Radiatively Induced Fermi Scale in Grand Unified Theories

Tommi Alanne

CP³Origins

Scalars 2015 December 6, 2015

In collaboration with A. Meroni, F. Sannino, and K. Tuominen arXiv:1511.01910

Phys.Rev. D91 (2015) 9, 095021 (TA, H. Gertov, F. Sannino, K. Tuominen) Phys.Rev. D92 (2015) 9, 095003 (H. Gertov, A. Meroni, E. Molinaro, F. Sannino)

・ロト ・日子・ ・ヨト

Outline

- I Introduction
- II Elementary Goldstone Higgs
- III Pati-Salam Unification
- IV Conclusion and Outlook

э

Introduction

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

I

Grand Unification

Why is the SM gauge group SU(3)_c × SU(2)_L × U(1)_Y?
 ⇒ Could it originate from a higher-rank symmetry?

э

Grand Unification

Why is the SM gauge group SU(3)_c × SU(2)_L × U(1)_Y?
 ⇒ Could it originate from a higher-rank symmetry?

Two time-honoured schemes

Georgi–Glashow	Pati–Salam
• Unification of colour and electroweak interactions to e.g. SU(5) or SO(10) • Gauge-mediated proton decay • $\Lambda_{GUT}\gtrsim 10^{15}$ GeV	 Unification of colour and lepton number to SU(4)_{LC} No proton decay via gauge interactions Leptoquarks mediate rare kaon decay K_L → μ[±]e[∓] Λ_{GUT} ≥ 1.9 × 10⁶ GeV

Hierarchy between the GUT and the Fermi scale

• Two vastly separated energy scales: Λ_{GUT} and $v_w = 246$ GeV

э

Hierarchy between the GUT and the Fermi scale

- Two vastly separated energy scales: Λ_{GUT} and $v_w = 246$ GeV
- The symmetry breaking steps are modelled via scalar sectors

•
$$\langle P \rangle \sim \Lambda_{\text{GUT}}$$
 and $\langle H \rangle = v_w$

• The SM scalar potential: $V_{SM} = m_H^2 H^{\dagger} H + \lambda_H (H^{\dagger} H)^2$

• Higgs mass 125 GeV
$$\Rightarrow \lambda_H = 0.13$$

$$m_H^2 = -\lambda_H v_w^2$$

Hierarchy between the GUT and the Fermi scale

- Two vastly separated energy scales: Λ_{GUT} and $v_w = 246$ GeV
- The symmetry breaking steps are modelled via scalar sectors
 - $\langle P \rangle \sim \Lambda_{\text{GUT}}$ and $\langle H \rangle = v_w$
- The SM scalar potential: $V_{\rm SM} = m_H^2 H^{\dagger} H + \lambda_H (H^{\dagger} H)^2$

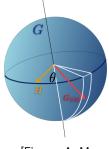
• Higgs mass 125 GeV
$$\Rightarrow \lambda_H = 0.13$$

•
$$m_H^2 = -\lambda_H v_w^2$$

- But: SM feels the GUT scalars via portal interaction $\lambda_{mix}H^{\dagger}H$ Tr[$P^{\dagger}P$]
 - $\langle P \rangle$ induces a mass term ~ $\lambda_{\rm mix} \Lambda_{\rm GUT}^2$ for H
 - λ_{mix} has to be highly suppressed $(\lambda_{\text{mix}} \lesssim v_w^2 / \Lambda_{\text{GUT}}^2)$ \Rightarrow Huge hierarchy between λ_{mix} and λ_H

Emergent Fermi scale due to vacuum misalignment

• The large separation more natural if the Fermi scale emerges radiatively


э

Emergent Fermi scale due to vacuum misalignment

- The large separation more natural if the Fermi scale emerges radiatively
- Enlarge the symmetry of the SM scalar sector to G
 - SSB $G \rightarrow H$ via a scalar vev $\langle \sigma \rangle$
 - ▶ This should also break $SU(2)_L \times U(1)_Y \rightarrow U_Q$

Emergent Fermi scale due to vacuum misalignment

- The large separation more natural if the Fermi scale emerges radiatively
- Enlarge the symmetry of the SM scalar sector to G
 - ► SSB $G \rightarrow H$ via a scalar vev $\langle \sigma \rangle$
 - This should also break $SU(2)_L \times U(1)_Y \rightarrow U_Q$
- Embed EW gauge group into G
 - ► If *G* large enough, possibility of different embeddings
 - Amount of EW breaking as $G \rightarrow H$ depends on the alignment of H wrt EW group
 - If $\sin\theta$ gives the alignment, then $v_{w} = \sin\theta \langle \sigma \rangle$
 - If $\theta \ll 1$, then $\langle \sigma \rangle \gg v_{\rm W}$
 - Pushes origin of EWSB and new physics to higher scales!

