Multilepton signals of heavier electroweakinos

Manimala Chakraborti

BCTP, University of Bonn

JHEP 1711 (2017) 117 with Amitava Datta, Nabanita Ganguly and Sujoy Poddar.

02 - 12 - 2017

Experimental status :

• Higgs boson found, but no SUSY signal yet.

Experimental status :

• Higgs boson found, but no SUSY signal yet.

MSSM can be broadly divided into two sectors: strong and electroweak \rightarrow In pMSSM scenarios they are independent.

- Strong sector sparticles ⇒ produced with large cross-sections, thus receive stringent bounds.
- EW sparticles \Rightarrow modest production cross-section : direct mass bounds rather weak.
- SUSY searches at the LHC impose additional simplifying assumptions \Rightarrow simplified models.

Experimental status :

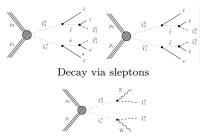
• Higgs boson found, but no SUSY signal yet.

MSSM can be broadly divided into two sectors: strong and electroweak \rightarrow In pMSSM scenarios they are independent.

- Strong sector sparticles ⇒ produced with large cross-sections, thus receive stringent bounds.
- EW sparticles \Rightarrow modest production cross-section : direct mass bounds rather weak.
- SUSY searches at the LHC impose additional simplifying assumptions \Rightarrow simplified models.
- We try to constrain the EW sector reducing such assumptions, especially on heavier EWinos, as far as practicable.

EW gauginos

- Linear superposition of gauge eigenstates : \rightarrow neutralino: $(\tilde{B}, \tilde{W^3}, H^0_u, H^0_d)$ and chargino : $(\tilde{W^{\pm}}, H^{\pm}_{u/d})$.
- Their masses and mixing determined by U(1) and SU(2) gaugino masses M_1 and M_2 and Higgs mass parameter μ .
- The neutralino mass matrix:


$$M_N = \begin{pmatrix} M_1 & 0 & -M_Z c\beta sW & M_Z s\beta sW \\ 0 & M_2 & M_Z c\beta cW & -M_Z s\beta cW \\ -M_Z c\beta sW & M_Z c\beta cW & 0 & -\mu \\ M_Z s\beta sW & -M_Z s\beta cW & -\mu & 0 \end{pmatrix}$$

• Chargino mass matrix:

$$M_C = \begin{pmatrix} M_2 & \sqrt{2}M_W \cos\beta \\ \sqrt{2}M_W \sin\beta & \mu \end{pmatrix}$$

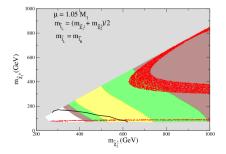
Searches at the LHC

- LHC searches restricted to simplified models \rightarrow all sparticles except those relevant to the signal are taken to be decoupled.
- $3l + \not\!\!E_T$ searches assume : $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^0 \Rightarrow$ mass-degenerate and purely wino, $\tilde{\chi}_1^0 \Rightarrow$ bino.

Decay via gauge bosons

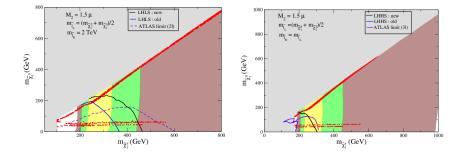
- Not only the strong sector sparticles, but the heavier EWinos are also taken to be decoupled.
- The signal from heavier EWinos are within the reach of the LHC. The bounds on the lighter ones are sensitive to their presence.
- We discard the assumption of strict decoupling \Rightarrow rich phenomenology in 4l , $SS3OS1l,\,5l$ channels.

We consider mainly three kinds of scenarios.


- Compressed Scenario : $M_1 \sim \mu < M_2$, M_2 varied as a free parameter. $m_{\tilde{l}_L} = m_{\tilde{l}_R} = (m_{\tilde{\chi}_1^{\pm}} + m_{\tilde{\chi}_2^{\pm}})/2$. Consequently, only heavier EWeakinos can decay directly into sleptons with significant BRs.
- HS scenario : $M_2 \sim 1.5\mu$. Sleptons midway between $\tilde{\chi}_2^{\pm}$ and $\tilde{\chi}_1^{\pm}$.
- LS scenario : $M_2 \sim 1.5\mu$. Sleptons midway between $\tilde{\chi}_1^0$ and $\tilde{\chi}_2^0$. Bounds on $m_{\tilde{\chi}_1^{\pm}}$ and $m_{\tilde{\chi}_1^0}$ gets stronger, multileptons signal produced.

