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The phase transition
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Figure 1: A first order phase transition.



The effective potential

* Verr (8) = Vo (0) + WVi () + 12 V2(6) + ..

* The energy density in the presence of a background field
(®(x)) = ¢

* We can now solve 8g;“|¢m = 0 to minimize V¢ and find the
"true" vacuum ¢m = ¢ + oy + hlgy + ...




The effective potential... at finite T

* eﬁ(¢7T):VO(¢)+hv1(¢’T)+h2v2(¢7T)+

* The background energy density in the presence of a
background field (® (x)); = ¢ (T), and a thermal medium with
temperature T.

* We can now solve av%(j’n\% = 0 to minimize Vs and find

the "true" vacuum ¢, (T) = ¢o + hen (T) + h2hy (T) + ..., in
the presence of thermal fluctuations



Gauge dependence of V¢

* In gauge theory, there are "unphysical" degrees of freedom:
time-like polarizations of gauge bosons, ghosts and goldstone
bosons.

* For observables, these d.o.f.’s must cancel among each other
= e.g. with R¢-gauge fixing, observables should be
independent of &.

* But the effective potential depends on &:

GB: mGB(¢ €) = g () + Ema (¢)
Ghost : m (0,8) = fmA (9)



Gauge dependence of V¢

The energy density of the vacuum state is physical:
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Gauge dependence of V¢

The energy density of the vacuum state is physical:

Ve _ Ve _
a¢ﬁ‘¢>m - O = Tgﬁ‘ﬁbm - O

* The Traditional way of finding the critical temperature T is to
evaluate Vs (¢) to one loop and minimize it numerically.

* This induces a gauge dependence in T, due to a mixing of
orders of F.



Gauge dependence of V¢

Patel and Ramsey-Musolf [ArXiv:1101.4665]:
by appropriately truncating the power series in h:

Om = o+ hoy ... =
Vett (9m) = Vo (60)+1V4 (60) + 72 (Va (60) — 367 52210, ) +0 (72)

it is possible to determine T. in a gauge invariant way
(PRM method).


https://arxiv.org/abs/1101.4665

PRM method
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Figure 2: Determination of T. in the SM, with m, = 125.09 [GeV], using
the PRM method. 7



Traditional
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Figure 3: PRELIMINARY plots of Vg (6, T = 75 [GeV]) in the SM, with
my, = 65 [GeV], for different values of &. 8



PRM & Traditional
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Figure 4: From Patel and Ramsey-Musolf’s paper [ArXiv:1101.4665].


https://arxiv.org/abs/1101.4665

Purpose and goals of our C++ implementation

* Provide a testing ground for different models and methods
* Fast numerical evaluations

* Usability: straight-forward implementation of different models
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Figure 5: PRELIMINARY determination of T. in the SM, for different values

of the Higgs mass.



* The effective potential is {-dependent, but one can with care
extract £-independent observables from it.

* Our goal: developing a C++ code to test if it is important to
care about this £-dependence, for different models.



Questions?



