Higgs Troika for Baryon Asymmetry

Hooman Davoudias

HET Group, Brookhaven National Laboratory

Based on: H.D., I Lewis, and M. Sullivan, arXiv:1909.02044 [hep-ph]

Scalars 2019, University of Warsaw, September 11-14, 2019

Introduction

- Outstanding fundamental problems:
- (1) Neutrino masses $(m_{\nu} \neq 0)$
- (2) Dark matter (DM)
- (3) Baryon asymmetry of the Universe (BAU)
- Strong evidence for physics beyond SM

- DM may be from a secluded "dark sector"
- BAU could plausibly be connected to "visible sector"
- Perhaps significantly coupled to SM
- BAU and m_{ν} could be connected through *leptogenesis*
- Decays of heavy ν_R ($m_R \gg \text{TeV}$) yield $\Delta(B-L) \neq 0 \rightarrow \Delta B$ (EW sphalerons)
- Unlike "EW baryogenesis" largely inaccessible to direct tests

(PDG, 2019)

This talk:

- Extend SM Higgs sector by 2 new doublets → Higgs Troika
- Three ν_R states (associated with m_{ν}), $\sim 0.1 10$ TeV
- Consider generating $\Delta(B-L)$ from new heavy Higgs doublets

 $H_a
ightarrow ar{L}
u_R$; a=1,2,3

- Higgs decays out-of-equilibrium, but above $T\gtrsim 100~{
 m GeV}$
- Need sphalerons to be active and generate $\Delta B \neq 0$
- No first order phase transition required
- H_1 is identified as the observed ("SM") Higgs with $m_1 \approx 125$ GeV
- New Higgs masses \sim TeV or higher, potentially testable (LHC, precision, ...)

See also: Dick, Lindner, Ratz, Wright, 1999; Murayama, Pierce, 2002; Gu, He, 2006; H.D., Lewis, 2011

Why a Higgs Troika?

• $\Delta(B-L) \neq 0$ via tree and 1-loop interference, requires at least H_2

- Assuming f' sets the width, has dominant Yukawa
- $n_B/s pprox 9 imes 10^{-11}$ requires $arepsilon \gtrsim 10^{-9}$, assuming $\mathcal{O}(1)$ phase
- Avoiding washout 2 ightarrow 2 processes via H_1 down to $T_* \sim 100$ GeV

 $\Gamma_* \sim (\lambda_1^{\nu} \lambda_1^f)^2 T_* \lesssim H(T_*)$, where $H(T) \approx g_*^{1/2} T^2 / M_P \quad g_* \sim 100$, $M_P \approx 1.2 \times 10^{19} \text{ GeV}$ $\lambda_1^{\nu} \lambda_1^f \lesssim 10^{-8} \Rightarrow \varepsilon < 4 \times 10^{-10}$

- Light Higgs couplings too constrained for baryogenesis
- \therefore Typically need H_3 together with H_2 to generate $\Delta(B-L)$

Reheat Temperature and Washout

• Reheat $T_{rh} \gtrsim 100$ GeV, say through a modulus Φ decay

• Φ decay non-thermally produces H_3 and H_3^* population

• T_{rh} not too high to avoid washout via H_a , a = 2, 3

$$(\lambda_{a}^{f}\lambda_{a}^{
u})^{2} \lesssim rac{g_{*}^{1/2}m_{a}^{4}}{M_{P}T_{rh}^{3}}$$

- For $m_a\sim 1$ TeV, $T_{rh}\sim 100$ GeV, we get $\lambda_a^f\lambda_a^{
 u}\lesssim 10^{-6}$
- Less stringent constraint can allow large enough ε

General Model

$$\lambda_a^u \tilde{H}_a^* \bar{Q} \, u + \lambda_a^d H_a^* \bar{Q} \, d + \lambda_a^\nu \tilde{H}_a^* \bar{L} \, \nu_R + \lambda_a^\ell H_a^* \bar{L} \, \ell$$

 $\ell = e, \mu, \tau$

Asymmetry:
$$\varepsilon \equiv \frac{\Gamma(H_a \to \bar{L}\nu_R) - \Gamma(H_a^* \to \bar{\nu}_R L)}{2\Gamma(H_a)}$$

