ \mathcal{K}(h), \ \mathcal{Y}^{ij}_{\psi}(h), \ \mathcal{Y}^{ij}_{\psi}(h), \ \mathcal{Y}^{ij}_{\psi}(h)$ $\mathcal{L}_{\mathrm{FT}} = \mathcal{L}_{\mathrm{SM}} \mathcal{L}_{\mathrm{HallEFT}} = \mathcal{L}_{\mathrm{SM}} + \mathcal{L}_{\mathrm{BSM}},$ $\mathcal{L}_{\text{fraHEFT}} = \mathcal{L}_{\text{SM}} + \mathcal{H}_{\text{sM}}$ $\xi \left| -\frac{\kappa_0}{4} \right| \mathcal{H}_{\text{sM}} = \xi^2 + \frac{\kappa_0}{4} + \frac{\kappa_0}{$ $\mathcal{K}^{(h)p}_{\psi}(h+v)^2 \quad \mathcal{M}^2(h), \ \mathcal{F}(h), \ \mathcal{K}(h), \ \mathcal{Y}^{ij}_{\psi}(\bar{h}), v \mathcal{Y}^{ij}_{\psi}(\bar{h}) | \mathcal{Y}^{i}_{l}$ with $\xi = 1/(4\pi)^2$, $\xi = 1/($ $\mathcal{L}_{BSM} = \xi$ the 125 Governessen $\begin{array}{c} & & \\ \hline D 2 \mathcal{F} \left[h \right] \stackrel{\text{Tr}}{=} \left[\mathcal{K} \left(h \right) \left(\partial_{\mu}^{\mu} h \right) \left(\partial_{\mu}^{2} h \right) \left(\partial_{\mu} h \right) \left($ je Nambu-Goldstone (IN Ennibertone (INCH) Jopso Provident and the second secon $\begin{array}{c|c} \left(\begin{array}{c} D & U \\ T \\ D \\ H \\ \end{array} \right) \tau^{3} \left(\begin{array}{c} D \\ q \\ q \\ R \\ \end{array} \right) + \begin{array}{c} \hat{V}^{ij} \\ \hat{V}^$ ULW = Zand Zabpagetserizes t amby-Goldstone $-v\left(\bar{q}_{L}^{i}U\left|\mathcal{Y}_{q}^{ij}(h)+\dot{\mathcal{Y}}_{q}^{ij}(h)\tau^{3}\right|\right.$ $-\pi\pi\tau^{+}$ To describe non-decoupling effects \exp we put a CW type structure (1–loop) $\mathcal{M}(h(h)) = \mathcal{M}^2 + \frac{\kappa_{\mathcal{B}p}}{22} (\mathcal{M}^2) = (\underline{a} = 1, 2, 3) \xrightarrow{\text{beingentice}} (\underline{a} = 1, 2, 3) \xrightarrow{\text{beingentice}} (\mathcal{M}^2)$ $\mathcal{M}^2(h) = M^2 + \frac{\kappa_p}{2} (hvith)^{2a} (a = 10,2,3)$ Statistical and the prophytical states of the prophytical states and the prophytical states and the prophytical states and the prophytical states and the prophytical states are also being a state of the prophytical states are Further assume the form JVL ULL ____ doublet (Swith and Repton beings, the be

Bubble nucleation

Nucleation rate of vacuum bubbles
 [Linde; Nucl. Phys. B216 (1983)]

$$\Gamma_{\text{bubble}} \simeq A(T) \exp\left[-\frac{S_3(T)}{T}\right], \quad S_3(T) = \int d^3x \left[\frac{1}{2} \left(\nabla \varphi^b\right)^2 + V_{\text{eff}}\left(\varphi^b, T\right)\right]$$

Fraction of the false vacuum

Fraction of PBH

$$f_{\rm PBH}^{\rm EW} \equiv \frac{\Omega_{\rm PBH}^{\rm EW}}{\Omega_{\rm CDM}} \sim 1.49 \times 10^{11} \left(\frac{0.25}{\Omega_{\rm CDM}}\right) \left(\frac{T_{\rm PBH}}{100 \,{\rm GeV}}\right) P(t_{\rm PBH}),$$

$$P(t_n) = \exp\left[-\frac{4\pi}{3} \int_{t_i}^{t_n} \frac{a^3(t)}{a^3(t_{\text{PBH}})} \frac{1}{H^3(t_{\text{PBH}})} \Gamma(t) dt\right], \quad \Gamma_{\text{bubble}}(T) \simeq T^4 \left(\frac{S_3(T)}{2\pi T}\right)^{3/2} \exp\left[-\frac{S_3(T)}{T}\right],$$

