Off-shell Renormalization

 of Dímension-6 Operators in Higgs Effective Field TheoriesAndrea Quadrí
INFN Sez. di Milano

based on A.Q. Int.J.Mod.Phys. A32 (2017) no.16, 1750089
D.Bínosí, A.Q., arXiv:1709.09937

Scalars 2017 - Warsaw, November 30-December 3, 2017

Probing BSM Physics:
 Higgs Effective Field Theories

Operators of higher dimension are added to the SM Lagrangian without violating the symmetries of the theory

$$
\mathcal{L}_{\mathrm{eff}}=\mathcal{L}_{\mathrm{SM}}+\sum_{i} \frac{c_{i}^{(5)}}{\Lambda} \mathcal{O}_{i}^{(5)}+\sum_{i} \frac{c_{i}^{(6)}}{\Lambda^{2}} \mathcal{O}_{i}^{(6)}+\sum_{i} \frac{c_{i}^{(7)}}{\Lambda^{3}} \mathcal{O}_{i}^{(7)}+\sum_{i} \frac{c_{i}^{(8)}}{\Lambda^{4}} \mathcal{O}_{i}^{(8)}+\cdots
$$

c are the Wilson coefficients, Λ is some large energy scale

UV Properties of HEFTs

HEFTs are renormalizable in the modern sense \grave{a} la Gomis-Weinberg, i.e.:

- Power-counting renormalizability is lost
- Physical Unitarity (cancellation of ghost states) guaranteed by BRST symmetry \& Slavnov-Taylor identities
- Froissart bound usually not respected

In general all possible terms allowed by symmetry must be included in an EFT approach

One-loop Anomalous Dimensions in the HEFTs

However a tour de force computation of one-loop anomalous dimensions in general HEFTs involving dim. six operators
has revealed surprising cancellations.
R.Alonso, E.Jenkins, A.Manohar, M.Trott
arXiv:1308.2627, arXiv:1310.4838, arXiv:1312.2014 , arXiv:1409.0868
Not all mixings in principle allowed by the symmetries do indeed arise at one loop level.

Holomorphy

Basic idea: holomorphic operators do not mix with anti-holomorphic and non-holomorphic operators.

True at the one-loop level
(up to some breaking proportional to Yukawa couplings) on the S-matrix elements.
C.Cheung and C.Shen, arXiv: 1505.01844

Off-shell UV Patterns in HEFTs of $\Phi^{\dagger} \Phi$

The subclass of HEFT generated by higher-dimensional operators involving powers of $\Phi^{\dagger} \Phi$ and ordinary derivatives thereof only has some peculiar UV properties.

> Use $\Phi^{\dagger} \Phi$ (after spontaneous symmetry breaking) as a new dynamical variable.

Some additional symmetries become apparent.

Extra Fields and the Scalar Constraint

$$
\begin{aligned}
\Gamma_{\mathrm{SSB}} & =\int\left[D_{\mu} \Phi^{\dagger} D^{\mu} \Phi-\frac{M^{2}-m^{2}}{2} X_{2}^{2}-\frac{m^{2}}{2 v^{2}}\left(\Phi^{\dagger} \Phi-\frac{v^{2}}{2}\right)^{2}-\bar{c}\left(\square+m^{2}\right) c\right. \\
& \left.+\frac{1}{v}\left(X_{1}+X_{2}\right)\left(\square+m^{2}\right)\left(\Phi^{\dagger} \Phi-\frac{v^{2}}{2}-v X_{2}\right)+\bar{c}^{*}\left(\Phi^{\dagger} \Phi-\frac{v^{2}}{2}-v X_{2}\right)+V\left(X_{2}\right)\right]
\end{aligned}
$$

$$
\Phi=\frac{1}{\sqrt{2}}\binom{i \phi_{1}+\phi_{2}}{\sigma+v-i \phi_{3}} \mathrm{SU}(2) \text { doublet } \quad X_{2} \quad \mathrm{SU}(2) \text { singlet }
$$

A suitable additional BRST symmetry ensures that the physical degrees of freedom are unchanged.

