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Figure 1: Gauge theories have three- and four-point vertices in a Feynman diagrammatic descrip-
tion.
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Figure 2: Gravity theories have an infinite number of higher-point contact interactions in a Feynman
diagrammatic description.

where Atree
4 (1, 2, 3, 4) is a color-ordered gauge-theory four-gluon partial scattering amplitude,

Mtree
4 (1, 2, 3, 4) is a four-graviton tree amplitude and Ÿ is the gravitational coupling to related

to Newton’s constant via Ÿ2 = 32fi2GN and, for reasons that will become clear shortly, the
polarization vectors of gluons on the right-hand side of Eq. (1.4) are taken to be null. We
will suppress the gravitational coupling by setting Ÿ = 2 throughout this review. The color-
ordered partial tree amplitudes are the coe�cients of basis elements once the amplitude’s
color factors are expressed in the trace color basis, and the coupling g is set to unity. They are
gauge invariant—see e.g. Refs. [88–92] for further details. Equation (1.4) is rather striking,
asserting that tree-level four-graviton scattering is described completely by gauge-theory
four-gluon scattering, bypassing the usual machinery of general relativity. Similar relations
were later derived for higher-point string-theory tree-level amplitudes [86], and generalized in
the field-theory limit to an arbitrary number of external particles [93]. Besides the remarkable
implication that the detailed dynamics of the gravitational field can be described in terms of
the dynamics of gauge fields, Eq. (1.4) has other surprising features not visible in standard
Lagrangian formulations. For example, Eq. (1.4) implies that the four-graviton amplitude
can be re-arranged so that Lorentz indices factorize [94, 95] into “left” indices belonging to
one gauge-theory amplitude and “right” indices belonging to another gauge theory.

1.1 Motivation: Complexity of gravity versus gauge theory
It is interesting to contrast the remarkable simplicity encoded in the relation (1.4) with the
much more complicated expressions that arise from standard Lagrangian methods. Scat-
tering amplitudes for gauge and gravity theories can be obtained using the Feynman rules
derived from their respective Lagrangians

LYM = ≠1
4F a

µ‹F a µ‹ , LEH = 2
Ÿ2

Ô
≠gR . (1.5)
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Here F a
µ‹ is the usual YM field strength and R the Ricci scalar.

Following standard Feynman-diagrammatic methods, we gauge-fix and then extract the
propagator(s) and the three- and higher-point vertices. For gravity we also expand around
flat spacetime, taking the metric to be gµ‹ = ÷µ‹ + Ÿhµ‹ where ÷µ‹ is the Minkowski metric
and hµ‹ is the graviton field. As illustrated in Figs. 1 and 2, with standard gauge choices,
gauge theory has only three- and four-point vertices, while gravity has an infinite number
of vertices of arbitrary multiplicity. The complexity of each individual interaction term is
perhaps more striking than their infinite number. Consider, for example, the three-graviton
interaction. In the standard de Donder gauge, ˆ‹h‹

µ = 1
2ˆµh‹

‹ , the corresponding vertex
is [96, 97],

G3 µfl,‹⁄,‡· (p1, p2, p3)

= iSym
5
≠1

2P3(p1 · p2÷µfl÷‹⁄÷‡· ) ≠ 1
2P6(p1‹p1⁄÷µfl÷‡· ) + 1

2P3(p1 · p2÷µ‹÷fl⁄÷‡· )

+ P6(p1 · p2÷µfl÷‹‡÷⁄· ) + 2P3(p1‹p1· ÷µfl÷⁄‡) ≠ P3(p1⁄p2µ÷fl‹÷‡· )
+ P3(p1‡p2· ÷µ‹÷fl⁄) + P6(p1‡p1· ÷µ‹÷fl⁄) + 2P6(p1‹p2· ÷⁄µ÷fl‡)

+ 2P3(p1‹p2µ÷⁄‡÷·fl) ≠ 2P3(p1 · p2÷fl‹÷⁄‡÷·µ)
6

, (1.6)

where we set Ÿ = 2, pi are the momenta of the three gravitons, ÷µ‹ is the flat metric, “Sym”
implies a symmetrization in each pair of graviton Lorentz indices µ ¡ fl, ‹ ¡ ⁄ and ‡ ¡ · ,
and P3 and P6 signify a symmetrization over the three graviton legs, generating three or
six terms respectively. The symmetrization over the three external legs ensures the Bose
symmetry of the vertex. In total, the vertex has of the order of 100 terms. This generally
undercounts the number of terms, because within a diagram each vertex momentum is a
linear combination of the independent momenta of that diagram.

We may contrast this to the three-gluon vertex in Feynman gauge,

V abc
3 µ‹‡(p1, p2, p3) = gfabc

5
(p1 ≠ p2)‡÷µ‹ + cyclic

6
. (1.7)

which does not appear to bear any obvious relation to the corresponding three-graviton
vertex (1.6). These considerations seemingly suggest that gravity is much more complicated
than gauge theory. Moreover, the three-graviton vertex immediately appears to conflict with
the simple factorization of Lorentz indices into left and right sets visible in Eq. (1.4). The
first term in Eq. (1.6), for example, contains a factor ÷µfl which explicitly contracts a left
graviton index with a right one.

The reason why the three-graviton vertex is so complicated is that it is gauge-dependent.1
With special gauge choices and appropriate field redefinitions [94, 95, 98, 99], it is possible
to considerably simplifying the Feynman rules. Still, direct perturbative gravity calculations
in a Feynman diagram approach are rather nontrivial, especially beyond leading order, even
with modern computers. To eliminate the gauge dependence we should instead focus on
the three-vertex with on-shell conditions imposed on external legs, by demanding that the

1While somewhat less complicated than the three-graviton vertex, the three-gluon vertex is also gauge-
dependent.
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corrections. For the Yang-MiOs Geld it takes the form

V( T""')p ~ —ic.p,P"= —ic.~p(P +P'") . (2.3)
The propagators for the normal and Gctitious quanta
are, respectively,

G~v'v"/p',
G~~aP/P2

(2.4)

(2 5)

with p' being understood to have the usual small
negative imaginary part.
The corresponding quantities for the gravitational

6eld are much more complicated. In this case we shall
employ the momentum-index combinations pq4, p'OT'',
p"p'9", p"'4'"z"'. The vertices must not only be sym-
metric in each index pair but must also remain un-
changed under arbitrary permutations of the momen-
turn-index triplets. At least 171 separate terms are
required in the complete expression for S3 in order to
exhibit this full symmetry, and for 54 the number is
2850. However, these numbers can be greatly reduced
by counting only the combinatorially distinct terms~
and leaving it understood that the appropriate sym-
metrizations are to be carried out. In this way S3 is
reduced to j.1 terms and S4 to 28 terms, as follows:

~ Pyv~'Po' r'~ Pp"X"

symL l~.(p—A""n"~ ") lI'4(p-p'~""~ ")+lI'4(p AP ~" ~ ")+lI'4(p A""~"~ ")+~4(P'P"~""~")
'I'4(p'P "-0" 0"")+'I'3(p'P "-0"'6"')+'~4(p'P"0"'0"')+~ (P'P "n'"0"')+f' (P'P'"0"n"")'

I' (p -p'~" ~"~"")j, (26)

ql p"y"~pc"'x"'

symL —l& (p p'~""0"~'"~'")—l~ (p'p'~""~'"~'")—:I' (p'p'"~"—'I'"~'")+lI' (p p'~"'~"'~'"~'")
y ~P4(p pg»g«g pic~*)+—'P»(prpr7J»g pcg~ 4)+ 'P, (prp'-pyJvrrj pcg& 4) 4p, (p—p'gl rqvr. g pc/&v)
+4~24(p P'n""n"n'"n")+'~24(p'P'n"'n""~")+ '&»(P'P'"n"-'n"'n'")+&24(p P"~'"n""~'")

kI'»(p p—'~"'I"~""~") k&»(p'p—'"~"~""~'")+i~»(pp'0'"9""n'")—2&24(p p'~""~"~"'~")
p2 (prp rgv pg x cg Kcc) P»(p pp Agv cgKP gru') I 24 (p p pg rcrjrpgv x) p~ (p pp cg Alvin

rpriv cc)

+I'4(p p'~"p~" ~"~"") I'»(p'p'~""~—"~"") 2I'»(p p'~"p—~""~"~'") I'»(p'p'—~'"~"'n"")
P (ppp c~hcc~pcr~vr) P (pap p~rp~vc~ccX) P (pcrpvp~rp~Xc~rv)+2+ (p.p ~vcr~rp~kc~ccp) j (2 7)

The "Sym" standing in front of these expressions indi-
cates that a symmetrization is to be performed on each
index pair pp, a.r, etc. The symbol P indicates that a
summation is to be carried out over all distinct permu-
tations of the momentum-index triplets, and the sub-
script gives the number of permutations required in
each case.
Expressions (2.6) and (2.7) can be obtained in a

straightforward manner by repeated functional diGer-
entiation of the Einstein action. This procedure, how-
ever, is exceedingly laborious. A more eKcient (but
still lengthy) method is to make use of the hierarchy
of identities (II, 17.31). It is a remarkable fact that
once 52' is known all the higher vertex functions, and
hence the complete action functional itself, are de-
termined by the general coordinate invariance of the
theory. It is convenient, in the actual computation of
the vertices via (II, 17.31), to invent diagrammatic
schemes for displaying the combinatorics of indices.
Since each reader will devise the scheme which suits

G~ (~P.n-+~P.~- n»~-)/P'-
G~n""/P'.

(2.9)
(2.10)

' The choice of terms is not completely unique since momentum
conservation may be used to replace a given term by other terms.
We give here what we believe (but have not proved} to be the
expressions containing the smallest number of terms.

him best we shall not shackle him by describing one
here. V(e also make no attempt to display S& or any
higher vertices.
The vertex V(;)p has the following form for the

gravitational Geld:
aIIr"

(p )v'

,'Symrt2P" pP"8„'—-P"pP'„g"
+(p.p" p'.p )4'+p'P'4—& 'j (2 g)

where the momentum-index combinations are pp, PY,
p"0"T", and the symmetrization is to be performed on
the index pair o.r. The propagators for the normal and
Gctitious quanta are given by

3pt graviton 
Feynman vertex

4pt graviton 
Feynman vertex

modern
methods

A(H�
1 H�

2 H+
3 ) =

h12i6

h13i2h32i2
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implication that the detailed dynamics of the gravitational field can be described in terms of
the dynamics of gauge fields, Eq. (1.4) has other surprising features not visible in standard
Lagrangian formulations. For example, Eq. (1.4) implies that the four-graviton amplitude
can be re-arranged so that Lorentz indices factorize [94, 95] into “left” indices belonging to
one gauge-theory amplitude and “right” indices belonging to another gauge theory.

1.1 Motivation: Complexity of gravity versus gauge theory
It is interesting to contrast the remarkable simplicity encoded in the relation (1.4) with the
much more complicated expressions that arise from standard Lagrangian methods. Scat-
tering amplitudes for gauge and gravity theories can be obtained using the Feynman rules
derived from their respective Lagrangians

LYM = ≠1
4F a

µ‹F a µ‹ , LEH = 2
Ÿ2
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Here F a
µ‹ is the usual YM field strength and R the Ricci scalar.

Following standard Feynman-diagrammatic methods, we gauge-fix and then extract the
propagator(s) and the three- and higher-point vertices. For gravity we also expand around
flat spacetime, taking the metric to be gµ‹ = ÷µ‹ + Ÿhµ‹ where ÷µ‹ is the Minkowski metric
and hµ‹ is the graviton field. As illustrated in Figs. 1 and 2, with standard gauge choices,
gauge theory has only three- and four-point vertices, while gravity has an infinite number
of vertices of arbitrary multiplicity. The complexity of each individual interaction term is
perhaps more striking than their infinite number. Consider, for example, the three-graviton
interaction. In the standard de Donder gauge, ˆ‹h‹

µ = 1
2ˆµh‹

‹ , the corresponding vertex
is [96, 97],

G3 µfl,‹⁄,‡· (p1, p2, p3)

= iSym
5
≠1

2P3(p1 · p2÷µfl÷‹⁄÷‡· ) ≠ 1
2P6(p1‹p1⁄÷µfl÷‡· ) + 1

2P3(p1 · p2÷µ‹÷fl⁄÷‡· )

+ P6(p1 · p2÷µfl÷‹‡÷⁄· ) + 2P3(p1‹p1· ÷µfl÷⁄‡) ≠ P3(p1⁄p2µ÷fl‹÷‡· )
+ P3(p1‡p2· ÷µ‹÷fl⁄) + P6(p1‡p1· ÷µ‹÷fl⁄) + 2P6(p1‹p2· ÷⁄µ÷fl‡)

+ 2P3(p1‹p2µ÷⁄‡÷·fl) ≠ 2P3(p1 · p2÷fl‹÷⁄‡÷·µ)
6

, (1.6)

where we set Ÿ = 2, pi are the momenta of the three gravitons, ÷µ‹ is the flat metric, “Sym”
implies a symmetrization in each pair of graviton Lorentz indices µ ¡ fl, ‹ ¡ ⁄ and ‡ ¡ · ,
and P3 and P6 signify a symmetrization over the three graviton legs, generating three or
six terms respectively. The symmetrization over the three external legs ensures the Bose
symmetry of the vertex. In total, the vertex has of the order of 100 terms. This generally
undercounts the number of terms, because within a diagram each vertex momentum is a
linear combination of the independent momenta of that diagram.