[Figure: A. Meroni]

Outline: Towards a viable model

- The idea of radiative Fermi scale due to vacuum misalignment is very general
- In the following I will present a concrete (and simplest) model where this can be attained
- This postpones the hierarchy problem of the SM to a higher scale
 - Want to postpone it not just to a few TeV scale but up to the GUT scale
 ⇒ Introduce a concrete unification framework
 - The simplest option turns out to be of Pati–Salam type
- This results in a phenomenologically viable model with correct low-energy spectrum

||

Elementary Goldstone Higgs

$SU(4) \rightarrow Sp(4)$ breaking pattern

- The breaking SU(4) → Sp(4) can be achieved by a scalar M transforming in 6_A ∈ SU(4)
 - Leaves behind 5 GB's, Π_i
 - ► These decompose as (2,2) + (1,1) under $SU(2)_L \times SU(2)_R$ ⇒ Allows for SM-like Higgs bi-doublet of GB's
 - ▶ Additional EW-singlet GB \Rightarrow possible DM candidate

$SU(4) \rightarrow Sp(4)$ breaking pattern

- The breaking SU(4) → Sp(4) can be achieved by a scalar M transforming in 6_A ∈ SU(4)
 - Leaves behind 5 GB's, Π_i
 - ► These decompose as (2,2) + (1,1) under $SU(2)_L \times SU(2)_R$ ⇒ Allows for SM-like Higgs bi-doublet of GB's
 - ▶ Additional EW-singlet GB \Rightarrow possible DM candidate
- Freedom of different alignments between EW group and Sp(4)
 - ► GB-like vacuum *E*_{GB} leaves EW intact
 - Higgs-like vacuum E_H breaks $EW \rightarrow U(1)_Q$
 - In general, a superposition of these $E = \cos\theta E_{GB} + \sin\theta E_H$

- 3

$SU(4) \rightarrow Sp(4)$ breaking pattern

- The breaking SU(4) → Sp(4) can be achieved by a scalar M transforming in 6_A ∈ SU(4)
 - Leaves behind 5 GB's, Π_i
 - ► These decompose as (2,2) + (1,1) under $SU(2)_L \times SU(2)_R$ ⇒ Allows for SM-like Higgs bi-doublet of GB's
 - \blacktriangleright Additional EW-singlet GB \Rightarrow possible DM candidate
- Freedom of different alignments between EW group and Sp(4)
 - ► GB-like vacuum *E*_{GB} leaves EW intact
 - Higgs-like vacuum E_H breaks $EW \rightarrow U(1)_Q$
 - In general, a superposition of these $E = \cos\theta E_{GB} + \sin\theta E_H$
- Composite-Higgs scenario of $SU(4) \rightarrow Sp(4)$ breaking already studied (Cacciapaglia & Sannino 2014)
 - SU(2)_{TC} gauge group with 2 Dirac fermions

Electroweak gauge sector

- \bullet Embed the full chiral symmetry group of the SM $SU(2)_L \times SU(2)_R$ into SU(4)
 - Gauge the EW symmetry \Rightarrow This breaks the global symmetry explicitly
- As M acquires vev, the EW bosons get masses

$$m_W^2 = \frac{1}{4}g^2v^2\sin^2\theta$$
, and $m_Z^2 = \frac{1}{4}(g^2 + g'^2)v^2\sin^2\theta$

• The vacuum angle θ is a priori a free parameter

Standard Model fermions

• Assign the SM fermions into the fundamental representation of SU(4)

$$\mathbf{L}_{i} = (L, \widetilde{v}, \widetilde{\ell})_{i \mathsf{L}}^{T} \sim 4, \qquad \mathbf{Q}_{i} = (Q, \widetilde{q}^{\mathsf{u}}, \widetilde{q}^{\mathsf{d}})_{i \mathsf{L}}^{T} \sim 4,$$

where i = 1, 2, 3 and $\tilde{f}_{L} = (f_{R})^{c}$

- Need RH neutrinos to fill the lepton multiplets
- Add Yukawa terms

$$-\mathscr{L}_{Yuk} = \frac{Y_{ij}^{u}}{\sqrt{2}} (Q_{i}^{T} P_{\alpha} Q_{j})^{\dagger} \operatorname{Tr}[P_{\alpha} M] + \frac{Y_{ij}^{d}}{\sqrt{2}} (Q_{i}^{T} \overline{P}_{\alpha} Q_{j})^{\dagger} \operatorname{Tr}[\overline{P}_{\alpha} M] + \frac{Y_{ij}^{v}}{\sqrt{2}} (L_{i}^{T} P_{\alpha} L_{j})^{\dagger} \operatorname{Tr}[P_{\alpha} M] + \frac{Y_{ij}^{\ell}}{\sqrt{2}} (L_{i}^{T} \overline{P}_{\alpha} L_{j})^{\dagger} \operatorname{Tr}[\overline{P}_{\alpha} M] + \text{h.c.}$$