Solving the constraint

The X1-e.o.m. is classically satisfied by the constraint

$$
\begin{aligned}
X_{2} & =\frac{1}{2 v} \sigma^{2}+\sigma+\frac{1}{2 v} \phi_{a}^{2} \\
& =\Phi^{\dagger} \Phi-\frac{v^{2}}{2}
\end{aligned}
$$

One gets back the usual SM potential

$$
V_{\mathrm{SM}}=\frac{M^{2}}{2 v^{2}}\left(\Phi^{\dagger} \Phi-\frac{v^{2}}{2}\right)^{2}
$$

right sign of the quartic potential needed to ensure stability from the sign of the mass term,
in turn fixed by the requirement of the absence of tachyons

Dangereous Interactions for Renormalizability

The model contains derivative interactions of the schematic form

$$
\chi \square \chi^{2}
$$

i.e. an operator of dimension 5 .

Renormalizability?

Propagators

The quadratic part is diagonalized by $\sigma=\sigma^{\prime}+X_{1}+X_{2}$

$$
\begin{aligned}
& \Delta_{\sigma^{\prime} \sigma^{\prime}}=\frac{i}{p^{2}}, \quad \Delta_{\phi_{a} \phi_{b}}=\frac{i \delta_{a b}}{p^{2}}, \quad \Delta_{\bar{c} c}=\frac{i}{p^{2}} \\
& \Delta_{X_{1} X_{1}}=-\frac{i}{p^{2}}, \quad \Delta_{X_{2} X_{2}}=\frac{i}{p^{2}-M^{2}} .
\end{aligned}
$$

The derivative interaction only depends on $X=X_{1}+X_{2}$ whose propagator has an improved UV behaviour

$$
\Delta_{X X}=\frac{i M^{2}}{p^{2}\left(p^{2}-M^{2}\right)}
$$

Mapping between the $\mathrm{X}_{1,2 \text {-theory }}$ and the Standard formalism

By going on-shell with the $\mathrm{X}_{1,2}$-fields we obtain the 1-PI amplitudes of the standard formalism (let us call the latter the "target" theory).

For $\mathrm{V}\left(\mathrm{X}_{2}\right)=0$ one recovers the SM .
In the $\mathrm{X}_{1,2}$-formalism (a class of) BSM operators admits a reformulation in terms of suitable external sources coupled to a tower of X_{2}-dependent operators, with a better UV behaviour than those of the quantized fields.

Mapping on the HEFT

Cubic BSM potential

In the presence of a cubic BSM potential

$$
V\left(X_{2}\right)=g_{6} v X_{2}^{3}
$$

a single additional external source R is needed in order to control the composite operator X_{2}^{2}, arising from the derivative of the action w.r.t. X_{2}.

Equations of motion for the Auxiliary Fields in the presence of a Cubic Potential

$$
\begin{aligned}
\Gamma_{X_{1}} & =\frac{1}{v}\left(\square+m^{2}\right) \Gamma_{\bar{c}^{*}} \\
\Gamma_{X_{2}} & =\frac{1}{v}\left(\square+m^{2}\right) \Gamma_{\bar{c}^{*}}+3 g_{6} v \Gamma_{R}-\left(\square+m^{2}\right) X_{1} \\
& -\left(\square+M^{2}\right) X_{2}+2 R X_{2}-v \bar{c}^{*}
\end{aligned}
$$

Recovering the dependence on $\mathrm{X}_{1,2}$

The equations of motion imply that the all-order dependence of the vertex functional on the auxiliary fields is encoded into the combinations

$$
\mathcal{R}=R+3 g_{6} v X_{2} ; \quad \quad \overline{\mathcal{C}}^{*}=\bar{c}^{*}+\frac{1}{v}\left(\square+m^{2}\right)\left(X_{1}+X_{2}\right)
$$

