Amplitudes meet BSM pheno

Alex Pomarol, IFAE & UAB (Barcelona)

of course, not the first encounter...

Extremely useful for simplifying calculations

Extremely useful for simplifying calculations

Example: graviton + graviton → graviton + graviton

Extremely useful for simplifying calculations

Example: graviton + graviton → graviton + graviton

Extremely useful for simplifying calculations

Example: graviton + graviton → graviton + graviton

 $i \operatorname{Sym} \left[-\frac{1}{2} P_3(p_1 \cdot p_2 \eta_{\mu\rho} \eta_{\nu\lambda} \eta_{\sigma\tau}) - \frac{1}{2} P_6(p_{1\nu} p_{1\lambda} \eta_{\mu\rho} \eta_{\sigma\tau}) + \frac{1}{2} P_3(p_1 \cdot p_2 \eta_{\mu\nu} \eta_{\rho\lambda} \eta_{\sigma\tau}) \right. \\ \left. + P_6(p_1 \cdot p_2 \eta_{\mu\rho} \eta_{\nu\sigma} \eta_{\lambda\tau}) + 2 P_3(p_{1\nu} p_{1\tau} \eta_{\mu\rho} \eta_{\lambda\sigma}) - P_3(p_{1\lambda} p_{2\mu} \eta_{\rho\nu} \eta_{\sigma\tau}) \right. \\ \left. + P_3(p_{1\sigma} p_{2\tau} \eta_{\mu\nu} \eta_{\rho\lambda}) + P_6(p_{1\sigma} p_{1\tau} \eta_{\mu\nu} \eta_{\rho\lambda}) + 2 P_6(p_{1\nu} p_{2\tau} \eta_{\lambda\mu} \eta_{\rho\sigma}) \right. \\ \left. + 2 P_3(p_{1\nu} p_{2\mu} \eta_{\lambda\sigma} \eta_{\tau\rho}) - 2 P_3(p_1 \cdot p_2 \eta_{\rho\nu} \eta_{\lambda\sigma} \eta_{\tau\mu}) \right],$

Extremely useful for simplifying calculations

Example: graviton + graviton → graviton + graviton

$$\begin{split} & \operatorname{Sym} \Big[-\frac{1}{8} P_6(p \cdot p' \eta^{\mu\nu} \eta^{\sigma\tau} \eta^{\rho\lambda} \eta^{\iota\kappa}) - \frac{1}{8} P_{12}(p^{\sigma} p^{\tau} \eta^{\mu\nu} \eta^{\rho\lambda} \eta^{\iota\kappa}) - \frac{1}{4} P_6(p^{\sigma} p'^{\mu} \eta^{\nu\tau} \eta^{\rho\lambda} \eta^{\iota\kappa}) + \frac{1}{8} P_6(p \cdot p' \eta^{\mu\sigma} \eta^{\nu\tau} \eta^{\rho\lambda} \eta^{\iota\kappa}) \\ & + \frac{1}{4} P_6(p \cdot p' \eta^{\mu\nu} \eta^{\sigma\tau} \eta^{\rho\iota} \eta^{\lambda\kappa}) + \frac{1}{4} P_{12}(p^{\sigma} p^{\tau} \eta^{\mu\nu} \eta^{\rho\iota} \eta^{\lambda\kappa}) + \frac{1}{2} P_6(p^{\sigma} p'^{\mu} \eta^{\nu\tau} \eta^{\rho\iota} \eta^{\lambda\kappa}) - \frac{1}{4} P_6(p \cdot p' \eta^{\mu\sigma} \eta^{\nu\tau} \eta^{\rho\iota} \eta^{\lambda\kappa}) \\ & + \frac{1}{4} P_{24}(p \cdot p' \eta^{\mu\nu} \eta^{\sigma\rho} \eta^{\tau\lambda} \eta^{\iota\kappa}) + \frac{1}{4} P_{24}(p^{\sigma} p^{\tau} \eta^{\mu\rho} \eta^{\nu\lambda} \eta^{\iota\kappa}) + \frac{1}{4} P_{12}(p^{\rho} p'^{\lambda} \eta^{\mu\sigma} \eta^{\nu\tau} \eta^{\iota\kappa}) + \frac{1}{2} P_{24}(p^{\sigma} p'^{\rho} \eta^{\tau\mu} \eta^{\nu\lambda} \eta^{\iota\kappa}) \\ & - \frac{1}{2} P_{12}(p \cdot p' \eta^{\nu\sigma} \eta^{\tau\rho} \eta^{\lambda\mu} \eta^{\iota\kappa}) - \frac{1}{2} P_{12}(p^{\sigma} p'^{\mu} \eta^{\tau\rho} \eta^{\lambda\nu} \eta^{\iota\kappa}) + \frac{1}{2} P_{12}(p^{\sigma} p^{\rho} \eta^{\tau\lambda} \eta^{\mu\nu} \eta^{\iota\kappa}) - \frac{1}{2} P_{24}(p \cdot p' \eta^{\mu\nu} \eta^{\tau\rho} \eta^{\lambda\iota} \eta^{\kappa\sigma}) \\ & - P_{12}(p^{\sigma} p^{\tau} \eta^{\nu\rho} \eta^{\lambda\iota} \eta^{\kappa\mu}) - P_{12}(p^{\rho} p'^{\lambda} \eta^{\nu\tau} \eta^{\kappa\sigma} \eta^{\tau\mu}) - P_{24}(p_{\sigma} p'^{\rho} \eta^{\tau\iota} \eta^{\kappa\mu} \eta^{\nu\lambda}) - P_{12}(p^{\rho} p' \eta^{\lambda\sigma} \eta^{\tau\mu} \eta^{\nu\kappa}) \\ & + P_6(p \cdot p' \eta^{\nu\rho} \eta^{\lambda\sigma} \eta^{\tau\iota} \eta^{\kappa\mu}) - P_{12}(p^{\sigma} p^{\rho} \eta^{\tau\mu} \eta^{\nu\iota} \eta^{\kappa\lambda}) - \frac{1}{2} P_{12}(p^{\sigma} p' \eta^{\mu\rho} \eta^{\lambda\iota} \eta^{\sigma\iota} \eta^{\tau\nu}) + 2 P_6(p \cdot p' \eta^{\nu\sigma} \eta^{\tau\rho} \eta^{\lambda\iota} \eta^{\kappa\mu}) \\ & - P_6(p^{\rho} p' (\eta^{\lambda\kappa} \eta^{\mu\sigma} \eta^{\nu\tau}) - P_{24}(p^{\sigma} p' \rho \eta^{\tau\mu} \eta^{\nu\iota} \eta^{\kappa\lambda}) - P_{12}(p^{\sigma} p' \eta^{\tau\rho} \eta^{\lambda\iota} \eta^{\kappa\nu}) + 2 P_6(p \cdot p' \eta^{\nu\sigma} \eta^{\tau\rho} \eta^{\lambda\iota} \eta^{\kappa\mu}) \Big] \end{aligned}$$