• The projectors P_{α} and \overline{P}_{α} pick the SU(2)_L doublets in M

• Fermions get masses as *M* acquires vev, $m_f = \frac{y_f}{\sqrt{2}} v \sin \theta$

One-loop potential

- The true vacuum is determined by quantum corrections
- Calculate the one-loop potential

•
$$V^{(1)}(\Phi) = \frac{1}{64\pi^2} \operatorname{Str}\left[M^4(\Phi)\left(\log\frac{M^2(\Phi)}{\mu_0^2} - C\right)\right]$$

- The electroweak and fermion (top) sectors break the global SU(4) symmetry at one-loop level
 - Picks a preferred value for the vacuum angle θ
 - Gives mass to the pseudo-Goldstone boson Π_4
 - Mixing between σ and Π_4

12 / 18

Pati-Salam Unification

Symmetry structure

- Global symmetry of the scalar sector ${\rm SU}(4)_{\chi}$
 - \Rightarrow The natural unification scenario is à la Pati–Salam
 - Unify colour with lepton number
 - \Rightarrow SU(4)_{LC} of leptocolour
 - \Rightarrow The full symmetry $G = SU(4)_{\chi} \times SU(4)_{LC}$
- The simplest realisation to illustrate the idea
 - *M* breaks $SU(4)_{\chi} \rightarrow Sp(4)_{\chi}$
 - Add another scalar multiplet, P, to break the leptocolour

14 / 18

The scalar potential

• The simplest scalar potential is $V = V_M + V_P + V_{MP}$, where

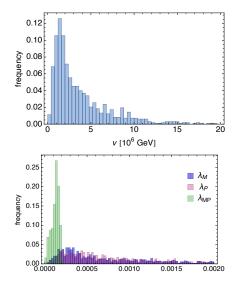
$$V_{M} = \frac{1}{2}m_{M}^{2} \operatorname{Tr}[M^{\dagger}M] + \frac{\lambda_{M}}{4} \operatorname{Tr}[M^{\dagger}M]^{2},$$
$$V_{P} = \frac{1}{2}m_{P}^{2} \operatorname{Tr}[P^{\dagger}P] + \frac{\lambda_{P}}{4} \operatorname{Tr}[P^{\dagger}P]^{2},$$
$$V_{MP} = \frac{\lambda_{MP}}{4} \operatorname{Tr}[M^{\dagger}M] \operatorname{Tr}[P^{\dagger}P]$$

э

Results

- Fix $\Lambda_{GUT} = \langle P \rangle = 2.5 \cdot 10^6$ GeV (above the experimental bound)
- Is it possible to find parameters that
 - give the correct EW spectrum $(v \sin \theta = v_w)$
 - Produce the correct Higgs mass?

э


16 / 18

Results

- Fix $\Lambda_{GUT} = \langle P \rangle = 2.5 \cdot 10^6$ GeV (above the experimental bound)
- Is it possible to find parameters that
 - give the correct EW spectrum $(v \sin \theta = v_w)$
 - Produce the correct Higgs mass?

Yes!

- Typically $v \sim \Lambda_{GUT}$
- All quartic coupings are small (≤0.01) but no large hierarchy between them
- The mass parameters of the same order

Conclusions and Outlook

- Vast hierarchy between the Fermi and the unification scale
- No hierarchy problem if the Fermi scale generated radiatively
 - Extended global symmetry & vacuum misalignment $\Rightarrow v_w = v \sin \theta$
 - If $\theta \ll 1$, possible that $v \sim \Lambda_{GUT}$
- Viable realisation within the Pati-Salam framework
 - Quartic scalar couplings small, but of the same order

Possible further avenues:

- Dark Matter
 - ▶ One more EW-singlet GB \Rightarrow a DM candidate
- Neutrinos
 - Natural inclusion of right-handed neutrinos because of SU(4) global symmetry (either type I or II see-saw easily realised)

Thank you!

イロト イヨト イヨト イヨト

æ