We may contrast this to the three-gluon vertex in Feynman gauge,

V abc
3 µ‹‡(p1, p2, p3) = gfabc

5
(p1 ≠ p2)‡÷µ‹ + cyclic

6
. (1.7)

which does not appear to bear any obvious relation to the corresponding three-graviton
vertex (1.6). These considerations seemingly suggest that gravity is much more complicated
than gauge theory. Moreover, the three-graviton vertex immediately appears to conflict with
the simple factorization of Lorentz indices into left and right sets visible in Eq. (1.4). The
first term in Eq. (1.6), for example, contains a factor ÷µfl which explicitly contracts a left
graviton index with a right one.

The reason why the three-graviton vertex is so complicated is that it is gauge-dependent.1
With special gauge choices and appropriate field redefinitions [94, 95, 98, 99], it is possible
to considerably simplifying the Feynman rules. Still, direct perturbative gravity calculations
in a Feynman diagram approach are rather nontrivial, especially beyond leading order, even
with modern computers. To eliminate the gauge dependence we should instead focus on
the three-vertex with on-shell conditions imposed on external legs, by demanding that the

1While somewhat less complicated than the three-graviton vertex, the three-gluon vertex is also gauge-
dependent.
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Figure 2: Gravity theories have an infinite number of higher-point contact interactions in a Feynman
diagrammatic description.

where Atree
4 (1, 2, 3, 4) is a color-ordered gauge-theory four-gluon partial scattering amplitude,

Mtree
4 (1, 2, 3, 4) is a four-graviton tree amplitude and Ÿ is the gravitational coupling to related

to Newton’s constant via Ÿ2 = 32fi2GN and, for reasons that will become clear shortly, the
polarization vectors of gluons on the right-hand side of Eq. (1.4) are taken to be null. We
will suppress the gravitational coupling by setting Ÿ = 2 throughout this review. The color-
ordered partial tree amplitudes are the coe�cients of basis elements once the amplitude’s
color factors are expressed in the trace color basis, and the coupling g is set to unity. They are
gauge invariant—see e.g. Refs. [88–92] for further details. Equation (1.4) is rather striking,
asserting that tree-level four-graviton scattering is described completely by gauge-theory
four-gluon scattering, bypassing the usual machinery of general relativity. Similar relations
were later derived for higher-point string-theory tree-level amplitudes [86], and generalized in
the field-theory limit to an arbitrary number of external particles [93]. Besides the remarkable
implication that the detailed dynamics of the gravitational field can be described in terms of
the dynamics of gauge fields, Eq. (1.4) has other surprising features not visible in standard
Lagrangian formulations. For example, Eq. (1.4) implies that the four-graviton amplitude
can be re-arranged so that Lorentz indices factorize [94, 95] into “left” indices belonging to
one gauge-theory amplitude and “right” indices belonging to another gauge theory.

1.1 Motivation: Complexity of gravity versus gauge theory
It is interesting to contrast the remarkable simplicity encoded in the relation (1.4) with the
much more complicated expressions that arise from standard Lagrangian methods. Scat-
tering amplitudes for gauge and gravity theories can be obtained using the Feynman rules
derived from their respective Lagrangians
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corrections. For the Yang-MiOs Geld it takes the form

V( T""')p ~ —ic.p,P"= —ic.~p(P +P'") . (2.3)
The propagators for the normal and Gctitious quanta
are, respectively,

G~v'v"/p',
G~~aP/P2

(2.4)

(2 5)

with p' being understood to have the usual small
negative imaginary part.
The corresponding quantities for the gravitational

6eld are much more complicated. In this case we shall
employ the momentum-index combinations pq4, p'OT'',
p"p'9", p"'4'"z"'. The vertices must not only be sym-
metric in each index pair but must also remain un-
changed under arbitrary permutations of the momen-
turn-index triplets. At least 171 separate terms are
required in the complete expression for S3 in order to
exhibit this full symmetry, and for 54 the number is
2850. However, these numbers can be greatly reduced
by counting only the combinatorially distinct terms~
and leaving it understood that the appropriate sym-
metrizations are to be carried out. In this way S3 is
reduced to j.1 terms and S4 to 28 terms, as follows:

~ Pyv~'Po' r'~ Pp"X"

symL l~.(p—A""n"~ ") lI'4(p-p'~""~ ")+lI'4(p AP ~" ~ ")+lI'4(p A""~"~ ")+~4(P'P"~""~")
'I'4(p'P "-0" 0"")+'I'3(p'P "-0"'6"')+'~4(p'P"0"'0"')+~ (P'P "n'"0"')+f' (P'P'"0"n"")'

I' (p -p'~" ~"~"")j, (26)

ql p"y"~pc"'x"'

symL —l& (p p'~""0"~'"~'")—l~ (p'p'~""~'"~'")—:I' (p'p'"~"—'I'"~'")+lI' (p p'~"'~"'~'"~'")
y ~P4(p pg»g«g pic~*)+—'P»(prpr7J»g pcg~ 4)+ 'P, (prp'-pyJvrrj pcg& 4) 4p, (p—p'gl rqvr. g pc/&v)
+4~24(p P'n""n"n'"n")+'~24(p'P'n"'n""~")+ '&»(P'P'"n"-'n"'n'")+&24(p P"~'"n""~'")

kI'»(p p—'~"'I"~""~") k&»(p'p—'"~"~""~'")+i~»(pp'0'"9""n'")—2&24(p p'~""~"~"'~")
p2 (prp rgv pg x cg Kcc) P»(p pp Agv cgKP gru') I 24 (p p pg rcrjrpgv x) p~ (p pp cg Alvin

rpriv cc)

+I'4(p p'~"p~" ~"~"") I'»(p'p'~""~—"~"") 2I'»(p p'~"p—~""~"~'") I'»(p'p'—~'"~"'n"")
P (ppp c~hcc~pcr~vr) P (pap p~rp~vc~ccX) P (pcrpvp~rp~Xc~rv)+2+ (p.p ~vcr~rp~kc~ccp) j (2 7)

The "Sym" standing in front of these expressions indi-
cates that a symmetrization is to be performed on each
index pair pp, a.r, etc. The symbol P indicates that a
summation is to be carried out over all distinct permu-
tations of the momentum-index triplets, and the sub-
script gives the number of permutations required in
each case.
Expressions (2.6) and (2.7) can be obtained in a

straightforward manner by repeated functional diGer-
entiation of the Einstein action. This procedure, how-
ever, is exceedingly laborious. A more eKcient (but
still lengthy) method is to make use of the hierarchy
of identities (II, 17.31). It is a remarkable fact that
once 52' is known all the higher vertex functions, and
hence the complete action functional itself, are de-
termined by the general coordinate invariance of the
theory. It is convenient, in the actual computation of
the vertices via (II, 17.31), to invent diagrammatic
schemes for displaying the combinatorics of indices.
Since each reader will devise the scheme which suits

G~ (~P.n-+~P.~- n»~-)/P'-
G~n""/P'.

(2.9)
(2.10)

' The choice of terms is not completely unique since momentum
conservation may be used to replace a given term by other terms.
We give here what we believe (but have not proved} to be the
expressions containing the smallest number of terms.

him best we shall not shackle him by describing one
here. V(e also make no attempt to display S& or any
higher vertices.
The vertex V(;)p has the following form for the

gravitational Geld:
aIIr"

(p )v'

,'Symrt2P" pP"8„'—-P"pP'„g"
+(p.p" p'.p )4'+p'P'4—& 'j (2 g)

where the momentum-index combinations are pp, PY,
p"0"T", and the symmetrization is to be performed on
the index pair o.r. The propagators for the normal and
Gctitious quanta are given by
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Figure 2: Gravity theories have an infinite number of higher-point contact interactions in a Feynman
diagrammatic description.

where Atree
4 (1, 2, 3, 4) is a color-ordered gauge-theory four-gluon partial scattering amplitude,

Mtree
4 (1, 2, 3, 4) is a four-graviton tree amplitude and Ÿ is the gravitational coupling to related

to Newton’s constant via Ÿ2 = 32fi2GN and, for reasons that will become clear shortly, the
polarization vectors of gluons on the right-hand side of Eq. (1.4) are taken to be null. We
will suppress the gravitational coupling by setting Ÿ = 2 throughout this review. The color-
ordered partial tree amplitudes are the coe�cients of basis elements once the amplitude’s
color factors are expressed in the trace color basis, and the coupling g is set to unity. They are
gauge invariant—see e.g. Refs. [88–92] for further details. Equation (1.4) is rather striking,
asserting that tree-level four-graviton scattering is described completely by gauge-theory
four-gluon scattering, bypassing the usual machinery of general relativity. Similar relations
were later derived for higher-point string-theory tree-level amplitudes [86], and generalized in
the field-theory limit to an arbitrary number of external particles [93]. Besides the remarkable
implication that the detailed dynamics of the gravitational field can be described in terms of
the dynamics of gauge fields, Eq. (1.4) has other surprising features not visible in standard
Lagrangian formulations. For example, Eq. (1.4) implies that the four-graviton amplitude
can be re-arranged so that Lorentz indices factorize [94, 95] into “left” indices belonging to
one gauge-theory amplitude and “right” indices belonging to another gauge theory.

1.1 Motivation: Complexity of gravity versus gauge theory
It is interesting to contrast the remarkable simplicity encoded in the relation (1.4) with the
much more complicated expressions that arise from standard Lagrangian methods. Scat-
tering amplitudes for gauge and gravity theories can be obtained using the Feynman rules
derived from their respective Lagrangians

LYM = ≠1
4F a

µ‹F a µ‹ , LEH = 2
Ÿ2

Ô
≠gR . (1.5)
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Figure 2: Gravity theories have an infinite number of higher-point contact interactions in a Feynman
diagrammatic description.

where Atree
4 (1, 2, 3, 4) is a color-ordered gauge-theory four-gluon partial scattering amplitude,

Mtree
4 (1, 2, 3, 4) is a four-graviton tree amplitude and Ÿ is the gravitational coupling to related

to Newton’s constant via Ÿ2 = 32fi2GN and, for reasons that will become clear shortly, the
polarization vectors of gluons on the right-hand side of Eq. (1.4) are taken to be null. We
will suppress the gravitational coupling by setting Ÿ = 2 throughout this review. The color-
ordered partial tree amplitudes are the coe�cients of basis elements once the amplitude’s
color factors are expressed in the trace color basis, and the coupling g is set to unity. They are
gauge invariant—see e.g. Refs. [88–92] for further details. Equation (1.4) is rather striking,
asserting that tree-level four-graviton scattering is described completely by gauge-theory
four-gluon scattering, bypassing the usual machinery of general relativity. Similar relations
were later derived for higher-point string-theory tree-level amplitudes [86], and generalized in
the field-theory limit to an arbitrary number of external particles [93]. Besides the remarkable
implication that the detailed dynamics of the gravitational field can be described in terms of
the dynamics of gauge fields, Eq. (1.4) has other surprising features not visible in standard
Lagrangian formulations. For example, Eq. (1.4) implies that the four-graviton amplitude
can be re-arranged so that Lorentz indices factorize [94, 95] into “left” indices belonging to
one gauge-theory amplitude and “right” indices belonging to another gauge theory.

1.1 Motivation: Complexity of gravity versus gauge theory
It is interesting to contrast the remarkable simplicity encoded in the relation (1.4) with the
much more complicated expressions that arise from standard Lagrangian methods. Scat-
tering amplitudes for gauge and gravity theories can be obtained using the Feynman rules
derived from their respective Lagrangians
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Here F a
µ‹ is the usual YM field strength and R the Ricci scalar.