Extremely useful for simplifying calculations

Example: graviton + graviton → graviton + graviton

Extremely useful for simplifying calculations

Example: graviton + graviton → graviton + graviton

Extremely useful for simplifying calculations

Example: graviton + graviton → graviton + graviton

Trivial by on-shell amplitude methods...

Extremely useful for simplifying calculations

Example: graviton + graviton → graviton + graviton

Amplitude methods not much used in BSM phenomenology!

Here two little applications:

I. Use of amplitudes for calculating one-loop corrections from indirect BSM effects

many "zeros" are found!

Crucial role plaid by helicity selection rules

II. BSM without Lagrangians e.g. bottom-up approach to theories of Goldstones:

(it could be useful for composite Higgs models)

EFT capturing the (indirect) impact of BSMs

Assuming new-physics scale Λ is heavier than M_w , we can perform an expansion in derivatives and SM fields

(assuming lepton & baryon number)

$$\mathcal{L}_{\text{eff}} = \frac{\Lambda^4}{g_*^2} \mathcal{L} \left(\frac{D_{\mu}}{\Lambda} , \frac{g_H H}{\Lambda} , \frac{g_{f_{L,R}} f_{L,R}}{\Lambda^{3/2}} , \frac{g F_{\mu\nu}}{\Lambda^2} \right) \simeq \mathcal{L}_4 + \mathcal{L}_6 + \cdots$$

$$SM \qquad \text{leading deviations} \qquad \text{from the SM}$$

EFT capturing the (indirect) impact of BSMs

Assuming new-physics scale Λ is heavier than M_w , we can perform an expansion in derivatives and SM fields

(assuming lepton & baryon number)

I. EFT capturing the (indirect) impact of BSMs

Assuming new-physics scale Λ is heavier than M_w , we can perform an expansion in derivatives and SM fields

(assuming lepton & baryon number)

One-loop anomalous dimension of <u>dim-6 operators</u>

arXiv:1412.7151 (explained from susy)

Very practical example:

Renormalization of electron EDM

Recent strong bound by ACME experiment:

$$|d_e| < 1.1 \cdot 10^{-29} \,\mathrm{e} \cdot \mathrm{cm}$$

Can provide important constraints even if BSM enters at the 2-loop level!

$$rac{d_e}{e} \sim rac{1}{(16\pi^2)^2} rac{m_e}{\Lambda^2} \longrightarrow \Lambda > 3 \,\mathrm{TeV}$$
 ma

Best weapon of BSM mass destruction!

or even on dimension-8 operators!

One-loop mixing:

out of 59 operators

One-loop mixing:

Two-loop mixing:

out of 59 operators

One-loop mixing:

Two-loop mixing:

out of 59 operators

From operators to on-shell amplitudes

the power of being on-shell!

