Amplitudes meet BSM pheno

Alex Pomarol, IFAE \& UAB (Barcelona)

of course, not the first encounter...

Amplitude methods

Extremely useful for simplifying calculations

Amplitude methods

Extremely useful for simplifying calculations

Example: graviton + graviton \rightarrow graviton + graviton

Amplitude methods

Extremely useful for simplifying calculations

Example: graviton + graviton \rightarrow graviton + graviton

à la Feynman!

Amplitude methods

Extremely useful for simplifying calculations

Example: graviton + graviton \rightarrow graviton + graviton

$$
\begin{aligned}
& i \operatorname{Sym}\left[-\frac{1}{2} P_{3}\left(p_{1} \cdot p_{2} \eta_{\mu \rho} \eta_{\nu \lambda} \eta_{\sigma \tau}\right)-\frac{1}{2} P_{6}\left(p_{1 \nu} p_{1 \lambda} \eta_{\mu \rho} \eta_{\sigma \tau}\right)+\frac{1}{2} P_{3}\left(p_{1} \cdot p_{2} \eta_{\mu \nu} \eta_{\rho \lambda} \eta_{\sigma \tau}\right)\right. \\
& \quad+P_{6}\left(p_{1} \cdot p_{2} \eta_{\mu \rho} \eta_{\nu \sigma} \eta_{\lambda \tau}\right)+2 P_{3}\left(p_{1 \nu} p_{1 \tau} \eta_{\mu \rho} \eta_{\lambda \sigma}\right)-P_{3}\left(p_{1 \lambda} p_{2 \mu} \eta_{\rho \nu} \eta_{\sigma \tau}\right) \\
& \quad+P_{3}\left(p_{1 \sigma} p_{2 \tau} \eta_{\mu \nu} \eta_{\rho \lambda}\right)+P_{6}\left(p_{1 \sigma} p_{1 \tau} \eta_{\mu \nu} \eta_{\rho \lambda}\right)+2 P_{6}\left(p_{1 \nu} p_{2 \tau} \eta_{\lambda \mu} \eta_{\rho \sigma}\right) \\
& \left.\quad+2 P_{3}\left(p_{1 \nu} p_{2 \mu} \eta_{\lambda \sigma} \eta_{\tau \rho}\right)-2 P_{3}\left(p_{1} \cdot p_{2} \eta_{\rho \nu} \eta_{\lambda \sigma} \eta_{\tau \mu}\right)\right]
\end{aligned}
$$

à la Feynman!

Amplitude methods

Extremely useful for simplifying calculations

Example: graviton + graviton \rightarrow graviton + graviton

à la Feynman!