Following standard Feynman-diagrammatic methods, we gauge-fix and then extract the
propagator(s) and the three- and higher-point vertices. For gravity we also expand around
flat spacetime, taking the metric to be gµ‹ = ÷µ‹ + Ÿhµ‹ where ÷µ‹ is the Minkowski metric
and hµ‹ is the graviton field. As illustrated in Figs. 1 and 2, with standard gauge choices,
gauge theory has only three- and four-point vertices, while gravity has an infinite number
of vertices of arbitrary multiplicity. The complexity of each individual interaction term is
perhaps more striking than their infinite number. Consider, for example, the three-graviton
interaction. In the standard de Donder gauge, ˆ‹h‹

µ = 1
2ˆµh‹

‹ , the corresponding vertex
is [96, 97],

G3 µfl,‹⁄,‡· (p1, p2, p3)

= iSym
5
≠1

2P3(p1 · p2÷µfl÷‹⁄÷‡· ) ≠ 1
2P6(p1‹p1⁄÷µfl÷‡· ) + 1

2P3(p1 · p2÷µ‹÷fl⁄÷‡· )

+ P6(p1 · p2÷µfl÷‹‡÷⁄· ) + 2P3(p1‹p1· ÷µfl÷⁄‡) ≠ P3(p1⁄p2µ÷fl‹÷‡· )
+ P3(p1‡p2· ÷µ‹÷fl⁄) + P6(p1‡p1· ÷µ‹÷fl⁄) + 2P6(p1‹p2· ÷⁄µ÷fl‡)

+ 2P3(p1‹p2µ÷⁄‡÷·fl) ≠ 2P3(p1 · p2÷fl‹÷⁄‡÷·µ)
6

, (1.6)

where we set Ÿ = 2, pi are the momenta of the three gravitons, ÷µ‹ is the flat metric, “Sym”
implies a symmetrization in each pair of graviton Lorentz indices µ ¡ fl, ‹ ¡ ⁄ and ‡ ¡ · ,
and P3 and P6 signify a symmetrization over the three graviton legs, generating three or
six terms respectively. The symmetrization over the three external legs ensures the Bose
symmetry of the vertex. In total, the vertex has of the order of 100 terms. This generally
undercounts the number of terms, because within a diagram each vertex momentum is a
linear combination of the independent momenta of that diagram.

We may contrast this to the three-gluon vertex in Feynman gauge,

V abc
3 µ‹‡(p1, p2, p3) = gfabc

5
(p1 ≠ p2)‡÷µ‹ + cyclic

6
. (1.7)

which does not appear to bear any obvious relation to the corresponding three-graviton
vertex (1.6). These considerations seemingly suggest that gravity is much more complicated
than gauge theory. Moreover, the three-graviton vertex immediately appears to conflict with
the simple factorization of Lorentz indices into left and right sets visible in Eq. (1.4). The
first term in Eq. (1.6), for example, contains a factor ÷µfl which explicitly contracts a left
graviton index with a right one.

The reason why the three-graviton vertex is so complicated is that it is gauge-dependent.1
With special gauge choices and appropriate field redefinitions [94, 95, 98, 99], it is possible
to considerably simplifying the Feynman rules. Still, direct perturbative gravity calculations
in a Feynman diagram approach are rather nontrivial, especially beyond leading order, even
with modern computers. To eliminate the gauge dependence we should instead focus on
the three-vertex with on-shell conditions imposed on external legs, by demanding that the

1While somewhat less complicated than the three-graviton vertex, the three-gluon vertex is also gauge-
dependent.
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Figure 2: Gravity theories have an infinite number of higher-point contact interactions in a Feynman
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where Atree
4 (1, 2, 3, 4) is a color-ordered gauge-theory four-gluon partial scattering amplitude,

Mtree
4 (1, 2, 3, 4) is a four-graviton tree amplitude and Ÿ is the gravitational coupling to related

to Newton’s constant via Ÿ2 = 32fi2GN and, for reasons that will become clear shortly, the
polarization vectors of gluons on the right-hand side of Eq. (1.4) are taken to be null. We
will suppress the gravitational coupling by setting Ÿ = 2 throughout this review. The color-
ordered partial tree amplitudes are the coe�cients of basis elements once the amplitude’s
color factors are expressed in the trace color basis, and the coupling g is set to unity. They are
gauge invariant—see e.g. Refs. [88–92] for further details. Equation (1.4) is rather striking,
asserting that tree-level four-graviton scattering is described completely by gauge-theory
four-gluon scattering, bypassing the usual machinery of general relativity. Similar relations
were later derived for higher-point string-theory tree-level amplitudes [86], and generalized in
the field-theory limit to an arbitrary number of external particles [93]. Besides the remarkable
implication that the detailed dynamics of the gravitational field can be described in terms of
the dynamics of gauge fields, Eq. (1.4) has other surprising features not visible in standard
Lagrangian formulations. For example, Eq. (1.4) implies that the four-graviton amplitude
can be re-arranged so that Lorentz indices factorize [94, 95] into “left” indices belonging to
one gauge-theory amplitude and “right” indices belonging to another gauge theory.

1.1 Motivation: Complexity of gravity versus gauge theory
It is interesting to contrast the remarkable simplicity encoded in the relation (1.4) with the
much more complicated expressions that arise from standard Lagrangian methods. Scat-
tering amplitudes for gauge and gravity theories can be obtained using the Feynman rules
derived from their respective Lagrangians
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µ‹F a µ‹ , LEH = 2
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corrections. For the Yang-MiOs Geld it takes the form

V( T""')p ~ —ic.p,P"= —ic.~p(P +P'") . (2.3)
The propagators for the normal and Gctitious quanta
are, respectively,

G~v'v"/p',
G~~aP/P2

(2.4)

(2 5)

with p' being understood to have the usual small
negative imaginary part.
The corresponding quantities for the gravitational

6eld are much more complicated. In this case we shall
employ the momentum-index combinations pq4, p'OT'',
p"p'9", p"'4'"z"'. The vertices must not only be sym-
metric in each index pair but must also remain un-
changed under arbitrary permutations of the momen-
turn-index triplets. At least 171 separate terms are
required in the complete expression for S3 in order to
exhibit this full symmetry, and for 54 the number is
2850. However, these numbers can be greatly reduced
by counting only the combinatorially distinct terms~
and leaving it understood that the appropriate sym-
metrizations are to be carried out. In this way S3 is
reduced to j.1 terms and S4 to 28 terms, as follows:

~ Pyv~'Po' r'~ Pp"X"

symL l~.(p—A""n"~ ") lI'4(p-p'~""~ ")+lI'4(p AP ~" ~ ")+lI'4(p A""~"~ ")+~4(P'P"~""~")
'I'4(p'P "-0" 0"")+'I'3(p'P "-0"'6"')+'~4(p'P"0"'0"')+~ (P'P "n'"0"')+f' (P'P'"0"n"")'

I' (p -p'~" ~"~"")j, (26)

ql p"y"~pc"'x"'

symL —l& (p p'~""0"~'"~'")—l~ (p'p'~""~'"~'")—:I' (p'p'"~"—'I'"~'")+lI' (p p'~"'~"'~'"~'")
y ~P4(p pg»g«g pic~*)+—'P»(prpr7J»g pcg~ 4)+ 'P, (prp'-pyJvrrj pcg& 4) 4p, (p—p'gl rqvr. g pc/&v)
+4~24(p P'n""n"n'"n")+'~24(p'P'n"'n""~")+ '&»(P'P'"n"-'n"'n'")+&24(p P"~'"n""~'")

kI'»(p p—'~"'I"~""~") k&»(p'p—'"~"~""~'")+i~»(pp'0'"9""n'")—2&24(p p'~""~"~"'~")
p2 (prp rgv pg x cg Kcc) P»(p pp Agv cgKP gru') I 24 (p p pg rcrjrpgv x) p~ (p pp cg Alvin

rpriv cc)

+I'4(p p'~"p~" ~"~"") I'»(p'p'~""~—"~"") 2I'»(p p'~"p—~""~"~'") I'»(p'p'—~'"~"'n"")
P (ppp c~hcc~pcr~vr) P (pap p~rp~vc~ccX) P (pcrpvp~rp~Xc~rv)+2+ (p.p ~vcr~rp~kc~ccp) j (2 7)

The "Sym" standing in front of these expressions indi-
cates that a symmetrization is to be performed on each
index pair pp, a.r, etc. The symbol P indicates that a
summation is to be carried out over all distinct permu-
tations of the momentum-index triplets, and the sub-
script gives the number of permutations required in
each case.
Expressions (2.6) and (2.7) can be obtained in a

straightforward manner by repeated functional diGer-
entiation of the Einstein action. This procedure, how-
ever, is exceedingly laborious. A more eKcient (but
still lengthy) method is to make use of the hierarchy
of identities (II, 17.31). It is a remarkable fact that
once 52' is known all the higher vertex functions, and
hence the complete action functional itself, are de-
termined by the general coordinate invariance of the
theory. It is convenient, in the actual computation of
the vertices via (II, 17.31), to invent diagrammatic
schemes for displaying the combinatorics of indices.
Since each reader will devise the scheme which suits
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G~n""/P'.
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(2.10)

' The choice of terms is not completely unique since momentum
conservation may be used to replace a given term by other terms.
We give here what we believe (but have not proved} to be the
expressions containing the smallest number of terms.

him best we shall not shackle him by describing one
here. V(e also make no attempt to display S& or any
higher vertices.
The vertex V(;)p has the following form for the

gravitational Geld:
aIIr"
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where the momentum-index combinations are pp, PY,
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the index pair o.r. The propagators for the normal and
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Figure 2: Gravity theories have an infinite number of higher-point contact interactions in a Feynman
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where Atree
4 (1, 2, 3, 4) is a color-ordered gauge-theory four-gluon partial scattering amplitude,

Mtree
4 (1, 2, 3, 4) is a four-graviton tree amplitude and Ÿ is the gravitational coupling to related

to Newton’s constant via Ÿ2 = 32fi2GN and, for reasons that will become clear shortly, the
polarization vectors of gluons on the right-hand side of Eq. (1.4) are taken to be null. We
will suppress the gravitational coupling by setting Ÿ = 2 throughout this review. The color-
ordered partial tree amplitudes are the coe�cients of basis elements once the amplitude’s
color factors are expressed in the trace color basis, and the coupling g is set to unity. They are
gauge invariant—see e.g. Refs. [88–92] for further details. Equation (1.4) is rather striking,
asserting that tree-level four-graviton scattering is described completely by gauge-theory
four-gluon scattering, bypassing the usual machinery of general relativity. Similar relations
were later derived for higher-point string-theory tree-level amplitudes [86], and generalized in
the field-theory limit to an arbitrary number of external particles [93]. Besides the remarkable
implication that the detailed dynamics of the gravitational field can be described in terms of
the dynamics of gauge fields, Eq. (1.4) has other surprising features not visible in standard
Lagrangian formulations. For example, Eq. (1.4) implies that the four-graviton amplitude
can be re-arranged so that Lorentz indices factorize [94, 95] into “left” indices belonging to
one gauge-theory amplitude and “right” indices belonging to another gauge theory.

1.1 Motivation: Complexity of gravity versus gauge theory
It is interesting to contrast the remarkable simplicity encoded in the relation (1.4) with the
much more complicated expressions that arise from standard Lagrangian methods. Scat-
tering amplitudes for gauge and gravity theories can be obtained using the Feynman rules
derived from their respective Lagrangians

LYM = ≠1
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µ‹F a µ‹ , LEH = 2
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Ô
≠gR . (1.5)
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We conclude that it is impossible to a single self-interacting massless spin 1 particle! But

suppose we have many of these particles labelled by the index a; thus the self-interaction of

a
1

, a
2

, a
3

is further proportional to a coupling constant fa1a2a3 . Considering the four particle

amplitude with the same helicities and labels a
1

, a
2

, a
3

, a
4

, the residues in the s, t, u channels

have additional factors of fa1a2ef ea3a4 and similarly in the t, u channels. Now the ansatz for

the four-particle amplitude has the form
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and matching the residues in s, t, u tells us that

Ca1a2a3a4 �Aa1a2a3a4 = fa1a2ef ea3a4

Aa1a2a3a4 �Ba1a2a3a4 = fa2a3ef ea4a1

Ba1a2a3a4 � Ca1a2a3a4 = fa3a1ef ea2a4 (3.10)

and now, we can solve for Aa1a2a3a4 , Ba1a2a3a4 , Ca1a2a3a4 if and only if the fa1a2a3 satisfies the

Jacobi identity

fa1a2ef ea3a4 + fa2a3ef ea4a1 + fa3a1ef ea2a4 = 0 (3.11)

Let’s now move on to a single particle with s = 2. Naively, since the residue in the

s�channel is proportional to 1/u2, we might think that it is impossible for the four-particle

amplitude to have crucial properties of having only single poles! However, this 1/u2 is the

residue just as s ! 0, and so it could also be represented as � 1

tu . Thus there is a unique

possibility for the four-particle amplitude for a single massless spin two particle:

� h13i4[24]4
stu

(3.12)

which evidently has all the correct residues in all three channels! We can further investigate

the possibility on several massless spin two particles, with a coupling constant ga1a2a3 ; the

same analysis as for spin one then gives us quadratic constraints on the ga1a2a3 that are solved

only by g’s that, up to change of basis, are only non-vanishing for a
1

= a
2

= a
3

, i.e. which

are mutually non-interacting.

