Cosmology of keV-scale scalar Dark Matter

Felix Kahlhoefer Scalars 2019 University of Warsaw 11-14 September 2019

Based on **arXiv:1809.04849** in collaboration with **Saniya Heeba** and **Patrick Stoecker**

Outline

- A few words on WIMPs and Higgs portal models
- Decaying scalars via the freeze-in mechanism
- Freeze-in production in the Early Universe
- Cosmological evolution and self-interactions
- Phenomenology

Quick recap: Higgs portal models

- Assume that the DM particle is **uncharged** under the SM gauge group
 → Can only couple to other gauge invariant operators
- The invariant operator of lowest dimensional in the SM is *H*⁺*H*
- Models in which DM couples only to this operator are called **Higgs portal models**
- Simplest realisation of Higgs portal: Real scalar with Z₂ symmetry

$$\mathcal{V}_{\mathbb{Z}_2} = \mu_H^2 |H|^2 + \frac{1}{2} \lambda_h |H|^4 + \frac{1}{2} \lambda_{hs} S^2 |H|^2 + \frac{1}{2} \mu_s^2 S^2$$

- Scalars enter into thermal equilibrium in the Early Universe and then freeze out
 - Prototypical WIMP
 - Many potential signatures, strong experimental constraints

Where are the WIMPs?

by Saniya Heeba

 Higgs portal models are still viable in some regions of parameter space

Athron, FK et al., arXiv:1806.11281

- But the non-observation of WIMPs mounts substantial pressure on the idea
- Well-motivated to question underlying assumptions and consider alternative production mechanisms

What if there is no stabilising symmetry?

• Assume that the Z₂ symmetry of the scalar singlet is **spontaneously broken**

$$\mathcal{L}_{\text{scalar}} = \frac{1}{2} \partial^{\mu} s \partial_{\mu} s - \frac{1}{2} m_s^2 s^2 - \frac{1}{4} \lambda_s s^4 - \lambda_s v_s s^3 - \frac{1}{2} \lambda_{hs} |H|^2 (s^2 + 2s v_s)$$

• After EW symmetry breaking this becomes

$$\mathcal{L}_{\text{scalar}} = \frac{1}{2} \partial^{\mu} s \partial_{\mu} s - \frac{1}{2} m_s^2 s^2 - \frac{1}{4} \lambda_s s^4 - \lambda_s v_s s^3 - \frac{1}{4} \lambda_{hs} (h^2 + 2 h v) (s^2 + 2 s v_s)$$

 \rightarrow Scalar singlets can mix with SM Higgs bosons:

$$\begin{pmatrix} h_{\rm SM} \\ h_s \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} h \\ s \end{pmatrix} \qquad \qquad \tan 2\theta \equiv \frac{\lambda_{hs} v v_s}{\lambda v^2 - \lambda_s v_s^2}$$

What if there is no stabilising symmetry?

- Because of this mixing scalar singlets can decay into fermions and gauge bosons
- Higgs portal coupling needs to be tiny (and scalar singlet mass small) to ensure survival of scalar singlets to present day
- Tiny coupling means scalar singlets will no longer enter into thermal equilibrium:

$$\langle \sigma v \rangle n^{\mathrm{eq}} < H(T)$$

• Need to consider alternative production mechanisms (**WIMP** → **FIMP**)

6

Freeze-in mechanism

Assume that only the visible sector is populated after inflation
 → initial abundance of DM particles negligible

Hall et al., arXiv:0911.1120 Bernal et al., arXiv:1706.07442

- If the dark sector is not thermalised, particle production proceeds via "energy leakage" from the visible sector
- Simplified Boltzmann equation:

$$\frac{\mathrm{d}Y_{\chi}}{\mathrm{d}x} = \mathcal{C}_{ab} \frac{s}{Hx} \langle \sigma v \rangle Y_{\mathrm{eq},SM}^2$$

- Stronger interactions ↔ larger abundance
- $\Omega h^2 = 0.12$ typically requires coupling $\lambda < 10^{-10}$

7

Freeze-in production in five steps

• Freeze-in calculation for scalar FIMPs with Z₂ symmetry well-established

Heikinheimo et al., arXiv:1604.02401

• In the absence of a stabilising symmetry, the story becomes a **lot more complicated**

