

Dark Matter Search with XMASS

ICRR, University of Tokyo K. Kobayashi On behalf of the XMASS collaboration

June 4th, 2016

Warsaw Workshop on Non-Standard Dark Matter: multicomponent scenarios and beyond, Warsaw, Poland

XMASS experiment

K.Kobayashi, XMASS, Warsaw, Poland

detector construction completed (Sep. 2010)	commissioning run data taking (Dec. 2010 - May 2012)	detector refurbishment (RFB) (Aug. 2012 - Oct. 2013)
--	--	--

resume data taking (Nov. 2013 -)

We have already taken data for >2.5year.

XMASS detector

NIM A716, 78-85, (2013)

mm

- Outer detector (OD, water tank)
 - > 72 20-inch PMTs for cosmic-ray muon veto.
 - Water is also passive shield for gamma-ray and neutron from rock/wall.
- Inner detector (ID, Liquid Xe)
 - ➢ Liquid Xe surrounded by 642 2-inch PMTs.
 - Single phase
 - Observed scintillation light.
 - photo coverage: 62%
 - ➢ diameter: ~800mm
 - high light yield: 14.7 PE/keV

background level in XMASS

Various kind of dark matter candidates /physics topics has been searched for!

- These analysis can be done mainly due to low background in both nuclear recoil and beta/gamma, high light yield.
 - Light mass WIMP (Phys. Lett. B 719(2013) 78)
 - Solar axion (Phys. Lett. B 724(2013) 46)
 - Inelastic scattering by ¹²⁹Xe (PTEP 2014, 063C01)
 - Bosonic super-WIMP (Phys. Rev. Lett. 113(2014) 121301)
 - Double electron capture by ¹²⁴Xe (Phys. Lett. B759(2016) 64-68)
 - Supernova coherent elastic scattering study (arXiv:1604.01218)

Bosonic super-WIMP search

Bosonic super-WIMPs (Pospelov et, al. Phys. Rev. D 78 115012 (2008)) is a lukewarm dark matter candidate, and lighter and more weakly interacting particles than WIMPs.

Experimentally interesting since their absorption in a target material would deposit an energy essentially equivalent to the super-WIMP's rest mass. Search for pseudoscalar and vector boson (sometimes called as dark, para, or hidden photon).

- Commissioning data (165.9days data) is used.
- Fiducial cut, timing cut, band cut are applied to remove backgrounds from aluminum seal in the PMTs.

event reduction

- · (1) pre-selection
- (2) (1)&fiducial cut (R<15cm)
- (3) (2)& timing cut
- (4) (3)&band cut ⁷

constraint on coupling constants

Modulation analysis using data after RFB

Dark matter event rate is expected to modulate annually due to relative motion of the Earth around the Sun. Annual modulation claimed by DAMA/LIBRA with 9.3 σ significance (1.33 ton•year, 14 cycles).

- 1year cycle data (0.83ton year) with low threshold (1.1keVee)
- No particle ID (just like DAMA/LIBRA)
- Accepted by PLB (arXiv : 1511.04807)

Time variation of event rate

the range where DAMA/LIBRA experiment indicates

Two independent modulation analyses were performed using different χ^2 definition Systematic errors (1 σ) Method 1 (pull term) $\chi^2 = \sum_{i}^{E-bins} \left(\sum_{j}^{t-bins} \frac{(R_{i,j}^{obs} - R_{i,j}^{pred} - \alpha K_{i,j})^2}{\sigma(\operatorname{stat})_{i,j}^2 + \sigma(\operatorname{sys})_{i,j}^2} \right) + \alpha^2$ K.Kobayashi, XMASS, Warsaw, Poland Method 2 (covariance matrix) $\chi^2 = \sum_{i,j}^{Et-bins} (R_i^{obs} - R_i^{pred}) (V_{\text{stat}} + V_{\text{sys}})_i^{-1} (R_j^{obs} - R_j^{pred})$ 10

Standard WIMP search

Assuming standard WIMP, data is fitted with the following equation: $R^{pred}(E_i, t_j) = C_i + \sigma \times A(m_{\chi}, E_i) \cos 2\pi (t_j - t_0)/T$

- Leff uncertainty is taken into account.
- Figure is drawn by Method 1. The difference between two methods are within 30%.
- DAMA/LIBRA region is mostly excluded by our measurement.

Model assumption V_0 : 220.0 km/s V_{esc} : 650.0 km/s ρ_{dm} : 0.3 GeV/cm³ Lewin, Smith (1996)

K.Kobayashi, XMASS, Warsaw, Poland

Model independent analysis

Annual modulation signal is searched for without any model assumption. Phase and term are fixed at t_0 =152.5days and T=365.25days, respectively. following equation.

$$\mathbf{R}^{\mathrm{pred}}(E_i, t_j) = C_i + A_i \cos 2\pi (t_j - t_0)/T$$

A_i (modulated amplitude) and C_i (unmodulated amplitude) are fitted in the

- 1.1keV_{ee} (5keV_r) analysis threshold
- The difference of two methods are small.
- Small negative amplitude is observed in 0.5-3keV_{ee} region. But both results are consistent, but not statistically significant.
- (1.7 3.7) x 10-3 counts/day/kg/keVee in