We have thus seen that the only consistently interacting massless spin one particles must

have a Yang-Mills structure, and the only consistent massless spin 2 particles does not non-

trivially allow more than one such particle, and gives us the standard gravity amplitude. Of

course we have done more than simply show the amplitudes are consistent, we have computed

them!

For spin s > 2, the residue in the s-channel is at least 1/u3, and so there is no way to

have a consistent four particle amplitude with only simple poles in s, t, u. We thus conclude

that there are no consistent theories of self-interacting massless particles of spin higher than

two.

Let’s move on to determine what sorts of self-consistent interactions other particles can

have with massless spin 1, 2 particles. Let’s start with the coupling of a spin s particles to
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4 (1, 2, 3, 4) is a color-ordered gauge-theory four-gluon partial scattering amplitude,

Mtree
4 (1, 2, 3, 4) is a four-graviton tree amplitude and Ÿ is the gravitational coupling to related

to Newton’s constant via Ÿ2 = 32fi2GN and, for reasons that will become clear shortly, the
polarization vectors of gluons on the right-hand side of Eq. (1.4) are taken to be null. We
will suppress the gravitational coupling by setting Ÿ = 2 throughout this review. The color-
ordered partial tree amplitudes are the coe�cients of basis elements once the amplitude’s
color factors are expressed in the trace color basis, and the coupling g is set to unity. They are
gauge invariant—see e.g. Refs. [88–92] for further details. Equation (1.4) is rather striking,
asserting that tree-level four-graviton scattering is described completely by gauge-theory
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implication that the detailed dynamics of the gravitational field can be described in terms of
the dynamics of gauge fields, Eq. (1.4) has other surprising features not visible in standard
Lagrangian formulations. For example, Eq. (1.4) implies that the four-graviton amplitude
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1.1 Motivation: Complexity of gravity versus gauge theory
It is interesting to contrast the remarkable simplicity encoded in the relation (1.4) with the
much more complicated expressions that arise from standard Lagrangian methods. Scat-
tering amplitudes for gauge and gravity theories can be obtained using the Feynman rules
derived from their respective Lagrangians
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We have thus seen that the only consistently interacting massless spin one particles must

have a Yang-Mills structure, and the only consistent massless spin 2 particles does not non-

trivially allow more than one such particle, and gives us the standard gravity amplitude. Of

course we have done more than simply show the amplitudes are consistent, we have computed

them!

For spin s > 2, the residue in the s-channel is at least 1/u3, and so there is no way to

have a consistent four particle amplitude with only simple poles in s, t, u. We thus conclude

that there are no consistent theories of self-interacting massless particles of spin higher than

two.

Let’s move on to determine what sorts of self-consistent interactions other particles can

have with massless spin 1, 2 particles. Let’s start with the coupling of a spin s particles to
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Here two little applications:

II.  BSM without Lagrangians
      e.g. bottom-up approach to theories of Goldstones:

I.  Use of amplitudes for calculating one-loop corrections  
from indirect BSM effects   

☛ Crucial role plaid by helicity selection rules

many “zeros” are found!

(it could be useful for composite Higgs models)

Amplitude methods not much used in BSM phenomenology!



1 Introduction

2 Dimension-six operator basis

Let us consider a sector beyond the SM (BSM) characterised by a new mass-scale ⇤ much

larger than the electroweak scale mW . We will assume, among other requirements to be

specified later, that this sector preserves lepton and baryon number. By integrating out this

sector and performing an expansion of SM fields and their derivatives Dµ over ⇤, we can

obtain an e↵ective Lagrangian made of local operators:

Le↵ =
⇤4

g2⇤
L
✓

Dµ

⇤
,
gHH

⇤
,
gfL,R

fL,R
⇤3/2

,
gFµ⌫

⇤2

◆

' L4 + L6 + · · · , (1)

where Ln denotes the term in the expansion made of operators of dimension n. By g⇤ we denote

a generic coupling of the BSM, while gH and gfL,R
are respectively the couplings of the Higgs-

doublet H (of hypercharge Y = 1/2) and SM fermion fL,R to the BSM sector, and g and Fµ⌫

are respectively the SM gauge couplings and field-strengths. The Lagrangian Eq. (1) is based

on dimensional grounds where the dependence on the couplings is easily obtained when the

Planck constant ~ is put back in place. The dominant e↵ects of the BSM sector are encoded

in L6, as L4 leads only to an unphysical redefinition of the SM couplings. There are di↵erent

basis used in the literature for the set of independent dimension-six operators appearing in L6.

Although physics is independent of the choice of basis, it is clear that some basis are better

suited than others for extracting the relevant information for, for example, Higgs physics.

A convenient basis can be that which capture in few operators the impact of di↵erent new-

physics scenarios, at least for the most interesting cases. For example, in the basis of ref. [],

universal theories only generate 11 CP-conserving operators, but this number can be larger

in other basis, as that of ref. [], with the corresponding correlation in their coe�cients. If

only ff ! ff processes are considered, only 4 operators can parametrize universal theories

if we use the basis []. Another important consideration for the choice of basis is to avoid

mixing operators whose coe�cients are naturally expected to have di↵erent sizes (again, at

least in main theories of interest). For example, it is convenient to keep separated operators

that can be induced at tree-level from integrating weakly-coupled states from those that can

only be generated at the one-loop level. This helps to determine what are the most relevant

operators when dealing with a large class of the BSM such as supersymmetric, composite

Higgs or little Higgs models among others. As shown in ref. [] this criteria is also useful when

considering one-loop operator mixing, since one finds that tree-level induced operators do not

contribute to the RG flow of one-loop induced ones, independently, of course, of the origin of

the operators. In this sense the basis of [] is better suited than that of []. It is obvious that

all the criteria given above are not at all in contradiction with being generic, that is also the

propose of these analysis, as soon as we keep all operators, as we do in this analysis.

In our bases we broadly distinguish three classes of operators. The first two classes consist

of operators that can in principle be generated at tree-level when integrating out heavy states

1

(assuming lepton & baryon number)

SM leading deviations  
from the SM

EFT capturing the (indirect) impact of BSMsI.
Assuming new-physics scale Λ is heavier than MW , 

we can perform an expansion in derivatives and SM fields
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A convenient basis can be that which capture in few operators the impact of di↵erent new-

physics scenarios, at least for the most interesting cases. For example, in the basis of ref. [],

universal theories only generate 11 CP-conserving operators, but this number can be larger

in other basis, as that of ref. [], with the corresponding correlation in their coe�cients. If

only ff ! ff processes are considered, only 4 operators can parametrize universal theories

if we use the basis []. Another important consideration for the choice of basis is to avoid

mixing operators whose coe�cients are naturally expected to have di↵erent sizes (again, at

least in main theories of interest). For example, it is convenient to keep separated operators

that can be induced at tree-level from integrating weakly-coupled states from those that can

only be generated at the one-loop level. This helps to determine what are the most relevant

operators when dealing with a large class of the BSM such as supersymmetric, composite

Higgs or little Higgs models among others. As shown in ref. [] this criteria is also useful when

considering one-loop operator mixing, since one finds that tree-level induced operators do not

contribute to the RG flow of one-loop induced ones, independently, of course, of the origin of

the operators. In this sense the basis of [] is better suited than that of []. It is obvious that

all the criteria given above are not at all in contradiction with being generic, that is also the

propose of these analysis, as soon as we keep all operators, as we do in this analysis.

In our bases we broadly distinguish three classes of operators. The first two classes consist

of operators that can in principle be generated at tree-level when integrating out heavy states

1
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5 Running e↵ects from ⇤ to MW

So far, we have implicitly assumed that the Wilson coe�cients were evaluated at the elec-

troweak scale, at which their e↵ects can be eventually measured. However, particular UV

completions predict the values of those coe�cients at the scale ⇤ where the heavy BSM is

integrated out. The RG evolution from ⇤ down to the electroweak scale, described by the

corresponding anomalous dimensions, can be important in many cases.

Our main interest is to calculate the anomalous dimensions of the Wilson coe�cients that

can have the largest impact on Higgs physics. As we explained in the previous section, these

are the coe�cients listed in Eq. (37). In Ref. [7] we already calculated the most relevant

anomalous dimensions of the i in Eq. (37). We showed that tree-level Wilson coe�cients do

not enter, at the one-loop level, in the RGEs of the i, a property that allowed us to complete

the calculation of [6] for the anomalous dimensions relevant for h ! ��, Z�. In this section

we extend the analysis by calculating the anomalous dimensions for the 5 tree-level Wilson

coe�cients:

{cH , c6, cyt , cyb , cy⌧} . (51)

We notice that even in the future, with better measurements of the Higgs couplings, and

then better bounds on Eq. (51), we still expect Eq. (51) to give the main BSM contributions

to Higgs physics, since other Wilson coe�cients, such as cW , are expected to receive even

stronger constraints from LHC (for a given ⇤).

Generically, the anomalous dimensions are functions of other Wilson coe�cients:

�ci =
dci

d log µ
= �ci(cj) , (52)

where µ is the renormalization scale. In the RHS of Eq. (52) we keep the cj coe�cients

that can potentially give the most significant contributions to the RG running. We keep the

following cj. First, those of Eq. (51) as they have no important experimental constraints

and also are the most relevant in BSM scenarios with g⇤ large. We also keep the Wilson

coe�cients of operators involving the top quark, departing from the MFV assumption. These

are Oq3
L , Ot

R, O(3) q3
L and Otb

R , in addition to the 4-fermion operators, Oq3
LL, O(8) q3

LL , Ot
LR,

O(8) t
LR , Oytyb , O(8)

ytyb , Oyty⌧ and O0
yty⌧ . We have several motivations to keep them. First, they

have no large constraints from experiments. Second, they can induce large e↵ects on the

anomalous dimensions of Eq. (51), since they are proportional to the top Yukawa coupling.

Also their Wilson coe�cients can be sizable in many BSM models, such as composite Higgs

or supersymmetric theories, as we will discuss. To summarize, we consider in the RHS of

Eq. (52) the following Wilson coe�cients:

{cj} = {cH , c6, cyt , cyb , cy⌧ , cL, cR, c(3)L , ctbR, cLL, c
(8)

LL, cLR, c
(8)

LR, cytyb , c
(8)

ytyb
, cyty⌧ , c

0
yty⌧} , (53)

where, from now on, we suppress the q
3

and t superindices in the coe�cients for simplicity.

We would like to mention that, even for those Wilson coe�cients that receive experimental

constraints, as those discussed in the previous section, the fact that the constraints apply
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2 Dimension-six operator basis

Let us consider a sector beyond the SM (BSM) characterised by a new mass-scale ⇤ much

larger than the electroweak scale mW . We will assume, among other requirements to be

specified later, that this sector preserves lepton and baryon number. By integrating out this

sector and performing an expansion of SM fields and their derivatives Dµ over ⇤, we can

obtain an e↵ective Lagrangian made of local operators:

Le↵ =
⇤4

g2⇤
L
✓

Dµ

⇤
,
gHH

⇤
,
gfL,R

fL,R
⇤3/2

,
gFµ⌫

⇤2

◆

' L4 + L6 + · · · , (1)

where Ln denotes the term in the expansion made of operators of dimension n. By g⇤ we denote

a generic coupling of the BSM, while gH and gfL,R
are respectively the couplings of the Higgs-

doublet H (of hypercharge Y = 1/2) and SM fermion fL,R to the BSM sector, and g and Fµ⌫

are respectively the SM gauge couplings and field-strengths. The Lagrangian Eq. (1) is based

on dimensional grounds where the dependence on the couplings is easily obtained when the

Planck constant ~ is put back in place. The dominant e↵ects of the BSM sector are encoded

in L6, as L4 leads only to an unphysical redefinition of the SM couplings. There are di↵erent

basis used in the literature for the set of independent dimension-six operators appearing in L6.

Although physics is independent of the choice of basis, it is clear that some basis are better

suited than others for extracting the relevant information for, for example, Higgs physics.