Hence one can limit oneself to the study of 1-PI amplitudes involving the external sources and the field σ

Moving to the target theory

We impose the equations of motion of the auxiliary fields.
From the X_{1} equation (at the classical level):

$$
X_{2}=\frac{1}{v}\left(\Phi^{\dagger} \Phi-\frac{v^{2}}{2}\right)=\sigma+\frac{1}{2} \frac{\sigma^{2}}{v}+\frac{1}{2} \frac{\phi_{a}^{2}}{v}
$$

From the X_{2} equation (at the classical level):

$$
\left(\square+m^{2}\right)\left(X_{1}+X_{2}\right)=-\left(M^{2}-m^{2}\right) X_{2}+3 g_{6} v X_{2}^{2} .
$$

The mapping (1-loop approximation)

Eventually one gets the mapping in the following form:

$$
\begin{aligned}
\mathcal{R} & \rightarrow 3 g_{6}\left(\Phi^{\dagger} \Phi-\frac{v^{2}}{2}\right) \\
\overline{\mathcal{C}}^{*} & \rightarrow-\frac{1}{v^{2}}\left(M^{2}-m^{2}\right)\left(\Phi^{\dagger} \Phi-\frac{v^{2}}{2}\right)+\frac{3 g_{6}}{v^{2}}\left(\Phi^{\dagger} \Phi-\frac{v^{2}}{2}\right)^{2}
\end{aligned}
$$

The one-point amplitude

$\mathrm{x}_{1,2}$-theory	Target theory
$\Gamma_{R}^{(1)}$	$\int \Gamma_{R_{x}}^{(1)} R_{x} \rightarrow \int \Gamma_{R_{x}}^{(1)} \mathcal{R}_{x} \rightarrow \operatorname{term}$

$$
\widetilde{\Gamma}_{\sigma}^{(1)}=3 g_{6} v \Gamma_{R}^{(1)}-\frac{1}{v}\left(M^{2}-m^{2}\right) \Gamma_{c^{*}}^{(1)}
$$

The two-point amplitude

$\mathrm{X}_{1,2}$-theory	Target theory
$\Gamma_{R}^{(1)}$	$\int \Gamma_{R_{x}}^{(1)} R_{x} \vec{\sigma}_{\sigma^{2} \text { term }} \frac{3}{2} g_{6} \int \Gamma_{R_{x}}^{(1)} \sigma_{x} \sigma_{x}$
$\Gamma_{\bar{c}^{*}}^{(1)}$	$\int \Gamma_{c_{x}}^{(1)} \vec{c}_{x_{\sigma^{2}}^{*}}^{*} \overrightarrow{\text { term }}-\frac{1}{2 v^{2}}\left(M^{2}-m^{2}-6 g_{6} v^{2}\right) \int \Gamma_{c_{\mathrm{s}}}^{(1)} \sigma_{x} \sigma_{x}$

The two-point amplitude

$x_{12}{ }^{2}$-theory	Target theory
$\Gamma_{R R}^{(1)}$	
$\Gamma_{R \sigma}^{(1)}$	
$\Gamma_{c_{c} c^{+}}^{(1)}$	
$\Gamma_{c_{c},}^{(1)}$	
$\Gamma_{\text {Rec }}^{(1)}$	

The two-point amplitude

$$
\begin{aligned}
\widetilde{\Gamma}_{\sigma \sigma}^{(1)} & =\Gamma_{\sigma \sigma}^{(1)}+3 g_{6}\left(\Gamma_{R}^{(1)}+2 \Gamma_{\bar{c}^{*}}^{(1)}+2 v \Gamma_{R \sigma}^{(1)}+3 g_{6} v^{2} \Gamma_{R R}^{(1)}\right) \\
& -\frac{1}{v^{2}}\left(M^{2}-m^{2}\right)\left[\Gamma_{\bar{c}^{*}}^{(1)}+2 v \Gamma_{\bar{c}^{*} \sigma}^{(1)}+6 g_{6} v^{2} \Gamma_{R \bar{c}^{*}}^{(1)}\left(M^{2}-m^{2}\right) \Gamma_{\bar{c}^{*} \bar{c}^{*}}^{(1)}\right] .
\end{aligned}
$$