Step 1: Freeze-in before EWSB

Production modes before EWSB

- Unbroken electroweak symmetry: No Higgs vacuum expectation value
 - \rightarrow Higgs and light scalar cannot mix
 - \rightarrow Light scalar does not couple to SM fermions
 - \rightarrow Limited number of production channels

10

Step 2: Freeze-in during EWSB

Production through oscillations

- Just after EW phase transition, Higgs has a vev and a very small mass
- Mixing between the two scalars can be large:

$$\theta(T) = \frac{\lambda_{hs} v(T) v_s}{m_h^2(T) - m_s^2}$$

200 175 150 125 (L)⁴100 75 50 25 100 150 200 250 50 300 350 400 0 T (GeV)

• Similar to production of dark photons

Redondo & Postma, arXiv:0811.0326

• Final abundance depends on how quickly the Higgs mass changes:

$$\Delta Y_{s,2} = \frac{\pi \,\zeta(2) \,Y_h(T_{\rm osc})}{\zeta(3)} \frac{\lambda_{hs}^2 \,v(T_{\rm osc})^2 \,v_s^2}{H(T_{\rm osc}) \,T_{\rm osc}^2} \left| \frac{{\rm d}m_h^2}{{\rm d}T} \right|_{T=T_{\rm osc}}^{-1}$$

Effect turns out to be negligible for sub-GeV scalars

Step 3: Freeze-in after EWSB

New production modes

Mixing remains non-zero also at lower temperatures

 → Higgs bosons can decay into pairs of light scalars
 → Light scalars obtain couplings to fermions

Tons of production modes → need micrOmegas!

Belanger et al., arXiv:1801.03509

Not all processes are well-behaved at high energies
 → Essential to cut off production at EWPT