A convenient basis can be that which capture in few operators the impact of di↵erent new-

physics scenarios, at least for the most interesting cases. For example, in the basis of ref. [],

universal theories only generate 11 CP-conserving operators, but this number can be larger

in other basis, as that of ref. [], with the corresponding correlation in their coe�cients. If

only ff ! ff processes are considered, only 4 operators can parametrize universal theories

if we use the basis []. Another important consideration for the choice of basis is to avoid

mixing operators whose coe�cients are naturally expected to have di↵erent sizes (again, at

least in main theories of interest). For example, it is convenient to keep separated operators

that can be induced at tree-level from integrating weakly-coupled states from those that can

only be generated at the one-loop level. This helps to determine what are the most relevant

operators when dealing with a large class of the BSM such as supersymmetric, composite

Higgs or little Higgs models among others. As shown in ref. [] this criteria is also useful when

considering one-loop operator mixing, since one finds that tree-level induced operators do not

contribute to the RG flow of one-loop induced ones, independently, of course, of the origin of

the operators. In this sense the basis of [] is better suited than that of []. It is obvious that

all the criteria given above are not at all in contradiction with being generic, that is also the

propose of these analysis, as soon as we keep all operators, as we do in this analysis.

In our bases we broadly distinguish three classes of operators. The first two classes consist

of operators that can in principle be generated at tree-level when integrating out heavy states
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5 Running e↵ects from ⇤ to MW

So far, we have implicitly assumed that the Wilson coe�cients were evaluated at the elec-

troweak scale, at which their e↵ects can be eventually measured. However, particular UV

completions predict the values of those coe�cients at the scale ⇤ where the heavy BSM is

integrated out. The RG evolution from ⇤ down to the electroweak scale, described by the

corresponding anomalous dimensions, can be important in many cases.

Our main interest is to calculate the anomalous dimensions of the Wilson coe�cients that

can have the largest impact on Higgs physics. As we explained in the previous section, these

are the coe�cients listed in Eq. (37). In Ref. [7] we already calculated the most relevant

anomalous dimensions of the i in Eq. (37). We showed that tree-level Wilson coe�cients do

not enter, at the one-loop level, in the RGEs of the i, a property that allowed us to complete

the calculation of [6] for the anomalous dimensions relevant for h ! ��, Z�. In this section

we extend the analysis by calculating the anomalous dimensions for the 5 tree-level Wilson

coe�cients:

{cH , c6, cyt , cyb , cy⌧} . (51)

We notice that even in the future, with better measurements of the Higgs couplings, and

then better bounds on Eq. (51), we still expect Eq. (51) to give the main BSM contributions

to Higgs physics, since other Wilson coe�cients, such as cW , are expected to receive even

stronger constraints from LHC (for a given ⇤).

Generically, the anomalous dimensions are functions of other Wilson coe�cients:

�ci =
dci

d log µ
= �ci(cj) , (52)

where µ is the renormalization scale. In the RHS of Eq. (52) we keep the cj coe�cients

that can potentially give the most significant contributions to the RG running. We keep the

following cj. First, those of Eq. (51) as they have no important experimental constraints

and also are the most relevant in BSM scenarios with g⇤ large. We also keep the Wilson

coe�cients of operators involving the top quark, departing from the MFV assumption. These

are Oq3
L , Ot

R, O(3) q3
L and Otb

R , in addition to the 4-fermion operators, Oq3
LL, O(8) q3

LL , Ot
LR,

O(8) t
LR , Oytyb , O(8)

ytyb , Oyty⌧ and O0
yty⌧ . We have several motivations to keep them. First, they

have no large constraints from experiments. Second, they can induce large e↵ects on the

anomalous dimensions of Eq. (51), since they are proportional to the top Yukawa coupling.

Also their Wilson coe�cients can be sizable in many BSM models, such as composite Higgs

or supersymmetric theories, as we will discuss. To summarize, we consider in the RHS of

Eq. (52) the following Wilson coe�cients:

{cj} = {cH , c6, cyt , cyb , cy⌧ , cL, cR, c(3)L , ctbR, cLL, c
(8)

LL, cLR, c
(8)

LR, cytyb , c
(8)

ytyb
, cyty⌧ , c

0
yty⌧} , (53)

where, from now on, we suppress the q
3

and t superindices in the coe�cients for simplicity.

We would like to mention that, even for those Wilson coe�cients that receive experimental

constraints, as those discussed in the previous section, the fact that the constraints apply

17

Λ 

mW Oi
<latexit sha1_base64="ZCDIFWV66WKNCnZsHaS1BzEesdI=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04s0K9gPbUDbbSbt0swm7G6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSATXxnW/nZXVtfWNzcJWcXtnd2+/dHDY1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8HoZuq3nlBpHssHM07Qj+hA8pAzaqz0mHUZFeRu0uO9UtmtuDOQZeLlpAw56r3SV7cfszRCaZigWnc8NzF+RpXhTOCk2E01JpSN6AA7lkoaofaz2cUTcmqVPgljZUsaMlN/T2Q00nocBbYzomaoF72p+J/XSU145WdcJqlByeaLwlQQE5Pp+6TPFTIjxpZQpri9lbAhVZQZG1LRhuAtvrxMmtWKd16p3l+Ua9d5HAU4hhM4Aw8uoQa3UIcGMJDwDK/w5mjnxXl3PuatK04+cwR/4Hz+ADbYkJ0=</latexit>

Oi,Oj , ...
<latexit sha1_base64="FCvVXNK/CNREuWR+BqEzA4ZtxG8=">AAACAnicbZDLSsNAFIZPvNZ6i7oSN4NFcFFCUgVdFt24s4K9QBvCZDppx04uzEyEEoobX8WNC0Xc+hTufBunbRBt/WHg4z/ncOb8fsKZVLb9ZSwsLi2vrBbWiusbm1vb5s5uQ8apILROYh6Llo8l5SyidcUUp61EUBz6nDb9weW43rynQrI4ulXDhLoh7kUsYAQrbXnmftYhmKPrkcfKP3hXtizLM0u2ZU+E5sHJoQS5ap752enGJA1ppAjHUrYdO1FuhoVihNNRsZNKmmAywD3a1hjhkEo3m5wwQkfa6aIgFvpFCk3c3xMZDqUchr7uDLHqy9na2Pyv1k5VcO5mLEpSRSMyXRSkHKkYjfNAXSYoUXyoARPB9F8R6WOBidKpFXUIzuzJ89CoWM6JVbk5LVUv8jgKcACHcAwOnEEVrqAGdSDwAE/wAq/Go/FsvBnv09YFI5/Zgz8yPr4BNniWAg==</latexit>

EFT capturing the (indirect) impact of BSMs

Assuming new-physics scale Λ is heavier than MW , 
we can perform an expansion in derivatives and SM fields

Many non-trivial zeros in γi  

from explicit calculations !



One-loop anomalous dimension of dim-6 operators

O3F+ OFF+ OD Oyy Oy Oud
R O6 O+ O� O4f OHf

O3F+

OFF+

OD

Oyy

Oy

Oud
R

O6

O+

O�

O4f

OHf

O3F+ OFF+ OD Oyy Oy Oud
R O6 O+ O� O4f OHf

OFF+

OD

Oyy

Oy

Oud
R

O6

O+

O�

O4f

OHf

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

Figure 2: Blue-shaded entries vanish and are understood by means of ESFT.
Red-shaded area satisfies holomorphicity and is understood as consequence
of Lorentz symmetry.
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3.2 Holomorphy of the anomalous dimensions

It has been recently shown in Ref. [10], based on explicit calculations, that the anomalous

dimension matrix respects, to a large extent, holomorphy. Here we would like to show how to

derive some of these properties using our ESFT approach. In particular, we will derive that,

with the exception of one case, the one-loop anomalous dimensions of the complex Wilson-

coe�cients ci = {c3F+ , cFF+ , cD, cy, cyy, cud
R } do not depend on their complex-conjugates c⇤

j :

@�ci

@c⇤
j

= 0 . (34)

We start by showing when Eq. (34) is satisfied just by simple inspection of the SM diagrams.

For example, it is easy to realize that holomorphy must be respected in contributions from

dimension-six operators in which fermions with a given chirality, e.g., f↵ or f↵f 0
�, are kept

as external legs; indeed, the corresponding Hermitian-conjugate operator can only contribute

to operators with fermions in the opposite chirality. Interestingly, we can extend the same

argument to operators with field-strengths if we write the loop-operators as

O3F+ = �1

4
tr F �

↵ F �
� F ↵

� , OFF+ =
1

4
H†tatbH(Fa)↵�(F b)�↵ , OD = H†f↵(Fa)↵�taf 0

� , (35)

where we have defined F↵� ⌘ (F a
µ⌫t

a�µ⌫)↵� that transforms as a (1,0) under the Lorentz

group, and write the Hermitian-conjugate of Eq. (35) with F ↵̇�̇, a (0,1) under the Lorentz

group, as for example, O†
3F+ = O3F� = �1

4tr F �̇
↵̇ F �̇

�̇
F ↵̇

�̇
. From Eq. (35) it is clear that any

diagram with an external F↵� respects holomorphy, as it can only generate the operators of

Eq. (35) and not their Hermitian conjugates. One-loop contributions from OFF+ in which

H†tatbH is kept among the external fields, however, do not necessarily respect holomorphy.

An explicit calculation is needed, and while contributions to OFF+ vanish by the reasoning

given in [1], contributions to Oy are found not to be holomorphic.

Following our previous supersymmetric approach, it is quite simple to check whether or

not loop contributions are holomorphic. In the ESFT, holomorphy is trivially respected as

super-operators with an ⌘†-spurion renormalize among themselves and cannot induce the

Hermitian-conjugate super-operators since those contain an ⌘, and vice versa. This means
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5 Running e↵ects from ⇤ to MW

So far, we have implicitly assumed that the Wilson coe�cients were evaluated at the elec-

troweak scale, at which their e↵ects can be eventually measured. However, particular UV

completions predict the values of those coe�cients at the scale ⇤ where the heavy BSM is

integrated out. The RG evolution from ⇤ down to the electroweak scale, described by the

corresponding anomalous dimensions, can be important in many cases.

Our main interest is to calculate the anomalous dimensions of the Wilson coe�cients that

can have the largest impact on Higgs physics. As we explained in the previous section, these

are the coe�cients listed in Eq. (37). In Ref. [7] we already calculated the most relevant

anomalous dimensions of the i in Eq. (37). We showed that tree-level Wilson coe�cients do

not enter, at the one-loop level, in the RGEs of the i, a property that allowed us to complete

the calculation of [6] for the anomalous dimensions relevant for h ! ��, Z�. In this section

we extend the analysis by calculating the anomalous dimensions for the 5 tree-level Wilson

coe�cients:

{cH , c6, cyt , cyb , cy⌧} . (51)

We notice that even in the future, with better measurements of the Higgs couplings, and

then better bounds on Eq. (51), we still expect Eq. (51) to give the main BSM contributions

to Higgs physics, since other Wilson coe�cients, such as cW , are expected to receive even

stronger constraints from LHC (for a given ⇤).

Generically, the anomalous dimensions are functions of other Wilson coe�cients:

�ci =
dci

d log µ
= �ci(cj) , (52)

where µ is the renormalization scale. In the RHS of Eq. (52) we keep the cj coe�cients

that can potentially give the most significant contributions to the RG running. We keep the

following cj. First, those of Eq. (51) as they have no important experimental constraints

and also are the most relevant in BSM scenarios with g⇤ large. We also keep the Wilson

coe�cients of operators involving the top quark, departing from the MFV assumption. These

are Oq3
L , Ot

R, O(3) q3
L and Otb

R , in addition to the 4-fermion operators, Oq3
LL, O(8) q3

LL , Ot
LR,

O(8) t
LR , Oytyb , O(8)

ytyb , Oyty⌧ and O0
yty⌧ . We have several motivations to keep them. First, they

have no large constraints from experiments. Second, they can induce large e↵ects on the

anomalous dimensions of Eq. (51), since they are proportional to the top Yukawa coupling.

Also their Wilson coe�cients can be sizable in many BSM models, such as composite Higgs

or supersymmetric theories, as we will discuss. To summarize, we consider in the RHS of

Eq. (52) the following Wilson coe�cients:

{cj} = {cH , c6, cyt , cyb , cy⌧ , cL, cR, c(3)L , ctbR, cLL, c
(8)

LL, cLR, c
(8)

LR, cytyb , c
(8)
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where, from now on, we suppress the q
3

and t superindices in the coe�cients for simplicity.