Ghosts, Golstones,... $(p^2 \neq 0)$

only physical states (p²=0) → definite helicity

From operators to on-shell amplitudes

the power of being on-shell!

n = number of external statesh = helicity of the amplitude

Example
$$O(\partial^2 H^4)$$
:

$$\mathcal{O}_{II} = \frac{1}{2} (\partial^{\mu} |H|^2)^2$$

$$\mathcal{O}_{T} = \frac{1}{2} (H^{\dagger} \overset{\circ}{D}_{\mu} H)^2$$

$$\overset{\circ}{H_{\beta}} \overset{\circ}{H_{\beta}} \overset{\circ}{H$$

flavor-momentum "anti-alignment"

From operators to on-shell amplitudes

n = number of external statesh = helicity of the amplitude

Interested here in one-loop corrections:

After one-loop reduction to Passarino-Veltman integrals

After one-loop reduction to Passarino-Veltman integrals

After one-loop reduction to Passarino-Veltman integrals

flavor-momentum "anti-alignment"

\oplus t-channel \oplus u-channel

preservation of momentum-flavor "alignment"!

Custodial sym.!

Helicity selection rules

arXiv:1505.01844

Helicity selection rules

arXiv:1505.01844

$n_{j}, h_{j} = n = 4, h$

(no contribution from n=3)

Figure 3: Non-holomorphic contribution to \mathcal{O}_y .

3.2 Holomorphy of the anomalous dimensions

It has been recently shown in Ref. [10], based on explicit calculations, that dimension matrix respects, to a large extent, holomorphy. Here we would like derive some of these properties using our ESET approach. In particular, we

Figure 3: Non-holomorphic contribution to \mathcal{O}_y .

3.2 Holomorphy of the anomalous dimensions

It has been recently shown in Ref. [10], based on explicit calculations, that dimension matrix respects, to a large extent, holomorphy. Here we would like derive some of these properties using our ESET approach. In particular, we

Helicity selection rules

arXiv:1505.01844

derive some of these properties using our ESFT approach. In particular, we

up to the exception!

Examples:

I. No 4-fermion $(\overline{\psi}\gamma^{\mu}\psi)^2$ corrections to dipoles

Examples:

I. No 4-fermion $(\overline{\psi}\psi)^2$ corrections to dipoles

n=4; h=2

Examples:

I. No 4-fermion $(\overline{\psi}\psi)^2$ corrections to dipoles

n=4; h=2

from scalar leptoquarks: (3,2,7/6),(3,1,-1/3) & extra Higgses

Examples:

I. No 4-fermion $(\overline{\psi}\psi)^2$ corrections to dipoles

n=4; h=2

from scalar leptoquarks: (3,2,7/6),(3,1,-1/3) & extra Higgses

EDM ACME bound can reach:

Examples:

I. No 4-fermion $(\Psi\Psi)^2$ corrections to dipoles

II. No p^2H^4 corrections to $H\gamma\gamma$

$$F_{\alpha\beta}F^{\alpha\beta}h^2$$

n=4; h=2

number of states

	3	4	5	6
0				$ H ^6$
I			$H H ^2\psi\psi$	
2		$ H ^2 F^2$ ψ^4 $HF\psi\psi$		
3	F^3			

helicity

helicity

Bottom-up approach to Goldstone physics:

Only assume:

a) $\pi_i \in reps \text{ of } \mathcal{H}$ (no coset input)

b) $\mathcal{A}(1234) \rightarrow q_i$ (for $q_i \rightarrow 0$) (Adler's zeros)

in collaboration with P. Baratella & B. Harling

Tensor invariants (for $\pi \in Adj$ of SU(N)):

- single trace (6): $tr(t_I t_J t_K t_L)$
- double trace (3): $tr(t_I t_J) tr(t_K t_L)$

Tensor invariants (for $\pi \in Adj$ of SU(N)):

- single trace (6): $tr(t_I t_J t_K t_L)$
- double trace (3): $tr(t_I t_J) tr(t_K t_L)$

Kinematics:

 $\mathbf{f}(\mathbf{s}, \mathbf{t}, \mathbf{u}) \qquad s + t + u = 0$

$$f(s, t, u)$$
 $s + t + u = 0$ ϵ $l+2$

• single trace:

$$= (s^{2} + t^{2} + u^{2}) (Tr[F^{I}F^{J}F^{K}F^{L}] + crossing)$$
$$(F^{I})_{JK} = f_{IJK}$$

Unclear why so simple!

- Amplitude methods seems quite suited for calculating indirect BSM effects, e.g. anomalous dimensions of O₆
 many selection rules
- Allows to construct BSM without Lagrangians:
 new theories of Goldstones?
 new methods of unitarization?

A lot to do! Stay Juned!