$$
\begin{aligned}
& i \operatorname{Sym}\left[-\frac{1}{2} P_{3}\left(p_{1} \cdot p_{2} \eta_{\mu \rho} \eta_{\nu \lambda} \eta_{\sigma \tau}\right)-\frac{1}{2} P_{6}\left(p_{1 \nu} p_{1 \lambda} \eta_{\mu \rho} \eta_{\sigma \tau}\right)+\frac{1}{2} P_{3}\left(p_{1} \cdot p_{2} \eta_{\mu \nu} \eta_{\rho \lambda} \eta_{\sigma \tau}\right)\right. \\
& \quad+P_{6}\left(p_{1} \cdot p_{2} \eta_{\mu \rho} \eta_{\nu \sigma} \eta_{\lambda \tau}\right)+2 P_{3}\left(p_{1 \nu} p_{1 \tau} \eta_{\mu \rho} \eta_{\lambda \sigma}\right)-P_{3}\left(p_{1 \lambda} p_{2 \mu} \eta_{\rho \nu} \eta_{\sigma \tau}\right) \\
& \quad+P_{3}\left(p_{1 \sigma} p_{2 \tau} \eta_{\mu \nu} \eta_{\rho \lambda}\right)+P_{6}\left(p_{1 \sigma} p_{1 \tau} \eta_{\mu \nu} \eta_{\rho \lambda}\right)+2 P_{6}\left(p_{1 \nu} p_{2 \tau} \eta_{\lambda \mu} \eta_{\rho \sigma}\right) \\
& \left.\quad+2 P_{3}\left(p_{1 \nu} p_{2 \mu} \eta_{\lambda \sigma} \eta_{\tau \rho}\right)-2 P_{3}\left(p_{1} \cdot p_{2} \eta_{\rho \nu} \eta_{\lambda \sigma} \eta_{\tau \mu}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Sym}\left[-\frac{1}{8} P_{6}\left(p \cdot p^{\prime} \eta^{\mu \mu} \eta^{\sigma \tau} \eta^{\rho \lambda} \eta^{(k)}\right)-\frac{1}{8} P_{12}\left(p^{\sigma} p^{\tau} \eta^{\mu \nu} \eta^{\rho \lambda} \eta^{* k}\right)-\frac{1}{4} P_{6}\left(p^{\sigma} p^{\prime \mu} \eta^{\nu \tau} \eta^{\rho \lambda} \eta^{c k}\right)+\frac{1}{8} P_{6}\left(p \cdot p^{\prime} \eta^{\mu \sigma} \eta^{\nu \tau} \eta^{\rho \lambda} \eta^{(k)}\right)\right. \\
& +\frac{1}{4} P_{6}\left(p \cdot p^{\prime} \eta^{\mu \nu} \eta^{\sigma \tau} \eta^{\rho t} \eta^{\lambda \kappa}\right)+\frac{1}{4} P_{12}\left(p^{\sigma} p^{\tau} \eta^{\mu \nu} \eta^{\rho \rho} \eta^{\lambda_{\kappa}}\right)+\frac{1}{2} P_{6}\left(p^{\sigma} p^{\prime \mu} \eta^{\nu \tau} \eta^{\rho \epsilon} \eta^{\lambda \kappa}\right)-\frac{1}{4} P_{6}\left(p \cdot p^{\prime} \eta^{\mu \sigma} \eta^{\nu \tau} \eta^{\rho \tau^{\prime}} \eta^{\lambda \kappa}\right) \\
& +\frac{1}{4} P_{24}\left(p \cdot p^{\prime} \eta^{\mu \nu} \eta^{\sigma \rho} \eta^{\tau \lambda} \eta^{\prime \kappa}\right)+\frac{1}{4} P_{24}\left(p^{\sigma} p^{\tau} \eta^{\mu \rho} \eta^{\nu \lambda} \eta^{\iota \kappa}\right)+\frac{1}{4} P_{12}\left(p^{\rho} p^{\prime} \eta^{\mu \sigma} \eta^{\nu \tau} \eta^{\kappa \kappa}\right)+\frac{1}{2} P_{24}\left(p^{\sigma} p^{\prime} \rho^{\prime \mu} \eta^{\tau \mu} \eta^{\nu \lambda} \eta^{\prime \kappa}\right) \\
& -\frac{1}{2} P_{12}\left(p \cdot p^{\prime} \eta^{\prime \sigma} \eta^{\tau \rho} \eta^{\lambda \mu} \eta^{\kappa \kappa}\right)-\frac{1}{2} P_{12}\left(p^{\sigma} p^{\prime \mu} \eta^{\tau \rho} \eta^{\lambda \nu} \eta^{\kappa \kappa}\right)+\frac{1}{2} P_{12}\left(p^{\sigma} p^{\rho} \eta^{\tau \lambda} \eta^{\mu \mu} \eta^{\prime \kappa}\right)-\frac{1}{2} P_{24}\left(p \cdot p^{\prime} \eta^{\mu \nu} \eta^{\tau \rho} \eta^{\lambda \lambda} \eta^{\kappa \sigma}\right) \\
& -P_{12}\left(p^{\sigma} p^{\tau} \eta^{\nu \rho} \eta^{\lambda \iota} \eta^{\kappa \mu}\right)-P_{12}\left(p^{\rho} p^{\prime \lambda} \eta^{\nu \nu} \eta^{k \sigma} \eta^{\tau \mu}\right)-P_{24}\left(p_{\sigma} p^{\prime \rho} \eta^{\tau} \eta^{\kappa \mu} \eta^{\nu \lambda}\right)-P_{12}\left(p^{\rho} p^{\prime} \eta^{\lambda \sigma} \eta^{\tau \mu} \eta^{\kappa \kappa}\right) \\
& +P_{6}\left(p \cdot p^{\prime} \eta^{\nu \rho} \eta^{\lambda \sigma} \eta^{\tau \cdot} \eta^{\kappa \mu}\right)-P_{12}\left(p^{\sigma} p^{\rho} \eta^{\mu \nu} \eta^{\tau \tau} \eta^{\kappa \lambda}\right)-\frac{1}{2} P_{12}\left(p \cdot p^{\prime} \eta^{\mu \rho} \eta^{\nu \lambda} \eta^{\sigma \tau} \eta^{\tau \kappa}\right)-P_{12}\left(p^{\sigma} p^{\rho} \eta^{\tau \lambda} \eta^{\mu \epsilon} \eta^{\nu \kappa}\right) \\
& \left.-P_{6}\left(p^{\rho} p^{\prime} \eta^{\lambda \kappa} \eta^{\mu \sigma} \eta^{\nu \tau}\right)-P_{24}\left(p^{\sigma} p^{\prime} \eta^{\tau \mu} \eta^{\nu 1} \eta^{\kappa \lambda}\right)-P_{12}\left(p^{\sigma} p^{\prime \mu} \eta^{\tau \rho} \eta^{\lambda \iota} \eta^{\kappa \nu}\right)+2 P_{6}\left(p \cdot p^{\prime} \eta^{\nu \sigma} \eta^{\tau \rho} \eta^{\lambda \iota} \eta^{\kappa \mu}\right)\right]
\end{aligned}
$$