• Consider the $m_2 \approx m_3$ limit, dominated by self-energy 1-loop process

- Sufficient to show order of magnitude
- Also, both H_2 and H_3 potentially accessible: a more "testable" case

$$\varepsilon = \frac{1}{8\pi} \sum_{b \neq a} \frac{m_a^2}{m_b^2 - m_a^2} \frac{\sum_{f=e,u,d} N_{c,f} \operatorname{Im} \left(\operatorname{Tr}_{ba}^{\nu} \operatorname{Tr}_{ba}^{f*} \right)}{\sum_{f=e,u,d,\nu} N_{c,f} \operatorname{Tr}_{aa}^{f}}$$

$$\begin{aligned} \mathsf{Tr}_{ba}^{f} &= \mathsf{Tr}\left[\lambda_{b}^{f\dagger}\lambda_{a}^{f}\right], \\ \mathsf{Tr}_{ba}^{\nu} &= \mathsf{Tr}\left[\lambda_{b}^{\nu\dagger}\lambda_{a}^{\nu}(1-m_{R}^{2}/m_{a}^{2})^{2}\right] \end{aligned}$$

Diagonal m_R mass matrix assumed; $m_f = 0$ before EWSB

H_a \overline{L}		$H_a \longrightarrow H_b / T$	
	+		R

- For $m_{2,3} \gg T_{rh}$ and decoupled ν_R , basically have SM plasma: $\Delta B = \frac{28}{79} \Delta (B L)$ Harvey, Turner, 1990
- Energy density in H_3 doublet less than radiation: $r \equiv m_3 n_3 / \rho_R \Rightarrow r < 1$

•
$$\rho_R = (\pi^2/30)g_*T^4$$
 and $s = (2\pi^2/45)g_*T^3$
 $\Rightarrow \frac{n_B}{s} = \frac{21}{79}\left(\frac{rT_{rh}\varepsilon}{m_3}\right)$

- For $T_{rh}/m_3 \lesssim 0.1$ and $r \le 1$, require $\varepsilon \gtrsim 10^{-9}$ with $\mathcal{O}(1)$ phases
- Many variations possible to achieve the requisite value of ε
- A viable "benchmark" model will be examined for illustrative purposes

A Benchmark Model of Flavor

- Three scalar (Higgs) doublets: Φ_a (a = 1, 2, 3)
- $\Phi_{2,3}$ and SM lepton doublets L odd under a \mathbb{Z}_2

$$y_1^u \tilde{\Phi}_1^* \bar{Q}u + y_1^d \Phi_1^* \bar{Q}d + \sum_{b=2,3} y_b^\nu \tilde{\Phi}_b^* \bar{L}\nu_R + y_b^\ell \Phi_b^* \bar{L}\ell$$

u and d: up- and down-type quarks; $\ell=e,\mu,\tau$

- Adopted flavor principle: heaviest quark and lepton from $\mathcal{O}(1)$ Yukawa
- To get the top mass, need $v_1 \approx v_{EW} =$ 246 GeV
- For $\lambda_a^ au \sim$ 1 we need $v_2 \sim$ 2.5 GeV
- Neutrinos unlike charged fermions: unrestricted Yukawas for ν s
- We could, in principle, assume $v_3 \rightarrow 0$, but not necessary

• Hierarchy among vevs v_a from softly broken \mathbb{Z}_2

 $-\mu^{2}\Phi_{1}^{\dagger}\Phi_{1} + m_{2}^{2}\Phi_{2}^{\dagger}\Phi_{2} + m_{3}^{2}\Phi_{3}^{\dagger}\Phi_{3} - \left(\mu_{12}^{2}\Phi_{1}^{\dagger}\Phi_{2} + \mu_{13}^{2}\Phi_{1}^{\dagger}\Phi_{3} + \text{h.c}\right) + \lambda(\Phi_{1}^{\dagger}\Phi_{1})^{2} + \cdots$

•
$$v_2 \approx v_1 \frac{\mu_{12}^2}{m_2^2} \ll v_1$$
 and $v_3 \approx v_1 \frac{\mu_{13}^2}{m_3^2} \ll v_1$

- Baryogenesis: $m_2, m_3 \sim 1$ TeV $\Rightarrow v_2 \sim 2.5$ GeV from $\mu_{12} \sim 100$ GeV
- To $\mathcal{O}(\mu^2/m^2)$: $\begin{pmatrix} H_1 \\ H_2 \\ H_3 \end{pmatrix} \approx \begin{pmatrix} 1 & \mu_{12}^2/m_2^2 & \mu_{13}^2/m_3^2 \\ -\mu_{13}^2/m_3^2 & 1 & 0 \\ -\mu_{13}^3/m_3^2 & 0 & 1 \end{pmatrix} \begin{pmatrix} \Phi_1 \\ \Phi_2 \\ \Phi_3 \end{pmatrix}$
- Higgs basis: $\langle H_1\rangle=v_{EW}/\sqrt{2}$ and $\langle H_{2,3}\rangle=$ 0, $v_{EW}^2=v_1^2+v_2^2+v_3^2\approx v_1^2$

$$egin{aligned} \lambda_1^{u,d} pprox y_1^{u,d} & \lambda_{2,3}^{u,d} pprox y_1^{u,d} v_{2,3} / v_{EW} \ \lambda_1^\ell pprox y_2^\ell v_2 / v_{EW} & \lambda_{2,3}^\ell pprox y_{2,3}^\ell \ \lambda_1^
u &pprox (y_2^
u v_2 + y_3^
u v_3) / v_{EW} & \lambda_{2,3}^
u &pprox y_{2,3}^
end{aligned} \end{aligned}$$