W^+ , $b ightarrow t$, $ ho$	$\tau^+,\tau^-\to\gamma,\rho$	$W^{-},W^{+}\rightarrow h,\rho$	$W^+, e^- \rightarrow \nu_e, \rho$
$Z,W^+\to W^+,\rho$	$\bar{c}, c \rightarrow \gamma, \rho$	$\bar{\nu}_e, \nu_e \rightarrow Z, \rho$	W^- , $\nu_e \rightarrow e^-$, ρ
g,t ightarrow t, ho	γ , $b \rightarrow b$, ρ	$\bar{\nu}_m, \nu_m \rightarrow Z, \rho$	$W^-, \nu_m \rightarrow \mu^-, \rho$
$W^-, t \rightarrow b, \rho$	$\bar{b}, b ightarrow \gamma$, $ ho$	$\bar{\nu}_t, \nu_t ightarrow Z, ho$	$W^-, \nu_t \to \tau^-, \rho$
$W^-, c \rightarrow s, \rho$	$\gamma,\mu^-\to\mu^-,\rho$	$Z,\tau^-\to\tau^-,\rho$	Z,t ightarrow t, ho
$W^-, \mu \rightarrow d, \rho$	$W^-,W^+\to\rho,\rho$	$Z,e^-\to e^-,\rho$	g,b ightarrow b, ho
$W^+ d \rightarrow u o$	$\mu^+, \mu^- \to \gamma, \rho$	$Z,\mu^-\to\mu^-,\rho$	$W^-,W^+\to\gamma,\rho$
W^+ a b a c	$\bar{c}, c \rightarrow h, \rho$	$\bar{d}\!,d\rightarrow g\!,\rho$	$\bar{b}, b \rightarrow \rho, \rho$
$W^+, s \rightarrow c, \rho$	γ , $s \rightarrow s$, $ ho$	$\bar{t}, t \rightarrow h, \rho$	$\bar{\nu}_e, e^- \rightarrow W^-, \rho$
$W, W' \rightarrow Z, \rho$	$Z, Z \rightarrow \rho, \rho$	$Z,h \to Z,\rho$	$\bar{\nu}_m, \mu^- \rightarrow W^-, \rho$
$\bar{u}, d \rightarrow W^-, \rho$	h,h ightarrow ho, ho	Z,Z ightarrow h, ho	$\bar{\nu}_t, \tau^- \to W^-, \rho$
$ar{c},s ightarrow W^{-}$, $ ho$	$\bar{s}, s \rightarrow \gamma, \rho$	$g,u \to u,\rho$	$\bar{t}, b \to W^-, \rho$
$ar{t},t ightarrow g$, $ ho$	$\bar{s}, s \rightarrow \rho, \rho$	$\bar{u}, u \to g, \rho$	$g,s \rightarrow s,\rho$
Z, b ightarrow b, ho	$\tau^+, \tau^- \rightarrow h, \rho$	$e^+,e^-\to Z,\rho$	$\bar{b}, b \rightarrow g, \rho$
Z , $d \rightarrow d$, ρ	$b, h \rightarrow b, \rho$	$\mu^+, \mu^- \to Z, \rho$	$\gamma,W^+\to W^+,\rho$
$Z\text{, }s\rightarrow s\text{, }\rho$	$\bar{u}, u \rightarrow \gamma, \rho$	$\tau^+,\tau^-\to Z,\rho$	$\bar{d}, d \rightarrow Z, \rho$
$Z, c \rightarrow c, \rho$	$\gamma, u \rightarrow u, \rho$	W^- , $c \rightarrow d$, ρ	$\bar{s},s ightarrow Z, ho$
$Z, u \rightarrow u, \rho$	$\mu^+, \mu^- \rightarrow \rho, \rho$	W^+ , $s ightarrow u$, $ ho$	$ar{b}, b ightarrow Z, ho$
$W^+, \tau^- ightarrow u_t, ho$	$\gamma, d \rightarrow d, \rho$	$W^-, u \to s, \rho$	$Z,\nu_e\to\nu_e,\rho$
W^+ , $\mu^- o u_m$, $ ho$	$\bar{d}, d \rightarrow \gamma, \rho$	$W^+, d \to c, \rho$	$Z, \nu_m \rightarrow \nu_m, \rho$
$\mu^-, h \rightarrow \mu^-, \rho$	$\bar{t}, t \rightarrow \rho, \rho$	$\bar{u},s\rightarrow W^{-},\rho$	$Z, \nu_t \rightarrow \nu_t, \rho$
$\bar{d}_{-}d \rightarrow h_{-}o$	$e^+, e^- \rightarrow \gamma, \rho$	$\bar{c}\text{,}~d\rightarrow W^{-}\text{,}~\rho$	$\bar{u}, u \rightarrow Z, \rho$
a, a 7, a, p	$c, h \rightarrow c, \rho$	$\gamma, t \rightarrow t, \rho$	$\bar{c}, c \rightarrow Z, \rho$
$e^{+}, e^{-} \rightarrow \rho, \rho$	$\gamma, e^- \rightarrow e^-, \rho$	$\bar{c}, c \rightarrow \rho, \rho$	$\bar{s}, s ightarrow g, ho$
$\bar{u}, u \rightarrow h, \rho$	$\tau^-, h \rightarrow \tau^-, \rho$	$\bar{t}, t ightarrow \gamma$, $ ho$	$W^+, h \to W^+, \rho$
$d, h \rightarrow d, \rho$	$\bar{s}, s \rightarrow h, \rho$	$\tau^+, \tau^- ightarrow ho, ho$	t,h ightarrow t, ho
$u,h \to u,\rho$	$\mu^+, \mu^- \rightarrow h, \rho$	$h,h \to h,\rho$	$g,c ightarrow c,\rho$
$e^+,e^-\to h,\rho$	$\bar{d}, d \rightarrow \rho, \rho$	$\bar{b}, b \rightarrow h, \rho$	$\bar{t},t ightarrow Z, ho$
e^- , $h ightarrow e^-$, $ ho$	$\bar{u}, u \rightarrow \rho, \rho$	$\gamma, c \rightarrow c, \rho$	$\bar{c}, c \rightarrow g, \rho$
	$s, h \rightarrow s, \rho$	$\gamma,\tau^-\to\tau^-,\rho$	$g,d\to d,\rho$

Step 4: Thermalisation of the dark sector

Number-changing processes

- After freeze-in dark sector is populated with few but highly-energetic particles
 - \rightarrow Non-vanishing chemical potential
 - \rightarrow Need to consider number-changing processes