General 2HDM

Most general Higgs potential

$$V = -\mu_1^2 (\Phi_1^{\dagger} \Phi_1) - \mu_2^2 (\Phi_2^{\dagger} \Phi_2) - (\mu_3^2 (\Phi_1^{\dagger} \Phi_2) + h.c.)$$

+ $\frac{1}{2} \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \frac{1}{2} \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_2^{\dagger} \Phi_1) (\Phi_1^{\dagger} \Phi_2)$
+ $\left\{ \left(\frac{1}{2} \lambda_5 \Phi_1^{\dagger} \Phi_2 + \lambda_6 \Phi_1^{\dagger} \Phi_1 + \lambda_7 \Phi_2^{\dagger} \Phi_2 \right) \Phi_1^{\dagger} \Phi_2 + h.c. \right\}, \quad (\mu_3, \lambda_5, \lambda_6, \lambda_7 \in \mathbb{C})$

Higgs basis

$$\Phi_1 = \begin{pmatrix} G^+ \\ \frac{1}{\sqrt{2}}(v+h_1+iG^0) \end{pmatrix} \quad \Phi_2 = \begin{pmatrix} H^+ \\ \frac{1}{\sqrt{2}}(h_2+ih_3) \end{pmatrix}$$

Most general Yukawa Interation

$$\mathcal{L}_{y} \supset \sum_{ij} \left\{ \sum_{k=1}^{3} -\overline{f_{iL}} g_{k,ij}^{f} f_{jR} H_{k} + \left\{ \overline{u_{iR}} (\rho^{u\dagger} V_{\text{CKM}})_{ij} d_{jL} - \overline{u_{iL}} (V_{\text{CKM}} \rho^{d})_{ij} d_{jR} - \overline{\nu_{iL}} \rho_{ij}^{e} e_{jR} \right\} H^{+} \right\} + \text{h.c.},$$

How we nallow down? No principle

Use experimental data! and basic requirements

Higgs alignment

Higgs potenshal

$$\begin{split} V &= -\mu_1^2 (\Phi_1^{\dagger} \Phi_1) - \mu_2^2 (\Phi_2^{\dagger} \Phi_2) - \left(\mu_3^2 (\Phi_1^{\dagger} \Phi_2) + h.c. \right) \\ &+ \frac{1}{2} \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \frac{1}{2} \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_2^{\dagger} \Phi_1) (\Phi_1^{\dagger} \Phi_2) \\ &+ \left\{ \left(\frac{1}{2} \lambda_5 \Phi_1^{\dagger} \Phi_2 + \lambda_6 \Phi_1^{\dagger} \Phi_1 + \lambda_7 \Phi_2^{\dagger} \Phi_2 \right) \Phi_1^{\dagger} \Phi_2 + h.c. \right\}, \quad (\mu_3, \lambda_5, \lambda_6, \lambda_7 \in \mathbb{C}) \end{split} \qquad \Phi_1 = \begin{pmatrix} G^+ \\ \frac{1}{\sqrt{2}} (v + h_1 + iG^0) \end{pmatrix} \Phi_2 = \begin{pmatrix} H^+ \\ \frac{1}{\sqrt{2}} (h_2 + ih_3) \\ H^+ = M^2 + \frac{1}{2} \lambda_3 v^2 \\ &= M^2 + \frac{1}{2} \lambda_3 v^2 \end{split}$$

 $\frac{\text{To satisfy LHC data}, \text{ need to avoid mixing between } h \text{ and heavy Higgs bosons: } \lambda_6 \sim 0 \qquad \text{Higgs Alignment}, \\ Mass matrix \\ \text{of neutral scalar} \qquad \mathcal{M}^2 = v^2 \begin{pmatrix} \lambda_1 & \mathbb{Re}[\lambda_6] & -\text{Im}[\lambda_6] \end{pmatrix} \\ \mathbb{P}e[\lambda_6] & \frac{M^2}{v^2} + \frac{1}{2}(\lambda_3 + \lambda_4 + \text{Re}[\lambda_5]) & -\frac{1}{2}\text{Im}[\lambda_5] \\ -\text{Im}[\lambda_6] & -\frac{1}{2}\text{Im}[\lambda_5] \end{pmatrix} = \begin{pmatrix} m_h^2 & 0 & 0 \\ 0 & m_{H_2}^2 & 0 \\ 0 & 0 & m_{H_3}^2 \end{pmatrix} \qquad \text{arg}[\lambda_7] \equiv \theta_7 \\ \text{rephasing} \end{cases}$