Amplitude methods

Extremely useful for simplifying calculations

Example: graviton + graviton \rightarrow graviton + graviton

à la Feynman!

$i \operatorname{Sym}\left[-\frac{1}{2} P_{3}\left(p_{1} \cdot p_{2} \eta_{\mu \rho} \eta_{\nu \lambda} \eta_{\sigma \tau}\right)-\frac{1}{2} P_{6}\left(p_{1 \nu} p_{1 \lambda} \eta_{\mu \rho} \eta_{\sigma \tau}\right)+\frac{1}{2} P_{3}\left(p_{1} \cdot p_{2} \eta_{\mu \nu} \eta_{\rho \lambda} \eta_{\sigma \tau}\right)\right.$
$\perp P_{n}\left(n_{\ldots} . n_{\sim} n \quad n \quad n, 1\right) \perp \rho P_{n}(n . n . n \quad n, ~)-P_{n}\left(n_{\perp}, n_{\urcorner \mu} \eta_{\rho \nu} \eta_{\sigma \tau}\right)$
$\mathcal{A}\left(1^{+} 2^{+} 3^{+} 4^{+}\right)=0$
$+\frac{1}{4} P_{24}\left(p \cdot p^{\prime} \eta^{\mu \nu} \eta^{\sigma \rho} \eta^{\tau \lambda} \eta^{\iota \kappa}\right)+\frac{1}{4} P_{24}\left(p^{\sigma} p^{\tau} \eta^{\mu \rho} \eta^{\nu \lambda} \eta^{\iota \kappa}\right)+\frac{1}{4} P_{12}\left(p^{\rho} p^{\prime \lambda} \eta^{\mu \sigma} \eta^{\nu \tau} \eta^{\iota \kappa}\right)+\frac{1}{2} P_{24}\left(p^{\sigma} p^{\prime \rho} \eta^{\tau \mu} \eta^{\nu \lambda} \eta^{\iota \kappa}\right)$
$-\frac{1}{2} P_{12}\left(p \cdot p^{\prime} \eta^{\nu \sigma} \eta^{\tau \rho} \eta^{\lambda \mu} \eta^{\iota \kappa}\right)-\frac{1}{2} P_{12}\left(p^{\sigma} p^{\prime \mu} \eta^{\tau \rho} \eta^{\lambda \nu} \eta^{\iota \kappa}\right)+\frac{1}{2} P_{12}\left(p^{\sigma} p^{\rho} \eta^{\tau \lambda} \eta^{\mu \nu} \eta^{\iota \kappa}\right)-\frac{1}{2} P_{24}\left(p \cdot p^{\prime} \eta^{\mu \nu} \eta^{\tau \rho} \eta^{\lambda \iota} \eta^{\kappa \sigma}\right)$
$-P_{12}\left(p^{\sigma} p^{\tau} \eta^{\nu \rho} \eta^{\lambda \iota} \eta^{\kappa \mu}\right)-P_{12}\left(p^{\rho} p^{\prime \lambda} \eta^{\nu!} \eta^{\kappa \sigma} \eta^{\tau \mu}\right)-P_{24}\left(p_{\sigma} p^{\prime \rho} \eta^{\tau \iota} \eta^{\kappa \mu} \eta^{\nu \lambda}\right)-P_{12}\left(p^{\rho} p^{\prime \iota} \eta^{\lambda \sigma} \eta^{\tau \mu} \eta^{\nu \kappa}\right)$
$+P_{6}\left(p \cdot p^{\prime} \eta^{\nu \rho} \eta^{\lambda \sigma} \eta^{\tau \iota} \eta^{\kappa \mu}\right)-P_{12}\left(p^{\sigma} p^{\rho} \eta^{\mu \nu} \eta^{\tau \iota} \eta^{\kappa \lambda}\right)-\frac{1}{2} P_{12}\left(p \cdot p^{\prime} \eta^{\mu \rho} \eta^{\nu \lambda} \eta^{\sigma \iota} \eta^{\tau \kappa}\right)-P_{12}\left(p^{\sigma} p^{\rho} \eta^{\tau \lambda} \eta^{\mu l} \eta^{\nu \kappa}\right)$