Broken Z_2 -symmetry: 2 \rightarrow 3 processes allowed

- Entropy is conserved separately in the two sectors
 - \rightarrow Increase in number density leads to decrease in dark sector temperature T_{dark}

Thermalisation and entropy conservation

- If rate of 2→3 processes exceeds Hubble rate, dark sector reaches chemical equilibrium
- Number density given by equilibrium distribution ($\mu_{dark} = 0$):

$$n_s^{\rm eq} = \frac{1}{2\pi^2} \int \frac{k^2 \,\mathrm{d}k}{\exp\left(E/T_{\rm dark}\right) - 1}$$

Note: Plot assumes freeze-in dominantly via Higgs decays → not valid in gray shaded region

Step 5: Dark sector freeze-out

Cannibalism in the dark sector

- With decreasing temperature fewer scalar particles have sufficient energy to produce new particles, so $2 \rightarrow 3$ processes become inefficient
- $3 \rightarrow 2$ processes stay efficient and deplete the dark sector, leading to an increase of the dark sector temperature

Cannibalistic dark matter

("eating each other to stay warm")

At some point chemical equilibrium can no longer be maintained and the numberchanging interactions freeze out

> Carlson et al., Astrophys.J. 398 (1992) 43-52 Pappadopulo et al., arXiv:1602.04219 Farina et al., arXiv:1607.03108

Solving the Boltzmann equation

Evolution of comoving number density governed by modified Boltzmann equation

$$\frac{\mathrm{d}Y_s}{\mathrm{d}x_{\mathrm{SM}}} = \frac{s_{\mathrm{SM}}}{H \, x_{\mathrm{SM}}} \langle \sigma v \rangle_{2 \to 3} Y_s^2 \left[1 - \frac{Y_s}{Y_s^{\mathrm{eq}}} \right]$$

Careful: Both Y_{eq} and $\langle \sigma v \rangle$ depend on T_{dark} , which in turn depends on Y_s

Felix Kahlhoefer | 12 September 2019

DFG |

Relic abundance of light scalars

- We can finally determine the value of λ_{hs} that reproduces the observed abundance

Impact of dark sector freeze-out

21

Phenomenology

Emmy Noether-Programm DFG Deutche Forschungsge

22

Scalar lifetime

• For *m_s* < 1 MeV the only allowed decay mode are photon pairs

$$\Gamma(s \to \gamma \gamma) = \sin^2 \theta \, \frac{\alpha^2 \, m_s^3}{256\pi^3 \, v^2} \left| f(z_e) + \frac{7}{3} \right|^2$$

- Corresponding lifetime greater than 10²⁵ s
- Relevant constraints from x-ray observations

Scalar self-interactions

Scalar self-coupling fixed by assumed pattern of symmetry breaking
 → prediction for self-interaction cross section:

$$\frac{\sigma_s}{m_s} = \frac{9\,\lambda_s^2}{32\pi\,m_s^3}$$

- Strong enhancement for small scalar mass
 → observable effects possible even for small λ_s
- No velocity dependence, so strong constraints from Bullet Cluster

Results

Effect on structure formation

- Potential constraint on light dark matter from free-streaming
 → Suppression of small-scale structure
 An et al., arXiv:1812.05699
- Strong self-interactions prevent free-streaming
 → Structures can only be erased by diffusion

 $l_s^2 = \int_0^{t_{\text{dec}}} \frac{\mathrm{d}t \, \langle v_s \rangle^2}{a^2 \, n_s \, \langle \sigma_s v_s \rangle}$

- Diffusion length small enough to evade Ly-a constraints even for keV-scale DM
- Potential problem: Dark acoustic oscillations
 - \rightarrow Light scalars can support pressure waves
 - → Need self-interactions to become inefficient (well) before recombination
 - \rightarrow Work in progress

Conclusions

- WIMPs produced through the Higgs portal are strongly constrained (although still viable), so we should think about alternative production mechanisms
- Attractive idea: Light scalars with mixing
 - \rightarrow Small portal coupling ensures cosmological stability
 - → Production via freeze-in mechanism (and dark sector freeze-out)
- Most interesting parameter range: m_s ~ 1-10 keV
 - \rightarrow Potential explanation of anomalous x-ray emission at 3.5 keV
 - \rightarrow Interesting implications for self-interacting DM and structure formation