2-6 keVee (0.5 keVee bin width, 90% C.L. Bayesian) which is close to XENON100 sensitivity (cf. 0.02 counts/day/kg/keVee by DAMA/LIBRA)

Future plan of XMASS experiment

K.Kobayashi, XMASS, Warsaw, Poland

XMASS 1.5

- Larger detectors have many advantages. 1~3ton FV (5ton total).
 - > 10⁻⁵count/day/kg/keV
 - Sensitive both nuclear recoil and beta/gamma
- Detector design is ongoing
 - > PMT
 - ➢ We can use U-free Al in hand.
 - Lower RI (~1/10 of current PMT)
 - New round Photo cathode helps to identify surface events.
 - Lower Surface/bulk background.
 - Purer copper for PMT mounter

summary

- XMASS is sensitive to both nuclear recoil and beta/gamma and suitable to search for various kinds of dark matter candidates (WIMP, bosonic super-WIMP, axion etc).
- Annual modulation analysis has been performed using large exposure, 0.82ton·year data. No significant modulated WIMP signal has been observed. The result excluded most of all DAMA/LIBRA allowed region.
- We continue to take 3rd year of data to obtain more sensitive result with smaller systematic uncertainties.
- Preparation of XMASS 1.5 project is ongoing.

backup

XMASS collaboration

ICRR, University of Tokyo	K. Abe, K. Hiraide, K. Ichimura, Y. Kishimoto, K. Kobayashi, M. Kobayashi, S. Moriyama, M. Nakahata, T. Norita, H. Ogawa, K. Sato, H. Sekiya, O. Takachio, S. Tasaka, A. Takeda, M. Yamashita, B. Yang
Kavli IPMU, University of Tokyo	K. Martens, Y. Suzuki, B. Xu
Kobe University	R. Fujita, K. Hosokawa, K. Miuchi, N. Oka, Y. Takeuchi
Tokai University	M. Miyasaka, K. Nishijima
Tokushima University	K. Fushimi, G. Kanzaki
Yokohama National University	S. Nakamura
Miyagi University of Education	Y. Fukuda
STEL, Nagoya University	Y. Itow, K. Kanzawa, R. Kegasa, K. Masuda, H. Takiya
IBS	N.Y. Kim, Y. D. Kim
KRISS	Y. H. Kim, M. K. Lee, K. B. Lee, J. S. Lee

10 institutes, 42 collaborators

20GeV/c² WIMP MC energy spectra and efficiencies

Energy spectra (data)

K.Kobayashi, XMASS, Warsaw, Poland

Energy scaling

Pull term

Model Independent

$$\chi^2 = \sum_{i}^{E_{bins}} \sum_{j}^{t_{bins}} rac{(\mathrm{R_{j}^{data}} - \mathrm{R_{i,j}^{expected}} - lpha \mathrm{K_{i,j}})^2}{\sigma(\mathrm{stat})_{\mathrm{j}}^2} + lpha^2$$

Model dependent (WIMP)

$$\chi^2 = \sum_{i}^{E_{bins}} \sum_{j}^{t_{bins}} rac{(\mathrm{R_{j}^{data}} - \mathrm{R_{i,j}^{WIMP\ expected}} - lpha \mathrm{K_{i,j}})^2}{\sigma(\mathrm{stat})_{\mathrm{j}}^2} + lpha^2$$

 $\begin{array}{l} \mathrm{R}_{i,j}^{aata} \text{:observed rate} \\ \mathrm{R}^{expected}(E_i,t_j) = \mathrm{A}(\mathrm{E}_i)\mathrm{cos}\omega(\mathrm{t}_{\mathrm{j}}-\mathrm{t}_0) + \mathrm{C}_{t_j} \\ \mathrm{R}^{\mathrm{WIMP\ expected}}(E_i,t_j,m_\chi) = \mathrm{A}(\mathrm{E}_i,m_\chi)\mathrm{cos}\omega(\mathrm{t}_{\mathrm{j}}-\mathrm{t}_0) + \mathrm{C}_{t_j} \\ \omega = 2\pi/T \\ \mathrm{A:\ amplitude} \\ \mathrm{C:\ constant} \\ \mathrm{T:}(=365.24) \text{ period\ in\ days} \\ \mathrm{t}_0{:}(=152.5) \text{ phase\ in\ days} \end{array}$