$$
\left.-P_{6}\left(p^{\rho} p^{\prime \iota} \eta^{\lambda \kappa} \eta^{\mu \sigma} \eta^{\nu \tau}\right)-P_{24}\left(p^{\sigma} p^{\prime \rho} \eta^{\tau \mu} \eta^{\nu \iota} \eta^{\kappa \lambda}\right)-P_{12}\left(p^{\sigma} p^{\prime \mu} \eta^{\tau \rho} \eta^{\lambda \iota} \eta^{\kappa \nu}\right)+2 P_{6}\left(p \cdot p^{\prime} \eta^{\nu \sigma} \eta^{\tau \rho} \eta^{\lambda \iota} \eta^{\kappa \mu}\right)\right]
$$

Amplitude methods

Extremely useful for simplifying calculations

Example: graviton + graviton \rightarrow graviton + graviton

à la Feynman!

Amplitude methods

Extremely useful for simplifying calculations

Example: graviton + graviton \rightarrow graviton + graviton

Trivial by on-shell amplitude methods...
...based on:
Little group (helicities)

+ locality (single poles)
+ dimensional analysis

$$
\mathcal{A}\left(1^{-} 2^{+} 3^{-} 4^{+}\right)=\frac{\langle 13\rangle^{4}[24]^{4}}{\text { stu }}
$$

Amplitude methods

Extremely useful for simplifying calculations

Example: graviton + graviton \rightarrow graviton + graviton

Trivial by on-shall - -
Impressive Feynman's way?)
Little grol. (Shouldn't

$$
\mathcal{A}\left(1^{-} 2^{+} 3^{-} 4^{+}\right)=\frac{\langle 13\rangle^{4}[24]^{4}}{s t u}
$$

Amplitude methods not much used in BSM phenomenology!

Here two little applications:

I. Use of amplitudes for calculating one-loop corrections from indirect BSM effects

many "zeros" are found!