Masses	I	Models		$(\sigma \times BR)_{3l}$	P1	P2	P3		
and	P1	P2	P3	LEWs	9.36	2.41	18.25		
Cross-sec (fb)	(Comp)	(HS)	(LS)	HEWs	64.2	4.85	6.23		
M_1	186	105	249	$(\sigma \times BR)_{4l}$	P1	P2	P3		
μ	191	270	300	LEWs	0.212	0.113	0.116		
M_2	350	405	450	HEWs	20.2	0.764	0.661		
$m_{\widetilde{\chi}^0_1}$	151	100	231	$(\sigma \times BR)_{5l}$	P1	P2	P3		
$m_{\widetilde{\chi}^0_2}$	198	262	304	LEWs		0.008	10		
	213	281	311	HEWs	- 4.81	0.008	0.137		
$m_{\widetilde{\chi}^0_3}$	389	447	491	HEWS	4.81	0.154	0.157		
$m_{\widetilde{\chi}^0_4}$		-	-						
$m_{\widetilde{\chi}_1^{\pm}}$	178	260	291	Table :					
$m_{\tilde{\chi}_2^{\pm}}$	389	447	491						
$\sigma(pp \to \overline{\text{LEWs}})$	621.9	299.5	165.8						
$\sigma(pp \to \text{HEWs})$	147.1	81.4	52.0						
σ_{tot}	768.9	380.9	217.8						

Table :


- We follow the analysis by ATLAS collaboration for Run-1 data in the 3*l* channel. Events are generated using Pythia.
- We simulate multilepton signals ($\geq 3l$) at 13 TeV LHC with int. luminosity of 100 fb⁻¹. Backgrounds are generated using ALPGEN.
- Reconstruction of jets \rightarrow anti-kt algorithm by FASTJET with R = 0.4. $P_T^j > 20$ GeV and $|\eta^j| < 2.5$.
- $P_T^{e/\mu} > 10 GeV$ and $|\eta^{e/\mu}| < 2.5$. In addition to that, each of them is required to pass isolation cuts as defined by the ATLAS/CMS collaboration.

$3l + E_T$ searches : Compressed Scenario

- $\begin{array}{l} \bullet \ \ M_1 \sim \mu, \ {\rm with} \ M_2 > \mu \Rightarrow {\rm Compressed \ spectrum}: \\ m_{\widetilde{\chi}_1^0} \simeq m_{\widetilde{\chi}_1^\pm} \simeq m_{\widetilde{\chi}_2^0} \simeq m_{\widetilde{\chi}_3^0}. \end{array}$
- $m_{\tilde{\chi}_2^{\pm}} \sim m_{\tilde{\chi}_4^0} \sim M_2.$
- Leptons from lighter EW inos soft \rightarrow hard to detect.
- Situation is improved for non-decoupled $\tilde{\chi}_2^{\pm}$ and $\tilde{\chi}_4^0$.
- Although χ₂[±] and χ₄⁰ have suppressed production cross-sections, they have moderately large lepton yield thanks to their cascade decays involving sleptons, lighter EWeakinos, W and Z bosons all of which can decay leptonically ⇒ sizable multilepton (41 and 51) signals from their cascade decays.

$3l + E_T$ searches : HS & LS models

Parameters/	Compressed	HS	LS
Masses	BP1	BP2	BP3
M_1	116	70	277
μ	121.8	349	328
M_2	666	523.5	492
$m_{\widetilde{\chi}_1^0}$	87	70	258
$m_{\tilde{\chi}_1^{\pm}}$	123	342	320
$m_{\tilde{\chi}_2^{\pm}}$	700	564	530

Table :

	BPs	σ_{prod}	σ^{3l}_{eff} in fb					$S/\sqrt{(B)}$
Models		in fb	after	after	after	after	Total $3l$	
			A1	A2	A3	A4	events	
Comp	BP1	2817.	5.52	5.27	0.34	0.33	33.8	6.4
HS	BP2	134.8	1.64	0.79	0.46	0.46	46.9	8.9
LS	BP3	151.8	111.2	102.2	1.04	0.98	98.5	18.6

Table : The production cross-sections of all EW eakino pairs and σ^{3l}_{eff} for the BPs.

- Backgrounds : $WZ, ZZ, t\bar{t}Z, VVV$.
- A1 : Events with exactly 3 isolated leptons passing the selection cuts required.
- A2 : The invariant mass of any SFOS lepton pair should not fall within the window 81.2 101.2 GeV.
- A3 : Events must have $\not\!\!\!E_T > 200$ GeV.
- A4 : A b-veto is applied to suppress the background coming from $t\bar{t}Z$.

	Benchmark	σ_{prod}	σ_{eff}^{4l} in fb				
Models	Points	in fb	after	after	after	after	Total $4l$
			B1	B2	B3	B4	events
Compressed	BP1	2817.	0.22	0.19	0.14	0.14	14.1
HS	BP2	134.8	0.13	0.12	0.04	0.03	3.64
LS	BP3	151.8	0.39	0.29	0.15	0.13	13.8

Table : The production cross-sections of all EWeakino pairs and σ_{eff}^{4l} for the BPs.

- Backgrounds : $ZZ, t\bar{t}Z, VVV$.
- B1 : Exactly 4 isolated leptons passing all the selection cuts (see Section IV B) are required.
- B2 : The invariant mass of any SFOS lepton pair should not fall within the window 81.2 101.2 GeV.
- B3 : Events must have $\not\!\!\!E_T > 80$ GeV.
- B4 : A b-veto is applied to suppress the background coming from $t\bar{t}Z$.

- Discarding the assumption of strict decoupling of heavier electroweakinos can have significant impact on the LHC analysis.
- In scenarios where lighter EWino spectrum is compressed, heavier particles can play major roles.