Physical Phase in the Higgs potential : $\arg[\lambda_7] \equiv \theta_7$

We work on this Higgs alignment scenario in the following discussion

Simply
$$\lambda_6 = 0$$

SK, M. Kubota, K. Yagyu (2020) K. Enomoto, SK, Y. Mura (2021)

Higgs basis

2HDM (scenario 1)

Higgs potenshal

$$V = -\mu_1^2 (\Phi_1^{\dagger} \Phi_1) - \mu_2^2 (\Phi_2^{\dagger} \Phi_2) - (\mu_3^2 (\Phi_1^{\dagger} \Phi_2) + h.c.) \qquad \Phi_1 = \begin{pmatrix} G^+ \\ \frac{1}{\sqrt{2}}(v+h_1+iG^0) \end{pmatrix} \quad \Phi_2 = \begin{pmatrix} H^+ \\ \frac{1}{\sqrt{2}}(h_2+ih_3) + \frac{1}{2}\lambda_1(\Phi_1^{\dagger} \Phi_1)^2 + \frac{1}{2}\lambda_2(\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3(\Phi_1^{\dagger} \Phi_1)(\Phi_2^{\dagger} \Phi_2) + \lambda_4(\Phi_2^{\dagger} \Phi_1)(\Phi_1^{\dagger} \Phi_2) + \left\{ \left(\frac{1}{2}\lambda_5 \Phi_1^{\dagger} \Phi_2 + \lambda_6 \Phi_1^{\dagger} \Phi_1 + \lambda_7 \Phi_2^{\dagger} \Phi_2\right) \Phi_1^{\dagger} \Phi_2 + h.c. \right\}, \quad (\mu_3, \lambda_5, \lambda_6, \lambda_7 \in \mathbb{C}) \qquad m_{H^{\pm}}^2 = M^2 + \frac{1}{2}\lambda_3 v^2$$

<u>To satisfy LHC data</u>, avoid mixing between *h* and heavy Higgs bosons: $\lambda_6 \sim 0$

 $\begin{array}{l} \text{Mass matrix}\\ \text{of neutral scalar}\\ \text{bosons} \end{array} \mathcal{M}^2 = v^2 \begin{pmatrix} \lambda_1 & \boxed{\operatorname{Re}[\lambda_6]} & -\operatorname{Im}[\lambda_6] \\ \hline{\operatorname{Re}[\lambda_6]} & \frac{M^2}{v^2} + \frac{1}{2}(\lambda_3 + \lambda_4 + \operatorname{Re}[\lambda_5]) & -\frac{1}{2}\operatorname{Im}[\lambda_5] \\ -\operatorname{Im}[\lambda_6] & -\frac{1}{2}\operatorname{Im}[\lambda_5] & \frac{M^2}{v^2} + \frac{1}{2}(\lambda_3 + \lambda_4 - \operatorname{Re}[\lambda_5]) \end{pmatrix} \\ = \begin{pmatrix} m_h^2 & 0 & 0 \\ 0 & m_{H_2}^2 & 0 \\ 0 & 0 & m_{H_3}^2 \end{pmatrix} \begin{array}{l} \text{Higgs} \\ \text{alignment} \\ \text{arg}[\lambda_7] \equiv \theta_7 \\ \text{rephasing} \end{pmatrix}$

<u>Avoiding FCNC</u>: Yukawa alignment is imposed by hand $y_f^2 = \zeta_f y_f^1$ (f = u, d, e)

$$\mathcal{L}_{y} = -\overline{Q}_{L} \frac{\sqrt{2}M_{u}}{v} \left(\tilde{\Phi}_{1} + \zeta_{u}^{*}\tilde{\Phi}_{2}\right) u_{R} - \overline{Q}_{L} \frac{\sqrt{2}M_{d}}{v} \left(\Phi_{1} + \zeta_{d}\Phi_{2}\right) d_{R} - \overline{L}_{L} \frac{\sqrt{2}M_{e}}{v} \left(\Phi_{1} + \zeta_{e}\Phi_{2}\right) e_{R} + h.c.$$

Yukawa alignment Pich and Tuzon (2009)

Multiple CPV phases Higgs potential $\arg[\lambda_7] \equiv \theta_7$ Yukawa couplings $\arg[\zeta_u] \equiv \theta_u$, $\arg[\zeta_d] \equiv \theta_d$, $\arg[\zeta_e] \equiv \theta_e$

SK, M. Kubota, K. Yagyu (2020) K. Enomoto, SK, Y. Mura (2021)

Higgs basis