- Crucial role plaid by helicity selection rules
II. BSM without Lagrangians
e.g. bottom-up approach to theories of Goldstones:
(it could be useful for composite Higgs models)

EFT capturing the (indirect) impact of BSMs

Assuming new-physics scale Λ is heavier than M_{w}, we can perform an expansion in derivatives and SM fields
(assuming lepton \& baryon number)

$$
\mathcal{L}_{\mathrm{eff}}=\frac{\Lambda^{4}}{g_{*}^{2}} \mathcal{L}\left(\frac{D_{\mu}}{\Lambda}, \frac{g_{H} H}{\Lambda}, \frac{g_{f_{L, R}} f_{L, R}}{\Lambda^{3 / 2}}, \frac{g F_{\mu \nu}}{\Lambda^{2}}\right) \simeq \mathcal{L}_{4}+\mathcal{L}_{6}+\cdots
$$

SM leading deviations from the SM

EFT capturing the (indirect) impact of BSMs

Assuming new-physics scale Λ is heavier than M_{w}, we can perform an expansion in derivatives and SM fields
(assuming lepton \& baryon number)
$\mathcal{L}_{\text {eff }}=\frac{\Lambda^{4}}{g_{*}^{2}} \mathcal{L}\left(\frac{D_{\mu}}{\Lambda}, \frac{g_{H} H}{\Lambda}, \frac{g_{f_{L, R}} f_{L, R}}{\Lambda^{3 / 2}}, \frac{g F_{\mu \nu}}{\Lambda^{2}}\right) \simeq \mathcal{L}_{4}+\mathcal{L}_{6}+\cdots$
$\Lambda-\mathcal{O}_{i}, \mathcal{O}_{j}, \ldots$
leading deviations from the SM

One-loop operator mixing important:
(tells us how BSM enter in observables)
$\mathrm{mw}-\mathcal{O}_{i}$

$$
\gamma_{c_{i}}=\frac{d c_{i}}{d \log \mu}=\gamma_{c_{i}}\left(c_{j}\right) \quad \begin{aligned}
& c_{j}=\text { Wilson } \\
& \text { coefficient }
\end{aligned}
$$

EFT capturing the (indirect) impact of BSMs

Assuming new-physics scale Λ is heavier than M_{w}, we can perform an expansion in derivatives and SM fields
(assuming lepton \& baryon number)

$$
\mathcal{L}_{\text {eff }}=\frac{\Lambda^{4}}{g_{*}^{2}} \mathcal{L}\left(\frac{D_{\mu}}{\Lambda}, \frac{g_{H} H}{\Lambda}, \frac{g_{f_{L, R}} f_{L, R}}{\Lambda_{L / n}}, \underline{\left.g F_{\mu \nu}\right)} \text { zeros in } \mathbf{\gamma}_{i} \mathcal{C}_{6}+\cdots\right.
$$

\wedge Many non-trivial zeros from explicit calculat from the S one-loop operator mixing important:
(tells us how BSM enter in observables)
$\mathrm{mw}-\mathcal{O}_{i}$

$$
\gamma_{c_{i}}=\frac{d c_{i}}{d \log \mu}=\gamma_{c_{i}}\left(c_{j}\right) \quad \begin{gathered}
c_{j}=\text { Wilson } \\
\text { coefficient }
\end{gathered}
$$

One-loop anomalous dimension of dim-6 operators

$$
\begin{aligned}
& \mathcal{O}_{3 F_{+}} \mathcal{O}_{F F_{+}} \mathcal{O}_{D} \quad \mathcal{O}_{y y} \quad \mathcal{O}_{y} \quad \mathcal{O}_{R}^{u d} \quad \mathcal{O}_{6} \quad \mathcal{O}_{+} \quad \mathcal{O}_{-} \quad \mathcal{O}_{4 f} \quad \mathcal{O}_{H f}
\end{aligned}
$$

Very practical example:

Renormalization of electron EDM

Recent strong bound by ACME experiment:

$$
\left|d_{e}\right|<1.1 \cdot 10^{-29} \mathrm{e} \cdot \mathrm{~cm}
$$

Can provide important constraints even if BSM enters at the 2-loop level!

$$
\frac{d_{e}}{e} \sim \frac{1}{\left(16 \pi^{2}\right)^{2}} \frac{m_{e}}{\Lambda^{2}} \quad \rightarrow \Lambda>3 \mathrm{TeV}
$$

Best weapon of BSM mass destruction!
or even on dimension-8 operators!

One-loop mixing:

One-loop mixing:

Two-loop mixing:

out of 59 operators

One-loop mixing:

Two-loop mixing:

out of 59 operators

1-loop (finite)
Just from explicit calculations!
But why? Amplitude method needed!