Assuming $v_2 \gg v_3$

Benchmark Asymmetry

- Avoid washout via $H_{2,3}$ into $L \nu_{R3}$ final state: $|\lambda_{2,3}^{\ell} \lambda_{2,3}^{\nu}| \lesssim 10^{-6}$
- Assumed $m_{R3} \sim$ 100 GeV, comparable to T_{rh}
- For $\lambda_2^{\tau} \sim 1$ requires $\lambda_2^{\nu_{R3}} \lesssim 10^{-6}$ and hence $\lambda_1^{\nu_{R3}} \lesssim 10^{-8} \Rightarrow \exists m_{\nu} \ll 0.1$ eV; allowed
- $\Gamma(\nu_{R3} \to L H_1) \sim (32\pi)^{-1} |\lambda_1^{\nu_{R3}}|^2 m_{R3} \lesssim 10^{-16} \text{ GeV} \Rightarrow \nu_{R3} \text{ decays after EWSB}$
- $m_{R1,2} \sim 10^2 T_{rh} \sim 10$ TeV: $\nu_{R1,2}$ final states severely Boltzmann suppressed
- We get

$$\varepsilon \sim \frac{1}{8\pi} \left| \frac{\lambda_3^{\nu} \lambda_a^{\ell} \lambda_a^{\nu}}{\lambda_3^{\ell}} \sin \phi \right| \lesssim 4 \times 10^{-8} \left| \sin \phi \right|$$

- Assumption $\lambda_3^{
 u} \sim \lambda_3^{\ell}$
- For a generic relative phase $\phi\gtrsim 0.1$ one could obtain $\varepsilon\sim 10^{-9}.$

... TeV scale Higgs Troika Baryogesnesis can be a successful mechanism

Low Energy Constraints

- Assume $m_{2,3} \sim \text{TeV}$
- Neutron EDM
- For $v_3 \rightarrow 0$ H_3 decoupled from quarks
- H_2 coupling to light quarks suppressed by v_2/v_{EW} ; 2-loop Barr-Zee dominant
- H_2 coupling to $\gamma\gamma$ dominated by τ (similar sized contribution from top):

- Current 90% C.L. bound on neutron EDM $d_n < 3.0 \times 10^{-26}~e$ cm
- For electron EDM, we need constraints on LFV couplings of H_a

• LFV decays: $\Gamma(\ell \to \Im f) \approx \frac{\lambda_a^{f\,2} \lambda_a^{f\ell\,2}}{1536 \pi^3} \frac{m_\ell^5}{m_a^4},$

 $\ell=\mu,\tau$ and f is a light charged lepton

• For
$$\lambda_a^e \sim 3 \times 10^{-4}$$
, $\lambda_a^\mu \sim 6 \times 10^{-2}$
 $\Gamma(\mu \rightarrow 3e) \sim 10^{-28} |\lambda_a^{e\mu}|^2 m_\mu$
 $\Gamma(\tau \rightarrow 3\mu) \sim 10^{-18} |\lambda_a^{\mu\tau}|^2 m_\tau$

Current 90% C.L. bounds: (PDG)

 $\mathsf{BR}(\mu \rightarrow 3\,e) < 1.0 \times 10^{-12}$, $\mathsf{BR}(\tau \rightarrow 3\,\mu) < 2.1 \times 10^{-8}$, and $\mathsf{BR}(\tau \rightarrow e\mu\mu) < 2.7 \times 10^{-8}$

 $\Rightarrow |\lambda_a^{e\mu}| \lesssim 0.2, \ |\lambda_a^{\mu\tau}| \lesssim 0.2, \ \text{and} \ |\lambda_a^{e\tau}| \lesssim 0.2$

• Electron EDM, dominantly from 1-loop LFV couplings of H_a

$$d_e \sim \frac{e \,\lambda_a^{e\ell\,2} \,m_\ell \,\sin\omega}{16\pi^2 \,m_a^2} \sim \begin{cases} 10^{-23} \,|\lambda_a^{e\mu}|^2 \sin\omega \,e \,\,\mathrm{cm} & \text{for} \,\ell = \mu\\ 10^{-22} \,|\lambda_a^{e\tau}|^2 \sin\omega \,e \,\,\mathrm{cm} & \text{for} \,\ell = \tau \end{cases}$$

