Methods for Computing the Critical Temperature of the Electroweak Phase Transition

Johan Löfgren Dec. 2, 2017

The phase transition

Figure 1: A first order phase transition.

1

The effective potential

- $V_{\text{eff}}(\phi) = V_0(\phi) + \hbar V_1(\phi) + \hbar^2 V_2(\phi) + \dots$
- The energy density in the presence of a background field $\langle \Phi(x) \rangle = \phi$.
- We can now solve $\frac{\partial V_{\rm eff}}{\partial \phi}|_{\phi_m}=0$ to minimize $V_{\rm eff}$ and find the "true" vacuum $\phi_m=\phi_0+\hbar\phi_1+\hbar^2\phi_2+\dots$

The effective potential... at finite T

- $V_{\text{eff}}(\phi, T) = V_0(\phi) + \hbar V_1(\phi, T) + \hbar^2 V_2(\phi, T) + \dots$
- The background energy density in the presence of a background field $\langle \Phi(x) \rangle_T = \phi(T)$, and a thermal medium with temperature T.
- We can now solve $\frac{\partial V_{\rm eff}(\phi,T)}{\partial \phi}|_{\phi_m}=0$ to minimize $V_{\rm eff}$ and find the "true" vacuum $\phi_m(T)=\phi_0+\hbar\phi_1(T)+\hbar^2\phi_2(T)+\ldots$, in the presence of thermal fluctuations

- In gauge theory, there are "unphysical" degrees of freedom: time-like polarizations of gauge bosons, ghosts and goldstone bosons.
- For observables, these d.o.f.'s must cancel among each other \implies e.g. with R_{ξ} -gauge fixing, observables should be independent of ξ .
- But the effective potential depends on ξ:

$$GB: m_{GB}^{2}\left(\phi, \xi\right) = \tilde{m}_{GB}^{2}\left(\phi\right) + \xi m_{A}^{2}\left(\phi\right)$$

$$Ghost: m_{C}^{2}\left(\phi, \xi\right) = \xi m_{A}^{2}\left(\phi\right)$$

The energy density of the vacuum state is physical:

$$\frac{\partial V_{\text{eff}}}{\partial \phi}|_{\phi_m} = 0 \implies \frac{\partial V_{\text{eff}}}{\partial \xi}|_{\phi_m} = 0$$

The energy density of the vacuum state is physical:

$$rac{\partial V_{eff}}{\partial \phi}|_{\phi_m} = 0 \implies rac{\partial V_{eff}}{\partial \xi}|_{\phi_m} = 0$$

- The **Traditional** way of finding the critical temperature T_c is to evaluate $V_{\rm eff}(\phi)$ to one loop and minimize it numerically.
- This induces a gauge dependence in T_c , due to a mixing of orders of \hbar .

Patel and Ramsey-Musolf [ArXiv:1101.4665]: by appropriately truncating the power series in \hbar :

$$\phi_{m} = \phi_{0} + \hbar \phi_{1} + \dots \Longrightarrow
V_{\text{eff}}(\phi_{m}) = V_{0}(\phi_{0}) + \hbar V_{1}(\phi_{0}) + \hbar^{2} \left(V_{2}(\phi_{0}) - \frac{1}{2} \phi_{1}^{2} \frac{d^{2} V_{0}}{d \phi^{2}} |_{\phi_{0}} \right) + \mathcal{O}(\hbar^{3})$$

it is possible to determine $T_{\rm c}$ in a gauge invariant way (**PRM** method).

PRM method

Figure 2: Determination of T_c in the SM, with $m_h = 125.09$ [GeV], using the **PRM** method.

Traditional

Figure 3: PRELIMINARY plots of $V_{\rm eff}$ (ϕ , T=75 [GeV]) in the SM, with $m_h=65$ [GeV], for different values of ξ .

PRM & Traditional

Figure 4: From Patel and Ramsey-Musolf's paper [ArXiv:1101.4665].

Purpose and goals of our C++ implementation

- Provide a testing ground for different models and methods
- Fast numerical evaluations
- Usability: straight-forward implementation of different models

The SM

Figure 5: PRELIMINARY determination of T_c in the SM, for different values of the Higgs mass.

Summary

- The effective potential is ξ -dependent, but one can with care extract ξ -independent observables from it.
- Our goal: developing a C++ code to **test** if it is important to care about this ξ -dependence, for different models.