From operators to on-shell amplitudes

the power of being on-shell!

Ghosts, Golstones,...

$$
\left(p^{2} \neq 0\right)
$$

only physical states $\left(p^{2}=0\right)$
\rightarrow definite helicity

From operators to on-shell amplitudes

the power of being on-shell!

Example $O\left(\partial^{2} H^{4}\right)$:

$$
\left.\begin{array}{c}
\mathcal{O}_{H}=\frac{1}{2}\left(\partial^{\mu}|H|^{2}\right)^{2} \\
\mathcal{O}_{T}=\frac{1}{2}\left(H^{\dagger} \overleftrightarrow{D}_{\mu} H\right)^{2}
\end{array}\right\} \longrightarrow\left|\begin{array}{c}
H_{\alpha} \\
H_{\beta} \\
H_{\dot{\beta}}^{+}
\end{array}\right| \sim \mathbf{O}
$$

Two amplitudes:

$$
A\left[t \delta_{\alpha \dot{\alpha}} \delta_{\beta \dot{\beta}}+\mu \delta_{\beta \dot{\alpha}} \delta_{\alpha \dot{\beta}}\right] \rightarrow \underbrace{\alpha}_{\dot{\beta}} \underbrace{t}_{\beta})_{\dot{\beta}}^{\alpha}
$$

flavor-momentum "alignment"

$$
B\left[\mu \delta_{\alpha \dot{\alpha}} \delta_{\beta \dot{\beta}}+t \delta_{\beta \dot{\alpha}} \delta_{\alpha \dot{\beta}}\right] \longrightarrow u_{\beta}^{\alpha} \hat{\alpha}_{\dot{\beta}}^{\dot{\alpha}}{ }_{\beta}^{\alpha}{ }_{\dot{\beta}}^{\dot{\alpha}}
$$

From operators to on-shell amplitudes

$$
\mathrm{O}_{\mathbf{i}} \longrightarrow
$$

Interested here in one-loop corrections:

$$
\mathcal{A}_{\mathbf{i}}=
$$

After one-loop reduction to Passarino-Veltman integrals

$$
\mathcal{A}_{\mathbf{i}}=\sum_{\text {bubble }} \mathbf{c}_{\mathbf{2}} \mathbf{I}_{\mathbf{2}}+\sum_{\text {triangle }} \mathbf{c}_{\mathbf{3}} \mathbf{I}_{\mathbf{3}}+\sum_{\text {box }} \mathbf{c}_{\mathbf{4}} \mathbf{I}_{\mathbf{4}}+\text { rational }
$$

After one-loop reduction to Passarino-Veltman integrals

$$
\mathcal{A}_{\mathbf{i}}=\sum_{\text {bubble }} \mathbf{c}_{2} \mathbf{I}_{2}+\sum_{\text {triangle }} \mathbf{c}_{3} \mathbf{I}_{3}+\sum_{\text {box }} \mathbf{c}_{4} \mathbf{I}_{4}+\text { rational }
$$

After one-loop reduction to Passarino-Veltman integrals

sum over internal states \& phase-space integration

Example $O\left(\partial^{2} H^{4}\right)$:

flavor-momentum "anti-alignment"

One-loop corrections

- Cut \& paste
s-channel:

\oplus t-channel \oplus u-channel

One-loop corrections

- Cut \& paste
s-channel:

$$
\delta A=12 \frac{A \lambda}{16 \pi^{2}}
$$

\oplus t-channel \oplus u-channel

preservation of momentum-flavor "alignment"!

Custodial sym.!

Helicity selection rules

Helicity selection rules

$n_{j}, h_{j} \quad n=4, h$
(no contribution
from $n=3$)

Helicity selection rules

up to one exception!

Helicity selection rules

Helicity selection rules

$\mathcal{A}_{\mathrm{L}}{ }^{\prime} \mathcal{A}_{\mathrm{SM}} \leadsto$ SM tree-level amplitude $n \geq 4 S M$ amplitudes $\omega \mathrm{h} \geq 0$

- $n \geq|h|+4$

up to one exception!