The g6-dependence originates from the mapping only
(true at the one loop order.
At higher orders the cubic interaction vertex in X_{2} inside loops introduces
a further source of g6-dependence)

The UV divergence proportional to the momentum squared arises from (a subset [in red] of) the SM amplitude at $g_{6}=0$ The wave-function renormalization constant is the same as in the SM

Power-counting

Dangerous diagrams at non-vanishing g6 arises from propagators $\Delta_{X_{2} X}, \Delta_{X_{2} \sigma}$

	R-independent sector	R and/or \bar{c}^{*} only	R, c^{*}, σ	R and σ
	$\operatorname{dim} \bar{c}^{*}=2, \operatorname{dim} \sigma=1$	$\operatorname{dim} R=\operatorname{dim} \bar{c}^{*}=2$	$\begin{aligned} & \operatorname{dim} \bar{c}^{*}=2 \\ & \operatorname{dim} R=\operatorname{dim} \sigma=1 \end{aligned}$	$\begin{gathered} \operatorname{dim} R=0 \\ \operatorname{dim} \sigma=1 \end{gathered}$
	$\begin{aligned} & \Gamma_{\sigma}^{(1)}, \Gamma_{\sigma \sigma}^{(1)}, \Gamma_{\sigma \sigma \sigma}^{(1)}, \Gamma_{\sigma^{4}}^{(1)} \\ & \Gamma_{\bar{c}^{*}}^{(1)}, \Gamma_{\bar{c}^{*} \sigma}^{(1)}, \Gamma_{\bar{c}^{*} \sigma \sigma}^{(1)}, \Gamma_{\bar{c}^{*} \bar{c}^{*}}^{(1)} \end{aligned}$	$\Gamma_{R}^{(1)}, \Gamma_{R \bar{c}^{*}}^{(1)}, \Gamma_{R R}^{(1)}$	$\Gamma_{R c^{*} \sigma}^{(1)}, \Gamma_{R \bar{c}^{*} \sigma \sigma}^{(1)}$ log. div.	$\Gamma_{R \sigma \leq 4}, \quad \Gamma_{R R \sigma \leq 4}$

$\partial_{\mu}\left(\Phi^{\dagger} \Phi\right) \partial^{\mu}\left(\Phi^{\dagger} \Phi\right)$

This operator could be generated in the target theory:
A) by amplitudes in the $\mathrm{X}_{1,2}$ theory with external sigma legs
B) by amplitudes involving external sources via the mapping

Type A-amplitudes do no give rise to such operator since they do not depend on g 6 and at $\mathrm{g} 6=0$ the theory is power-counting renormalizable

The mapping does not involve derivatives (at one loop), so type B-amplitudes must contain a UV divergence proportional to the momentum squared if they are to contribute.

$\partial_{\mu}\left(\Phi^{\dagger} \Phi\right) \partial^{\mu}\left(\Phi^{\dagger} \Phi\right)$

There is just one candidate of type B:
$\int_{x} \int_{y} \Gamma_{R_{x} \sigma_{y}}^{(1)} \mathscr{R}_{x} \sigma_{y}{ }_{\mathrm{UV}}=_{\text {div }} \int_{x} \mathscr{R}_{x}\left(c_{0}^{(1)}+c_{1}^{(1)} \square\right) \sigma_{x}$

$$
\rightarrow 3 g_{6} \int_{x}\left[c_{0}^{(1)}\left(\Phi^{\dagger} \Phi-\frac{v^{2}}{2}\right)^{2}-c_{1}^{(1)} \partial_{\mu}\left(\Phi^{\dagger} \Phi\right) \partial^{\mu}\left(\Phi^{\dagger} \Phi\right)\right]
$$

$\square X \sigma^{2}$ is the vertex that dimensionally could contribute to c_{1} However the differential op. does not act on the sigma leg and its effect is to remove one internal propagator

At one loop order c_{1} is zero.