We would like to mention that, even for those Wilson coe�cients that receive experimental

constraints, as those discussed in the previous section, the fact that the constraints apply
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1 Introduction

Electric dipole moments (EDM) provide one of the best indirect probes for new-physics. Since a
non-zero EDM requires a violation of the CP symmetry, and the Standard Model (SM) contributions
are accidentally highly suppressed, the EDM is an exceptionally clean observable to uncover beyond
the SM (BSM) physics. Indeed, if BSM physics lies at the TeV scale, we expect new interactions
and therefore new sources of CP to be present,1 inducing sizable EDM to be observed in the near
future. For this reason, experimental bounds on the electron and neutron EDM have provided
the most substantial constraints on the best motivated BSM scenarios, such as supersymmetry or
composite Higgs models.

The ACME experiment has recently released a new bound on the electron EDM that improve
by a factor ⇠ 8.6 their previous bound [1]:

|de| < 1.1 · 10�29 e · cm . (1.1)

1As in the SM, we can expect that any parameter of the BSM that can be complex will be complex, providing
unavoidably large new sources of CP violation.

2

Can provide important constraints  
even if BSM enters at the 2-loop level!
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Transla0on of ACME constraints to par0cle physics:

Two loops Chirality �ip log enhanced

Relevant constraints even at two loops.

We want to characterize all e5ects that enter with

This is the key to help organize 

the contributions

or even on dimension-8 operators!

Best weapon  
of BSM  

mass destruction!
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only interested in calculating the leading correction to the EDM. For Wilson coe�cients a↵ecting
the EDM already at the one-loop level, such as Cluqe, the two-loop corrections would only provide
a small correction to their bound.

New dimension-6 operators can contribute to the electron EDM by mixing with the dipoles
OeW and OeB in two di↵erent ways. Either by mixing at the one-loop level with the operators we
discussed in the previous section, Oluqe and OV Ṽ (V = W,B), that contribute at the one-loop level
to the dipoles, or by direct two-loop contribution to the anomalous dimension of OeW and OeB (see
Table 1).

The first case can potentially give larger corrections, as in the leading-log approximation, they
will contain two logarithms, i.e. / ln2(⇤2/m2

W ). From the selection rules of Table 2, we see that
only two classes of operators can contribute at this order. One is given by the  4 operators that
could not generate an electron dipole at the one-loop due to the absence of Feynman diagrams,

namely the O(1)
lequ operator. The second class is given by dipole operators involving the second and

third lepton generations, Oe0W and Oe0B, or the quarks, OuW , OuB, OdW and OdB.
Notice that, as we pointed out before, there is an exception to the selection rules of Table 2,

corresponding to a possible mixing of  ̄2 2 operators into  4 when the pair of Yukawas either yuye
or yuyd is involved in the loop [3, 4]. Nevertheless, by working in the basis in which the lepton
and up-type quark Yukawa matrices are real and diagonal, one can easily find that there are not
 ̄2 2 operators contributing to the imaginary part of Oluqe at the one-loop level. Indeed, in this
basis yuye is real and diagonal, and the only  ̄2 2 operators that could contribute to Oluqe are the
ones involving two electron fields and two same-generation quarks. The Wilson coe�cients of these
operators are necessarily real and do not induce CP-violating e↵ects.

Therefore the one-loop mixing pattern and RGEs are the following. The Olequ operator can
mix with Oluqe at the one-loop level [6]:

d

d lnµ
Cluqe =

g2

16⇡2
⇥
4(YL + Ye)(YQ + Yu)t

2
✓W

� 3
⇤
C

(1)
lequ . (2.14)
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discussed in the previous section, Oluqe and OV Ṽ (V = W,B), that contribute at the one-loop level
to the dipoles, or by direct two-loop contribution to the anomalous dimension of OeW and OeB (see
Table 1).

The first case can potentially give larger corrections, as in the leading-log approximation, they
will contain two logarithms, i.e. / ln2(⇤2/m2

W ). From the selection rules of Table 2, we see that
only two classes of operators can contribute at this order. One is given by the  4 operators that
could not generate an electron dipole at the one-loop due to the absence of Feynman diagrams,

namely the O(1)
lequ operator. The second class is given by dipole operators involving the second and

third lepton generations, Oe0W and Oe0B, or the quarks, OuW , OuB, OdW and OdB.
Notice that, as we pointed out before, there is an exception to the selection rules of Table 2,

corresponding to a possible mixing of  ̄2 2 operators into  4 when the pair of Yukawas either yuye
or yuyd is involved in the loop [3, 4]. Nevertheless, by working in the basis in which the lepton
and up-type quark Yukawa matrices are real and diagonal, one can easily find that there are not
 ̄2 2 operators contributing to the imaginary part of Oluqe at the one-loop level. Indeed, in this
basis yuye is real and diagonal, and the only  ̄2 2 operators that could contribute to Oluqe are the
ones involving two electron fields and two same-generation quarks. The Wilson coe�cients of these
operators are necessarily real and do not induce CP-violating e↵ects.

Therefore the one-loop mixing pattern and RGEs are the following. The Olequ operator can
mix with Oluqe at the one-loop level [6]:

d

d lnµ
Cluqe =

g2

16⇡2
⇥
4(YL + Ye)(YQ + Yu)t

2
✓W

� 3
⇤
C

(1)
lequ . (2.14)

8

One-loop mixing:

Two-loop mixing:

Just from explicit calculations! 
                       But why? Amplitude method needed!

(or susy: see arXiv:1412.7151)



Ai●Oi
<latexit sha1_base64="3cPTeQiwOU0Dy0Qd4n9HhDarQC8=">AAAB9XicbVBNSwMxEJ2tX7V+VT16CRbBU9mtgh6LXrxZwX5Ady3ZNNuGZpMlySpl6f/w4kERr/4Xb/4b03YP2vpg4PHeDDPzwoQzbVz32ymsrK6tbxQ3S1vbO7t75f2DlpapIrRJJJeqE2JNORO0aZjhtJMoiuOQ03Y4up767UeqNJPi3owTGsR4IFjECDZWevDDCGU+wRzdTnqsV664VXcGtEy8nFQgR6NX/vL7kqQxFYZwrHXXcxMTZFgZRjidlPxU0wSTER7QrqUCx1QH2ezqCTqxSh9FUtkSBs3U3xMZjrUex6HtjLEZ6kVvKv7ndVMTXQYZE0lqqCDzRVHKkZFoGgHqM0WJ4WNLMFHM3orIECtMjA2qZEPwFl9eJq1a1Tur1u7OK/WrPI4iHMExnIIHF1CHG2hAEwgoeIZXeHOenBfn3fmYtxacfOYQ/sD5/AHE0JIJ</latexit>

From operators to on-shell amplitudes

the power of being on-shell !

only physical states (p2=0)Ghosts, Golstones,…
(p2≠0)  definite helicity
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n = number of external states 
h = helicity of the amplitude

From operators to on-shell amplitudes

the power of being on-shell !
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flavor-momentum “alignment”
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⊕

Two amplitudes:

We then classify the d = 6 operators as

L
6

=
X

i1

g2⇤
ci1
⇤2

Oi1 +
X

i2

ci2
⇤2

Oi2 +
X

i3

i3

⇤2

Oi3 , (2)

where, for notational convenience, we introduce the one-loop suppressed coe�cients

i3 ⌘
g2⇤

16⇡2

ci3 , (3)

for the third class of operators. In weakly-coupled theories, ci ⇠ fi(g/g⇤, gH/g⇤, ...), where

fi(g/g⇤, gH/g⇤, ...) are functions that depend on ratios of couplings. We refer to the opera-

tors Oi1 and Oi2 as ”current-current” or ”tree-level” operators, while we call Oi3 ”one-loop”

operators.4

Although our basis follows a classification inspired by renormalizable weakly-coupled theo-

ries, it can also be useful when dealing with strongly-coupled BSM models. For example, if the

Higgs or SM fermions arise as composite mesonic states of a strongly-interacting gauge theory

with no small parameter, our basis can still give the right parametrization by taking g⇤ ⇠ 4⇡.

Also, strongly-coupled models that admit a weakly-coupled holographic description generate

d = 6 operators that follow the above classification. In this case we have g⇤ ⇠ 4⇡/
p
N where

N plays the role of the number of colors of the strong sector.

Let us start defining our basis by considering first operators made of SM bosons only [4].

In the first class of operators, Oi1 , we have

OH =
1

2
(@µ|H|2)2 , OT =

1

2
(H†

$
DµH)2 , Or = |H|2|DµH|2 , O

6

= �|H|6 . (4)

Here we have defined H†
$
DµH ⌘ H†DµH � (DµH)†H, with DµH = @µH � ig�aW a

µH/2 �
ig0BµH/2 (H is taken to have hypercharge YH = 1/2). For O

6

, which involves six Higgs

fields, an extra factor g2⇤ could be present. Nevertheless, we have substituted this by �, the

Higgs self-coupling defined as V = �m2|H|2 + �|H|4. This is motivated by the fact that the

lightness of the Higgs suggests that there is a symmetry protecting the Higgs self-coupling to

be of order � ⇠ m2

h/(2v
2) ⇠ 0.13. Examples are supersymmetry or global symmetries as in

composite Higgs models.

In the second class of operators, Oi2 , we have

OW =
ig

2
(H†�a

$
DµH)D⌫W a

µ⌫ , OB =
ig0

2
(H†

$
DµH)@⌫Bµ⌫ ,

O
2W = �1

2
(DµW a

µ⌫)
2 , O

2B = �1

2
(@µBµ⌫)

2 , O
2G = �1

2
(DµGA

µ⌫)
2 . (5)

Since the last three operators involve two field strengths, we expect c
2W ⇠ g2/g2⇤, c2B ⇠ g0 2/g2⇤,

and c
2G ⇠ g2s/g

2

⇤.

4 For a classification of operators similar in spirit to ours, see [10].
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}
Example O(∂2H4):

n=4; h=0
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n = number of external states 
h = helicity of the amplitude

Interested here in one-loop corrections:
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6 Loops I: Unitarity methods 6.1 Unitarity and the generalized unitarity method
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Figure 2: The sum of residues from all Feynman diagrams with propagators `2 and (`�p1�p2)2 on-shell
must give the product of two tree-amplitudes.

6.1 Unitarity and the generalized unitarity method

We begin with a concrete example: the color-ordered planar 5-point 1-loop gluon amplitude in

pure Yang-Mills theory. Suppose we identify31 the loop-momentum such that in each Feynman

diagram, ` is the momentum that flows between legs 1 and 5, as indicated in Figure 2. Then

we can collect all the distinct Feynman diagrams under one integral,Z
dD`

X
j

Jj . (6.2)

The integrands Jj take the form indicated in (6.1). To compute the full amplitude we need to

integrate ` over R4 (after Wick rotation from R1,3), but let us focus on the subplane where the

loop-momentum satisfies the two cut conditions

`2 = (` � p1 � p2)
2 = 0 . (6.3)

On this subplane, integrands of the form

Ji =
1

Si

cini

· · · (`2) · · · (` � p1 � p2)2 · · · (6.4)

become singular. The singularity corresponds to a kinematic configuration where two propa-

gators go on-shell. So the sum of the corresponding residues from all such integrands must be

equivalent to the product of two on-shell tree amplitudes, as shown schematically in Figure 2.

In other words, if the enemy gives us an integrand and claims that it corresponds to the 1-loop

amplitude of some (unitary) theory, we can test the claim by checking if the integrand factorizes

correctly into products of tree amplitudes. This way, our knowledge of tree amplitudes can be

recycled into information about the loop-integrand! The operation of taking loop propagators

on-shell is called a unitarity cut. It originates from the unitary constraint of the S-matrix.

To see how, recall that unitarity requires S†S = 1. Writing S = 1 + iT , where T represents

the interacting part of the S-matrix, unitarity requires �i(T � T †) = T †T . If we examine

this constraint order by order in perturbation theory, it tells us that the imaginary part of the

T -matrix at a given order is related to the product of lower-order results. In particular, the

imaginary part of the 1-loop amplitude is given by a product of two tree amplitudes. This is

31More about this choice in Section 7.1.
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6.1 Unitarity and the generalized unitarity method

We begin with a concrete example: the color-ordered planar 5-point 1-loop gluon amplitude in

pure Yang-Mills theory. Suppose we identify31 the loop-momentum such that in each Feynman

diagram, ` is the momentum that flows between legs 1 and 5, as indicated in Figure 2. Then

we can collect all the distinct Feynman diagrams under one integral,Z
dD`

X
j

Jj . (6.2)

The integrands Jj take the form indicated in (6.1). To compute the full amplitude we need to

integrate ` over R4 (after Wick rotation from R1,3), but let us focus on the subplane where the

loop-momentum satisfies the two cut conditions

`2 = (` � p1 � p2)
2 = 0 . (6.3)

On this subplane, integrands of the form

Ji =
1

Si

cini

· · · (`2) · · · (` � p1 � p2)2 · · · (6.4)

become singular. The singularity corresponds to a kinematic configuration where two propa-

gators go on-shell. So the sum of the corresponding residues from all such integrands must be

equivalent to the product of two on-shell tree amplitudes, as shown schematically in Figure 2.