Helicity selection rules

$\mathcal{A}_{\mathrm{L}} \cdot{ }^{\prime} \mathcal{A}_{\mathrm{SM}} \frown$ SM tree-level amplitude

up to one exception!

$$
\left.\begin{array}{l}
n_{i}=n_{L}+n_{S M} \\
h_{i}=h_{L+} h_{S M}
\end{array}\right\} n_{i}-n_{j} \geq h_{i}-h_{j}+4-4
$$

- $\Delta n \geq|\Delta h|$

Helicity selection rules

$\Delta n=n_{i}-n_{j}$
 $\Delta h=h_{i}-h_{j}$

$\Delta n \geq|\Delta h|$

up to the exception!

Examples:

I. No 4-fermion $\left(\bar{\Psi} \gamma^{\mu} \Psi\right)^{2}$ corrections to dipoles

$$
F_{\alpha \beta} \psi^{\alpha} \psi^{\beta} h
$$

$$
n=4 ; h=2
$$

$$
n=4 ; h=0
$$

Examples:

I. No 4-fermion $(\bar{\Psi} \Psi)^{2}$ corrections to dipoles

$$
F_{\alpha \beta} \psi^{\alpha} \psi^{\beta} h
$$

$$
n=4 ; h=2
$$

Examples:

I. No 4-fermion $(\bar{\Psi} \Psi)^{2}$ corrections to dipoles

$$
F_{\alpha \beta} \psi^{\alpha} \psi^{\beta} h
$$

$$
n=4 ; h=2
$$

from scalar leptoquarks:
(3,2,7/6),(3, I,-I/3)
\& extra Higgses

Examples:

I. No 4-fermion $(\bar{\Psi} \Psi)^{2}$ corrections to dipoles

$$
F_{\alpha \beta} \psi^{\alpha} \psi^{\beta} h
$$

$\mathrm{n}=4 ; \mathrm{h}=2$

from scalar leptoquarks:

$$
(3,2,7 / 6),(3, I,-I / 3)
$$

\& extra Higgses
EDM ACME bound can reach:
MLQ $>400 \mathrm{TeV}$

Examples:

I. No 4-fermion $(\Psi \Psi)^{2}$ corrections to dipoles

$$
F_{\alpha \beta} \psi^{\alpha} \psi^{\beta} h
$$

$$
n=4 ; h=2
$$

II. No $\mathrm{p}^{2} \mathrm{H}^{4}$ corrections to $\mathrm{H} \gamma \gamma$

$$
F_{\alpha \beta} F^{\alpha \beta} h^{2}
$$

$$
n=4 ; h=2
$$

number of states

	3	4	5	6
0		$\begin{gathered} \bar{\psi}^{2} \psi^{2} \\ p^{2}\left\|H H^{\dagger}\right\|^{2} \\ p\|H\|^{2} \bar{\psi} \psi \end{gathered}$		$\|H\|^{6}$
1			$H\|H\|^{2} \psi \psi$	
		$\begin{gathered} \|H\|^{2} F^{2} \\ \psi^{4} \\ H F \psi \psi \end{gathered}$		
3	F^{3}			

number of states

II. Bottom-up approach to Goldstone physics:

Only assume:

> a) $\pi_{i} \in$ reps of \mathcal{H} (no coset input)
> b) $\mathcal{A}(1234) \rightarrow q_{i} \quad\left(\right.$ for $\left.q_{i} \rightarrow 0\right)$ (Adler's zeros)
in collaboration with P. Baratella \& B. Harling

L
 kin. functions under crossing
 inv. tensors

Tensor invariants (for $\pi \in \operatorname{Adj}$ of $S U(N)$):

- single trace (6): $\operatorname{tr}\left(t_{I} t_{J} t_{K} t_{L}\right)$
- double trace (3): $\operatorname{tr}\left(t_{I} t_{J}\right) \operatorname{tr}\left(t_{K} t_{L}\right)$

Tensor invariants (for $\pi \in \operatorname{Adj}$ of $\mathrm{SU}(\mathrm{N})$):