More general potentials

The analysis can be generalized to an arbitrary derivative-independent potential

$$
V\left(X_{2}\right)=\sum_{j=3}^{N} g_{2 j} v^{4-j} X_{2}^{j}
$$

More external sources are needed in order to derive the X_{2}-equation

$$
\begin{aligned}
\Gamma_{X_{2}} & =\frac{1}{v}\left(\square+m^{2}\right) \Gamma_{\bar{c}^{*}}-\left(\square+m^{2}\right) X_{1}-\left(\square+M^{2}\right) X_{2} \\
& +\sum_{j=3}^{N}\left[j g_{2 j} v^{4-j} \Gamma_{R_{j-1}}+(j-1) R_{j-1} \Gamma_{R_{j-2}}\right]-v \bar{c}^{*}
\end{aligned}
$$

More general potentials

The recursiviciteration is

$$
\begin{aligned}
& \mathcal{R}_{j-1}=R_{j}+j\left[v^{4-j} g_{2 j}+\left(1-\delta_{j, N}\right) R_{j}\right] X_{2} \\
& \text { The solution } \\
& \mathcal{R}_{j}=R_{j}-\sum_{k=1}^{N-j}(-1)^{k} \frac{(j+1)(j+2) \ldots(j+k)}{k!} \\
& \times\left[v^{4-(j+k)} g_{2(j+k)}+\left(1-\delta_{j+k, N)}\right) \mathcal{R}_{j+k}\right] X_{2}^{k} ; \quad j=2, \ldots, N-1 . \\
& \text { An example } \\
& \mathcal{R}_{3}=R_{3}+4 g_{8} X_{2}, \mathcal{R}_{2}=R_{2}+3\left(v g_{6}+\mathcal{R}_{3}\right) X_{2}-6 g_{8} X_{2}^{2}, \\
& \text { The solution of the } X_{1} \text { eom fixing } X_{2} \text { changes } \\
& \text { order by order in the loop expansion }
\end{aligned}
$$

BSM Extensions: derivative dependent

 dim. 6 operatorsThe X_{2} equation is not the most general functional symmetry holding true for the vertex functional.
The breaking term on the R.H.S. of the shift symmetry
stays linear in the quantum fields even if one adds a kinetic term for the scalar singlet

$$
\int d^{4} x \frac{z}{2} \partial^{\mu} X_{2} \partial_{\mu} X_{2}
$$

Upon integration over the auxiliary field this is equivalent to the addition of the dimension-six operator

$$
\int d^{4} x \frac{z}{v^{2}} \partial_{\mu} \Phi^{\dagger} \Phi \partial^{\mu} \Phi^{\dagger} \Phi
$$

Outlook

- HEFTs based on powers of $\Phi^{\dagger} \Phi$ and ordinary derivatives thereof have some nice UV properties rooted in some functional identities which become transparent if one uses the field X_{2}
- Some applications: off-shell operator mixing, consistent set of higher dimensional operators, resummation

Back-up slides

BRST implementation of the on-shell constraint

Off-shell there is one more scalar field X_{1}. What about this field? Physical or unphysical?
BRST symmetry (it does not originate from gauge invariance)

$$
\begin{aligned}
& s X_{1}=v c, \quad s c=0, \quad s \sigma=s \phi_{a}=s X_{2}=0 \\
& s \bar{c}=\frac{1}{2} \sigma^{2}+v \sigma+\frac{1}{2} \phi_{a}^{2}-v X_{2}
\end{aligned}
$$

Ghost action
Invariance under the nilpotent
BRST symmetry

$$
S_{g h o s t}=-\int d^{4} x \bar{c} \square c . \quad \text { formally associated with a } \mathrm{U}(1) \text { constr group }
$$