Covariance Matrix

$$\chi^{2} = \sum_{k=1}^{N} \sum_{l=1}^{N} \left(R_{k}^{data} - R_{k}^{exp} \right) \left(V_{stat} + V_{sys} \right)_{k,l}^{-1} \left(R_{l}^{data} - R_{l}^{exp} \right)$$
$$V_{stat} = \begin{pmatrix} (\sigma_{1}^{stat})^{2} & \cdots & 0\\ \vdots & \ddots & \vdots\\ 0 & \cdots & (\sigma_{N}^{stat})^{2} \end{pmatrix} \qquad : N \times N \text{ matrix}$$
$$(V_{sys})_{k,l} = \frac{1}{M} \sum_{m=1}^{M} (\delta R)_{k} (\delta R)_{l} \qquad : N \times N \text{ matrix}$$

$$R^{exp}(E_i, t_j) = C_i + A_i \times \cos\frac{2\pi}{T}(t_j - t_0)$$

Two methods difference

Systematic error summary

DAQ	PMT gain	<0.3*statistical error
	FADC reset	0.3%
	Timing	<0.2*statistical error
	Livetime	<0.02%
	threshold	0<0.022%
parameters	Escape velocity	Cross section: +10% at 8Gev/c ² , +5% at 20GeV/c ² (544/650km/sec)
	Time variation	<0.15%
	Leff	30% at 10GeV/c ²
background	Muon	<<1%
	Radon in water	<10 ⁻⁵ dru at maximum
	Radon in LXe	<1%
analysis	Energy range	<7% (difference between 0.5-5keV $_{\rm 57Co}$ and 0.5-15keV $_{\rm 57Co}$ at <20GeV/c ²)

Leff uncertainty

Best fitted point in the standard WIMP search

- In the standard WIMP search, we obtained the best fit for the WIMP-nucleon cross section, 2.1*10⁻⁴²cm² at 100GeV/c² with 2.6 sigma level. However, unmodulated part of the expected signal for the best fit exceed the number of the observed events.
- For the upper limit in the 60-400GeV/c² WIMP mass range, the situation is same as above.

(summer - winter), energy spectrum same cuts are applied for those WIMP MC.

maxPE/totalPE (WIMP MC)

Detector refurbishment (RFB)

- We found RIs (210Pb, 238U) in the Aluminum sealing part of PMT (secular equiv. broken).
- Background events at the blind corner of PMT are often misidentified as events in the fiducial volume.
- To reduce this background, new structures to cover this Al seal were installed in 2012/2013.

--- result from commissioning run ---1. Search for light WIMPs

Phys. Lett. B 719 78 (2013)

--- result from commissioning run ---2. Search for solar axions

- Axions can be produced in the sun by bremsstrahlung and Compton effect, and detected by axio-electric effect in XMASS.
- Used the same data set as the light WIMPs search.

--- result from commissioning run -- 3. Search for ¹²⁹Xe inelastic scattering by WIMPs

K.Kobayashi, XMASS, Warsaw, Poland

--- result from commissioning run ---4. Search for bosonic super-WIMPs

- Candidate for lighter dark matter
- Can be detected by absorption of the particle, which is similar to the photoelectric effect.
- Search for mono-energetic peak at the mass of the particle

PRL 113, 121301 (2014)

vector super-WIMPs

• Cross section (σ_{abs}) is:

$$\frac{\sigma_{\rm abs} v}{\sigma_{\rm photo}(\omega = m_V)c} \approx \frac{\alpha'}{\alpha}$$

 $(\alpha':$ the vector boson analogue to the fine structure constant. v: velocity of the vector boson)

- Can be detected by absorption of the particle, which is similar to the photoelectric effect.
- The counting rate (S_v) in the detector is:

$$S_v \approx \frac{4 \times 10^{23}}{A} \frac{\alpha'}{\alpha} \left(\frac{\text{keV}}{m_V}\right) \left(\frac{\sigma_{\text{photo}}}{\text{barn}}\right) \text{ kg}^{-1} \text{ day}^{-1}$$

(A: atomic mass, standard local matter density: 0.3GeV/cm³)

• This is the first direct search in the 40-120keV energy range.

Pospelov et, al. Phys. Rev. D 78 115012 (2008)

pseudoscalar super-WIMPs

• Cross section (σ_{abs}) is:

$$\frac{\sigma_{\rm abs} v}{\sigma_{\rm photo}(\omega = m_a)c} \approx \frac{3m_a^2}{4\pi\alpha f_a^2}$$

(v: velocity of the vector boson, m_a : pseudoscalar mass, f_a : dimensionful coupling constant.)

• The counting rate in the detector is:

Pospelov et, al. Phys. Rev. D 78 115012 (2008)

$$S_a \approx \frac{1.2 \times 10^{19}}{A} g_{aee}^2 \left(\frac{m_a}{\text{keV}}\right) \left(\frac{\sigma_{\text{photo}}}{\text{barn}}\right) \text{ kg}^{-1} \text{ day}^{-1}$$

(g_{aee}=2m_e/f_a, m_e: electron mass)

event summary (Bosonic super-WIMP search)

mass (keV)	efficiency (%)	# of observed events	# of expected BKG events from ²¹⁴ Pb
40	51±13	48	7.9±0.7
60	63±16	12	11.6 ± 1.0
80	59±18	8	9.6±0.8
100	65±20	15	11.4 ± 1.0
120	74±23	18	14.4 ± 1.1

Remaining events can be explained by background events produce by radon in liquid xenon. By ²¹⁴ Bi-²¹⁴ Po coincident analysis, radon concentration is estimated to be 8.2 ± 0.5 mBq/detector. Based on this estimate, most right column shows the # of expected background events from ²¹⁴Pb.