In other words, if the enemy gives us an integrand and claims that it corresponds to the 1-loop

amplitude of some (unitary) theory, we can test the claim by checking if the integrand factorizes

correctly into products of tree amplitudes. This way, our knowledge of tree amplitudes can be

recycled into information about the loop-integrand! The operation of taking loop propagators

on-shell is called a unitarity cut. It originates from the unitary constraint of the S-matrix.

To see how, recall that unitarity requires S†S = 1. Writing S = 1 + iT , where T represents

the interacting part of the S-matrix, unitarity requires �i(T � T †) = T †T . If we examine

this constraint order by order in perturbation theory, it tells us that the imaginary part of the

T -matrix at a given order is related to the product of lower-order results. In particular, the

imaginary part of the 1-loop amplitude is given by a product of two tree amplitudes. This is

31More about this choice in Section 7.1.
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Two amplitudes:

We then classify the d = 6 operators as

L
6

=
X

i1

g2⇤
ci1
⇤2

Oi1 +
X

i2

ci2
⇤2

Oi2 +
X

i3

i3

⇤2

Oi3 , (2)

where, for notational convenience, we introduce the one-loop suppressed coe�cients

i3 ⌘
g2⇤

16⇡2

ci3 , (3)

for the third class of operators. In weakly-coupled theories, ci ⇠ fi(g/g⇤, gH/g⇤, ...), where

fi(g/g⇤, gH/g⇤, ...) are functions that depend on ratios of couplings. We refer to the opera-

tors Oi1 and Oi2 as ”current-current” or ”tree-level” operators, while we call Oi3 ”one-loop”

operators.4

Although our basis follows a classification inspired by renormalizable weakly-coupled theo-

ries, it can also be useful when dealing with strongly-coupled BSM models. For example, if the

Higgs or SM fermions arise as composite mesonic states of a strongly-interacting gauge theory

with no small parameter, our basis can still give the right parametrization by taking g⇤ ⇠ 4⇡.

Also, strongly-coupled models that admit a weakly-coupled holographic description generate

d = 6 operators that follow the above classification. In this case we have g⇤ ⇠ 4⇡/
p
N where

N plays the role of the number of colors of the strong sector.

Let us start defining our basis by considering first operators made of SM bosons only [4].

In the first class of operators, Oi1 , we have

OH =
1

2
(@µ|H|2)2 , OT =

1

2
(H†

$
DµH)2 , Or = |H|2|DµH|2 , O

6

= �|H|6 . (4)

Here we have defined H†
$
DµH ⌘ H†DµH � (DµH)†H, with DµH = @µH � ig�aW a

µH/2 �
ig0BµH/2 (H is taken to have hypercharge YH = 1/2). For O

6

, which involves six Higgs

fields, an extra factor g2⇤ could be present. Nevertheless, we have substituted this by �, the
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Since the last three operators involve two field strengths, we expect c
2W ⇠ g2/g2⇤, c2B ⇠ g0 2/g2⇤,

and c
2G ⇠ g2s/g

2
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4 For a classification of operators similar in spirit to ours, see [10].
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}
Example O(∂2H4):

n=4; h=0



One-loop corrections

⊕ t-channel ⊕ u-channel

s-channel: A λ

☛ Cut & paste



One-loop corrections

⊕ t-channel ⊕ u-channel

s-channel: A λ

☛ Cut & paste

}
preservation of 

momentum-flavor 
 “alignment” !

Custodial sym.!

�A = 12
A�

16⇡2
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6 Loops I: Unitarity methods 6.1 Unitarity and the generalized unitarity method
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Figure 2: The sum of residues from all Feynman diagrams with propagators `2 and (`�p1�p2)2 on-shell
must give the product of two tree-amplitudes.

6.1 Unitarity and the generalized unitarity method

We begin with a concrete example: the color-ordered planar 5-point 1-loop gluon amplitude in

pure Yang-Mills theory. Suppose we identify31 the loop-momentum such that in each Feynman

diagram, ` is the momentum that flows between legs 1 and 5, as indicated in Figure 2. Then

we can collect all the distinct Feynman diagrams under one integral,Z
dD`

X
j

Jj . (6.2)

The integrands Jj take the form indicated in (6.1). To compute the full amplitude we need to

integrate ` over R4 (after Wick rotation from R1,3), but let us focus on the subplane where the

loop-momentum satisfies the two cut conditions

`2 = (` � p1 � p2)
2 = 0 . (6.3)

On this subplane, integrands of the form

Ji =
1

Si

cini

· · · (`2) · · · (` � p1 � p2)2 · · · (6.4)

become singular. The singularity corresponds to a kinematic configuration where two propa-

gators go on-shell. So the sum of the corresponding residues from all such integrands must be

equivalent to the product of two on-shell tree amplitudes, as shown schematically in Figure 2.

In other words, if the enemy gives us an integrand and claims that it corresponds to the 1-loop

amplitude of some (unitary) theory, we can test the claim by checking if the integrand factorizes

correctly into products of tree amplitudes. This way, our knowledge of tree amplitudes can be

recycled into information about the loop-integrand! The operation of taking loop propagators

on-shell is called a unitarity cut. It originates from the unitary constraint of the S-matrix.

To see how, recall that unitarity requires S†S = 1. Writing S = 1 + iT , where T represents

the interacting part of the S-matrix, unitarity requires �i(T � T †) = T †T . If we examine

this constraint order by order in perturbation theory, it tells us that the imaginary part of the

T -matrix at a given order is related to the product of lower-order results. In particular, the

imaginary part of the 1-loop amplitude is given by a product of two tree amplitudes. This is

31More about this choice in Section 7.1.
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up to one exception!

Holomorphy:
Again, we can either look at SM field loop or super-partner loop: 

The simplest, the diagrams with fermions, as you can follow 
the fermion-line to see if it changes direction. Only cases:
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Figure 3: Non-holomorphic contribution to Oy.

3.2 Holomorphy of the anomalous dimensions

It has been recently shown in Ref. [10], based on explicit calculations, that the anomalous

dimension matrix respects, to a large extent, holomorphy. Here we would like to show how to

derive some of these properties using our ESFT approach. In particular, we will derive that,

with the exception of one case, the one-loop anomalous dimensions of the complex Wilson-

coe�cients ci = {c3F+ , cFF+ , cD, cy, cyy, cud
R } do not depend on their complex-conjugates c⇤

j :

@�ci

@c⇤
j

= 0 . (34)

We start by showing when Eq. (34) is satisfied just by simple inspection of the SM diagrams.

For example, it is easy to realize that holomorphy must be respected in contributions from

dimension-six operators in which fermions with a given chirality, e.g., f↵ or f↵f 0
�, are kept

as external legs; indeed, the corresponding Hermitian-conjugate operator can only contribute

to operators with fermions in the opposite chirality. Interestingly, we can extend the same

argument to operators with field-strengths if we write the loop-operators as

O3F+ = �1

4
tr F �

↵ F �
� F ↵

� , OFF+ =
1

4
H†tatbH(Fa)↵�(F b)�↵ , OD = H†f↵(Fa)↵�taf 0

� , (35)

where we have defined F↵� ⌘ (F a
µ⌫t

a�µ⌫)↵� that transforms as a (1,0) under the Lorentz

group, and write the Hermitian-conjugate of Eq. (35) with F ↵̇�̇, a (0,1) under the Lorentz

group, as for example, O†
3F+ = O3F� = �1

4tr F �̇
↵̇ F �̇

�̇
F ↵̇

�̇
. From Eq. (35) it is clear that any

diagram with an external F↵� respects holomorphy, as it can only generate the operators of

Eq. (35) and not their Hermitian conjugates. One-loop contributions from OFF+ in which

H†tatbH is kept among the external fields, however, do not necessarily respect holomorphy.

An explicit calculation is needed, and while contributions to OFF+ vanish by the reasoning

given in [1], contributions to Oy are found not to be holomorphic.

Following our previous supersymmetric approach, it is quite simple to check whether or

not loop contributions are holomorphic. In the ESFT, holomorphy is trivially respected as

super-operators with an ⌘†-spurion renormalize among themselves and cannot induce the

Hermitian-conjugate super-operators since those contain an ⌘, and vice versa. This means
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Holomorphy is preserved beyond SUSY
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3.2Holomorphyoftheanomalousdimensions

IthasbeenrecentlyshowninRef.[10],basedonexplicitcalculations,thattheanomalous

dimensionmatrixrespects,toalargeextent,holomorphy.Herewewouldliketoshowhowto

derivesomeofthesepropertiesusingourESFTapproach.Inparticular,wewillderivethat,

withtheexceptionofonecase,theone-loopanomalousdimensionsofthecomplexWilson-

coe�cientsci={c3F+,cFF+,cD,cy,cyy,cud
R}donotdependontheircomplex-conjugatesc⇤

j:

@�ci

@c⇤
j

=0.(34)

WestartbyshowingwhenEq.(34)issatisfiedjustbysimpleinspectionoftheSMdiagrams.

Forexample,itiseasytorealizethatholomorphymustberespectedincontributionsfrom

dimension-sixoperatorsinwhichfermionswithagivenchirality,e.g.,f↵orf↵f0
�,arekept

asexternallegs;indeed,thecorrespondingHermitian-conjugateoperatorcanonlycontribute

tooperatorswithfermionsintheoppositechirality.Interestingly,wecanextendthesame

argumenttooperatorswithfield-strengthsifwewritetheloop-operatorsas
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�,(35)
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a�µ⌫)↵�thattransformsasa(1,0)undertheLorentz

group,andwritetheHermitian-conjugateofEq.(35)withF˙↵˙�,a(0,1)undertheLorentz

group,asforexample,O†
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4trF˙�
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�̇
.FromEq.(35)itisclearthatany

diagramwithanexternalF↵�respectsholomorphy,asitcanonlygeneratetheoperatorsof

Eq.(35)andnottheirHermitianconjugates.One-loopcontributionsfromOFF+inwhich

H†tatbHiskeptamongtheexternalfields,however,donotnecessarilyrespectholomorphy.

Anexplicitcalculationisneeded,andwhilecontributionstoOFF+vanishbythereasoning

givenin[1],contributionstoOyarefoundnottobeholomorphic.

Followingourprevioussupersymmetricapproach,itisquitesimpletocheckwhetheror

notloopcontributionsareholomorphic.IntheESFT,holomorphyistriviallyrespectedas

super-operatorswithan⌘†-spurionrenormalizeamongthemselvesandcannotinducethe

Hermitian-conjugatesuper-operatorssincethosecontainan⌘,andviceversa.Thismeans
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6 Loops I: Unitarity methods 6.1 Unitarity and the generalized unitarity method
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Figure 2: The sum of residues from all Feynman diagrams with propagators `2 and (`�p1�p2)2 on-shell
must give the product of two tree-amplitudes.

6.1 Unitarity and the generalized unitarity method

We begin with a concrete example: the color-ordered planar 5-point 1-loop gluon amplitude in

pure Yang-Mills theory. Suppose we identify31 the loop-momentum such that in each Feynman

diagram, ` is the momentum that flows between legs 1 and 5, as indicated in Figure 2. Then

we can collect all the distinct Feynman diagrams under one integral,Z
dD`

X
j

Jj . (6.2)

The integrands Jj take the form indicated in (6.1). To compute the full amplitude we need to

integrate ` over R4 (after Wick rotation from R1,3), but let us focus on the subplane where the

loop-momentum satisfies the two cut conditions

`2 = (` � p1 � p2)
2 = 0 . (6.3)

On this subplane, integrands of the form

Ji =
1

Si

cini

· · · (`2) · · · (` � p1 � p2)2 · · · (6.4)

become singular. The singularity corresponds to a kinematic configuration where two propa-

gators go on-shell. So the sum of the corresponding residues from all such integrands must be

equivalent to the product of two on-shell tree amplitudes, as shown schematically in Figure 2.

In other words, if the enemy gives us an integrand and claims that it corresponds to the 1-loop

amplitude of some (unitary) theory, we can test the claim by checking if the integrand factorizes

correctly into products of tree amplitudes. This way, our knowledge of tree amplitudes can be

recycled into information about the loop-integrand! The operation of taking loop propagators

on-shell is called a unitarity cut. It originates from the unitary constraint of the S-matrix.