- single trace (6): $\operatorname{tr}\left(t_{I} t_{J} t_{K} t_{L}\right)$
- double trace (3): $\operatorname{tr}\left(t_{I} t_{J}\right) \operatorname{tr}\left(t_{K} t_{L}\right)$

Kinematics:

$$
\mathbf{f}(\mathbf{s}, \mathbf{t}, \mathbf{u}) \quad s+t+u=0
$$

$\underbrace{\text { L }}_{\text {L }}=\mathbf{f}(\mathbf{s}, \mathbf{t}, \mathbf{u}) \mathbf{T}_{\mathbf{I J K L}}+\cdots$
 kin. functions
 invariant under crossing

Tensor invariants (for $\pi \in \operatorname{Adj}$ of $\mathrm{SU}(\mathrm{N})$):

Under permutations:
 $\epsilon \quad \mid+2+3$
 $\in \quad 1+2$

- single trace (6): $\operatorname{tr}\left(t_{I} t_{J} t_{K} t_{L}\right)$
- double trace (3): $\operatorname{tr}\left(t_{I} t_{J}\right) \operatorname{tr}\left(t_{K} t_{L}\right)$

Kinematics:

$$
\mathbf{f}(\mathbf{s}, \mathbf{t}, \mathbf{u}) \quad s+t+u=0 \quad \boldsymbol{\epsilon} \quad \mathbf{I}+\mathbf{2}
$$

$O\left(p^{2}\right): \quad(t-u) f_{s}+(u-s) f_{t}+(s-t) f_{u}$

- single trace:
$\mathbf{f}_{\mathbf{I J M}} \mathbf{f}_{\mathbf{M K L}}$

$\mathrm{f}_{\mathrm{s}}+\mathrm{f}_{\mathrm{t}}+\mathrm{f}_{\mathrm{u}}=\mathbf{0} \quad$ Jacobi $s+t+u=0$

$O\left(p^{2}\right): \quad(t-u) f_{s}+(u-s) f_{t}+(s-t) f_{u}$

- single trace:

$\mathbf{f}_{\mathrm{s}}+\mathrm{f}_{\mathrm{t}}+\mathrm{f}_{\mathrm{u}}=\mathbf{0} \quad$ Jacobi $s+t+u=0$

- double trace: $\delta_{\mathbf{I J}} \delta_{\text {KL }}-\delta_{\text {IL }} \delta_{\mathrm{JK}}$

Constructing

 bottom-up the EFT

Constructing

 bottom-up the EFT
arXiv:1904.12859

Constructing

 bottom-up the EFT"building block"
$O\left(p^{2} \pi^{4}\right) \quad 2,4$

TREE

demanding Adler zeros,
contact terms $\nsucc k$ must be added

possible only for one choice at a time:

W single trace \rightarrow reconstructing $\mathrm{SU}(\mathrm{N}) \times \mathrm{SU}(\mathrm{N}) / \mathrm{SU}(\mathrm{N})$
double trace \rightarrow reconstructing $\mathrm{SO}(\mathrm{N}) / \mathrm{SO}(\mathrm{N}-\mathrm{I})$

LOOPS

+ crossing
- $\mathrm{O}\left(\mathrm{p}^{4}\right)$ amplitude

LOOPS

+ crossing

~ $\mathrm{O}\left(\mathrm{p}^{4}\right)$ amplitude

- single trace:

LOOPS

+ crossing

~ $\mathrm{O}\left(\mathrm{p}^{4}\right)$ amplitude

- single trace:

thanks to Jacobi identity \& s+t+u=0

- single trace:

$$
=\left(s^{2}+t^{2}+u^{2}\right)\left(\operatorname{Tr}\left[F^{\prime} F^{J} F^{K} F^{\mathrm{L}}\right]+\text { crossing }\right)
$$

$\left(F^{\prime}\right)_{\mathrm{JK}}=f_{\mathrm{IJK}}$
Unclear why so simple!

Conclusions

- Amplitude methods seems quite suited for calculating indirect BSM effects, e.g. anomalous dimensions of \boldsymbol{O}_{6} * many selection rules
- Allows to construct BSM without Lagrangians:
- new theories of Goldstones?
- new methods of unitarization?
It lat ta da! Stay Tuned!