• At 90% C.L.: $d_e < 1.1 \times 10^{-28} e$ cm Andreev, et al. ACME Collaboration, 2018

$$\Rightarrow \begin{array}{l} |\lambda_a^{e\mu}| \sqrt{\sin \omega} \lesssim 3 \times 10^{-3} \\ |\lambda_a^{e\tau}| \sqrt{\sin \omega} \lesssim 1 \times 10^{-3} \end{array}$$

• $\mu \rightarrow e\gamma$ via the effective operator:

$$O \sim \frac{e m_{\ell} \lambda_a^{\mu\ell} \lambda_a^{e\ell}}{16\pi^2 m_a^2} \bar{\mu} \sigma_{\mu\nu} e F^{\mu\nu}$$
$$\Rightarrow \mathsf{Br}(\mu \to e\gamma) \sim 3 \times 10^{-4} |\lambda_a^{e\ell} \lambda_a^{\mu\ell}|^2 \left(\frac{m_{\ell}}{\mathsf{GeV}}\right)^2$$

• At 90% C.L. $Br(\mu \rightarrow e\gamma) < 4.2 \times 10^{-13}$ Baldini et al., MEG Collaboration, 2016

 $egin{aligned} |\lambda_a^{e\mu}| \lesssim 8 imes 10^{-3} \ |\lambda_a^{e au}\lambda_a^{\mu au}| \lesssim 2 imes 10^{-5} \end{aligned}$

• Yukawa flavor structure $\lambda^{ij} \sim \min(m_i, m_j) / v_{EW}$ agrees well with data Babu, Jana, 2018

- We modify the ansatz to $\lambda_2^{ij} \sim \min(m_i, m_j)/m_{ au}$
- Various derived constraints seem consistent with this ansatz, for sin $\omega \sim 0.1$
- Benchmark model does not seem to account for the muon g-2 anomaly

Collider Signals

MadGraph5_aMC@NLO; FeynRules

• Drell-Yan and VBF production mechanisms included for all processes, assuming degenerate masses

• These production modes governed almost entirely by gauge couplings, minimal dependence on the model parameters; $h_i h_i$ and $a_i a_i$ modes depend on trilinear scalar couplings, not discussed

•
$$\sqrt{S} = 100 \text{ TeV}$$
 (30 ab⁻¹), $\sqrt{S} = 27 \text{ TeV}$ (15 ab⁻¹), $\sqrt{S} = 15 \text{ TeV}$ (3 ab⁻¹), and $\sqrt{S} = 13 \text{ TeV}$ (3 ab⁻¹) \Rightarrow For $m_i \sim 1 - 2 \text{ TeV}$, (2800-50000, 30-2300, 1-80, 0-40) events, respectively.

Decays in Benchmark Scenario

• H_a BR into quarks, gauge bosons, di-Higgs suppressed by small mixing

• H_2 scalars decay dominantly to τ modes; H_3 couplings not necessarily hierarchic; decay branching ratios into $\nu_{R3}\nu, \ell\ell, \nu_{R3}\ell$ could be similar

• Decays of ν_R 3 could be displaced on $\mathcal{O}(m)$ scale:

- For $\mathcal{O}(1)$ quartic couplings, expect $\xi \sim v_1 v_2/m_2^2 \sim 0.1\%$ for $h_1 h_2$ mixing
- Key decay rates ($b\overline{b}$, WW, ZZ, $\gamma\gamma$) of h_1 not significantly modified for $\xi\ll 1$
- Muon Yukawa for h_1 is $m_\mu/v_{EW}\sim 4 imes 10^{-4}$, while for h_2 is $m_\mu/\sqrt{2}m_ au\sim 0.04$
- For $\xi\sim 0.1\%$, the shift in h_1 ("SM Higgs") coupling to muons $\sim 10\%$
- BR $(h_1 \rightarrow \mu^+ \mu^-)$ shifted by ~ 20% (compared to SM); similarly for $h_1 \rightarrow \tau^+ \tau^-$
- Observable at HE-LHC with 3 ab^{-1} or the HE-LHC with 15 ab^{-1} of data

M. Cepeda et al., HL/HE WG2 group Collaboration, 2019

Concluding Remarks

• The Higgs Troika model can provide a viable mechanism for Baryogenesis

• The main new ingredients are two additional Higgs doublets and right-handed neutrinos (associated with neutrino masses)

• The new states could be around the TeV scale: collider signals and precision effects could be within reach

• Heavy scalar pair signatures can include many leptons, missing energy, and possibly displaced vertices (ν_R decays)

• Can expect ~ 20% shift in "SM Higgs" branching fractions into $\mu^+\mu^-$ and $\tau^+\tau^-$; potentially measurable at HL-LHC, HE-LHC.

• The model could be testable (like "electroweak baryogenesis")