To see how, recall that unitarity requires S†S = 1. Writing S = 1 + iT , where T represents

the interacting part of the S-matrix, unitarity requires �i(T � T †) = T †T . If we examine

this constraint order by order in perturbation theory, it tells us that the imaginary part of the

T -matrix at a given order is related to the product of lower-order results. In particular, the

imaginary part of the 1-loop amplitude is given by a product of two tree amplitudes. This is

31More about this choice in Section 7.1.
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up to one exception!

Holomorphy:
Again, we can either look at SM field loop or super-partner loop: 

The simplest, the diagrams with fermions, as you can follow 
the fermion-line to see if it changes direction. Only cases:
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3.2 Holomorphy of the anomalous dimensions

It has been recently shown in Ref. [10], based on explicit calculations, that the anomalous

dimension matrix respects, to a large extent, holomorphy. Here we would like to show how to

derive some of these properties using our ESFT approach. In particular, we will derive that,

with the exception of one case, the one-loop anomalous dimensions of the complex Wilson-

coe�cients ci = {c3F+ , cFF+ , cD, cy, cyy, cud
R } do not depend on their complex-conjugates c⇤

j :

@�ci

@c⇤
j

= 0 . (34)

We start by showing when Eq. (34) is satisfied just by simple inspection of the SM diagrams.

For example, it is easy to realize that holomorphy must be respected in contributions from

dimension-six operators in which fermions with a given chirality, e.g., f↵ or f↵f 0
�, are kept

as external legs; indeed, the corresponding Hermitian-conjugate operator can only contribute

to operators with fermions in the opposite chirality. Interestingly, we can extend the same

argument to operators with field-strengths if we write the loop-operators as

O3F+ = �1

4
tr F �

↵ F �
� F ↵

� , OFF+ =
1

4
H†tatbH(Fa)↵�(F b)�↵ , OD = H†f↵(Fa)↵�taf 0

� , (35)

where we have defined F↵� ⌘ (F a
µ⌫t

a�µ⌫)↵� that transforms as a (1,0) under the Lorentz

group, and write the Hermitian-conjugate of Eq. (35) with F ↵̇�̇, a (0,1) under the Lorentz

group, as for example, O†
3F+ = O3F� = �1

4tr F �̇
↵̇ F �̇

�̇
F ↵̇

�̇
. From Eq. (35) it is clear that any

diagram with an external F↵� respects holomorphy, as it can only generate the operators of

Eq. (35) and not their Hermitian conjugates. One-loop contributions from OFF+ in which

H†tatbH is kept among the external fields, however, do not necessarily respect holomorphy.

An explicit calculation is needed, and while contributions to OFF+ vanish by the reasoning

given in [1], contributions to Oy are found not to be holomorphic.

Following our previous supersymmetric approach, it is quite simple to check whether or

not loop contributions are holomorphic. In the ESFT, holomorphy is trivially respected as

super-operators with an ⌘†-spurion renormalize among themselves and cannot induce the

Hermitian-conjugate super-operators since those contain an ⌘, and vice versa. This means
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6 Loops I: Unitarity methods 6.1 Unitarity and the generalized unitarity method
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Figure 2: The sum of residues from all Feynman diagrams with propagators `2 and (`�p1�p2)2 on-shell
must give the product of two tree-amplitudes.

6.1 Unitarity and the generalized unitarity method

We begin with a concrete example: the color-ordered planar 5-point 1-loop gluon amplitude in

pure Yang-Mills theory. Suppose we identify31 the loop-momentum such that in each Feynman

diagram, ` is the momentum that flows between legs 1 and 5, as indicated in Figure 2. Then

we can collect all the distinct Feynman diagrams under one integral,Z
dD`

X
j

Jj . (6.2)

The integrands Jj take the form indicated in (6.1). To compute the full amplitude we need to

integrate ` over R4 (after Wick rotation from R1,3), but let us focus on the subplane where the

loop-momentum satisfies the two cut conditions

`2 = (` � p1 � p2)
2 = 0 . (6.3)

On this subplane, integrands of the form

Ji =
1

Si

cini

· · · (`2) · · · (` � p1 � p2)2 · · · (6.4)

become singular. The singularity corresponds to a kinematic configuration where two propa-

gators go on-shell. So the sum of the corresponding residues from all such integrands must be

equivalent to the product of two on-shell tree amplitudes, as shown schematically in Figure 2.

In other words, if the enemy gives us an integrand and claims that it corresponds to the 1-loop

amplitude of some (unitary) theory, we can test the claim by checking if the integrand factorizes

correctly into products of tree amplitudes. This way, our knowledge of tree amplitudes can be

recycled into information about the loop-integrand! The operation of taking loop propagators

on-shell is called a unitarity cut. It originates from the unitary constraint of the S-matrix.

To see how, recall that unitarity requires S†S = 1. Writing S = 1 + iT , where T represents

the interacting part of the S-matrix, unitarity requires �i(T � T †) = T †T . If we examine

this constraint order by order in perturbation theory, it tells us that the imaginary part of the

T -matrix at a given order is related to the product of lower-order results. In particular, the

imaginary part of the 1-loop amplitude is given by a product of two tree amplitudes. This is

31More about this choice in Section 7.1.
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3.2 Holomorphy of the anomalous dimensions

It has been recently shown in Ref. [10], based on explicit calculations, that the anomalous

dimension matrix respects, to a large extent, holomorphy. Here we would like to show how to

derive some of these properties using our ESFT approach. In particular, we will derive that,

with the exception of one case, the one-loop anomalous dimensions of the complex Wilson-

coe�cients ci = {c3F+ , cFF+ , cD, cy, cyy, cud
R } do not depend on their complex-conjugates c⇤

j :

@�ci

@c⇤
j

= 0 . (34)

We start by showing when Eq. (34) is satisfied just by simple inspection of the SM diagrams.

For example, it is easy to realize that holomorphy must be respected in contributions from

dimension-six operators in which fermions with a given chirality, e.g., f↵ or f↵f 0
�, are kept

as external legs; indeed, the corresponding Hermitian-conjugate operator can only contribute

to operators with fermions in the opposite chirality. Interestingly, we can extend the same

argument to operators with field-strengths if we write the loop-operators as

O3F+ = �1

4
tr F �

↵ F �
� F ↵

� , OFF+ =
1

4
H†tatbH(Fa)↵�(F b)�↵ , OD = H†f↵(Fa)↵�taf 0

� , (35)

where we have defined F↵� ⌘ (F a
µ⌫t

a�µ⌫)↵� that transforms as a (1,0) under the Lorentz

group, and write the Hermitian-conjugate of Eq. (35) with F ↵̇�̇, a (0,1) under the Lorentz

group, as for example, O†
3F+ = O3F� = �1

4tr F �̇
↵̇ F �̇

�̇
F ↵̇

�̇
. From Eq. (35) it is clear that any

diagram with an external F↵� respects holomorphy, as it can only generate the operators of

Eq. (35) and not their Hermitian conjugates. One-loop contributions from OFF+ in which

H†tatbH is kept among the external fields, however, do not necessarily respect holomorphy.

An explicit calculation is needed, and while contributions to OFF+ vanish by the reasoning

given in [1], contributions to Oy are found not to be holomorphic.

Following our previous supersymmetric approach, it is quite simple to check whether or

not loop contributions are holomorphic. In the ESFT, holomorphy is trivially respected as

super-operators with an ⌘†-spurion renormalize among themselves and cannot induce the

Hermitian-conjugate super-operators since those contain an ⌘, and vice versa. This means
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6 Loops I: Unitarity methods 6.1 Unitarity and the generalized unitarity method
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Figure 2: The sum of residues from all Feynman diagrams with propagators `2 and (`�p1�p2)2 on-shell
must give the product of two tree-amplitudes.

6.1 Unitarity and the generalized unitarity method

We begin with a concrete example: the color-ordered planar 5-point 1-loop gluon amplitude in

pure Yang-Mills theory. Suppose we identify31 the loop-momentum such that in each Feynman

diagram, ` is the momentum that flows between legs 1 and 5, as indicated in Figure 2. Then

we can collect all the distinct Feynman diagrams under one integral,Z
dD`

X
j

Jj . (6.2)

The integrands Jj take the form indicated in (6.1). To compute the full amplitude we need to

integrate ` over R4 (after Wick rotation from R1,3), but let us focus on the subplane where the

loop-momentum satisfies the two cut conditions

`2 = (` � p1 � p2)
2 = 0 . (6.3)

On this subplane, integrands of the form

Ji =
1

Si

cini

· · · (`2) · · · (` � p1 � p2)2 · · · (6.4)

become singular. The singularity corresponds to a kinematic configuration where two propa-

gators go on-shell. So the sum of the corresponding residues from all such integrands must be

equivalent to the product of two on-shell tree amplitudes, as shown schematically in Figure 2.

In other words, if the enemy gives us an integrand and claims that it corresponds to the 1-loop

amplitude of some (unitary) theory, we can test the claim by checking if the integrand factorizes

correctly into products of tree amplitudes. This way, our knowledge of tree amplitudes can be

recycled into information about the loop-integrand! The operation of taking loop propagators

on-shell is called a unitarity cut. It originates from the unitary constraint of the S-matrix.

To see how, recall that unitarity requires S†S = 1. Writing S = 1 + iT , where T represents

the interacting part of the S-matrix, unitarity requires �i(T � T †) = T †T . If we examine

this constraint order by order in perturbation theory, it tells us that the imaginary part of the

T -matrix at a given order is related to the product of lower-order results. In particular, the

imaginary part of the 1-loop amplitude is given by a product of two tree amplitudes. This is

31More about this choice in Section 7.1.
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up to one exception!

Holomorphy:
Again, we can either look at SM field loop or super-partner loop: 

The simplest, the diagrams with fermions, as you can follow 
the fermion-line to see if it changes direction. Only cases:
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Figure 3: Non-holomorphic contribution to Oy.

3.2 Holomorphy of the anomalous dimensions

It has been recently shown in Ref. [10], based on explicit calculations, that the anomalous

dimension matrix respects, to a large extent, holomorphy. Here we would like to show how to

derive some of these properties using our ESFT approach. In particular, we will derive that,

with the exception of one case, the one-loop anomalous dimensions of the complex Wilson-

coe�cients ci = {c3F+ , cFF+ , cD, cy, cyy, cud
R } do not depend on their complex-conjugates c⇤

j :

@�ci

@c⇤
j

= 0 . (34)

We start by showing when Eq. (34) is satisfied just by simple inspection of the SM diagrams.

For example, it is easy to realize that holomorphy must be respected in contributions from

dimension-six operators in which fermions with a given chirality, e.g., f↵ or f↵f 0
�, are kept

as external legs; indeed, the corresponding Hermitian-conjugate operator can only contribute

to operators with fermions in the opposite chirality. Interestingly, we can extend the same

argument to operators with field-strengths if we write the loop-operators as

O3F+ = �1

4
tr F �

↵ F �
� F ↵

� , OFF+ =
1

4
H†tatbH(Fa)↵�(F b)�↵ , OD = H†f↵(Fa)↵�taf 0

� , (35)

where we have defined F↵� ⌘ (F a
µ⌫t

a�µ⌫)↵� that transforms as a (1,0) under the Lorentz

group, and write the Hermitian-conjugate of Eq. (35) with F ↵̇�̇, a (0,1) under the Lorentz

group, as for example, O†
3F+ = O3F� = �1

4tr F �̇
↵̇ F �̇

�̇
F ↵̇

�̇
. From Eq. (35) it is clear that any

diagram with an external F↵� respects holomorphy, as it can only generate the operators of

Eq. (35) and not their Hermitian conjugates. One-loop contributions from OFF+ in which

H†tatbH is kept among the external fields, however, do not necessarily respect holomorphy.

An explicit calculation is needed, and while contributions to OFF+ vanish by the reasoning

given in [1], contributions to Oy are found not to be holomorphic.

Following our previous supersymmetric approach, it is quite simple to check whether or

not loop contributions are holomorphic. In the ESFT, holomorphy is trivially respected as

super-operators with an ⌘†-spurion renormalize among themselves and cannot induce the

Hermitian-conjugate super-operators since those contain an ⌘, and vice versa. This means
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3.2Holomorphyoftheanomalousdimensions

IthasbeenrecentlyshowninRef.[10],basedonexplicitcalculations,thattheanomalous

dimensionmatrixrespects,toalargeextent,holomorphy.Herewewouldliketoshowhowto

derivesomeofthesepropertiesusingourESFTapproach.Inparticular,wewillderivethat,

withtheexceptionofonecase,theone-loopanomalousdimensionsofthecomplexWilson-

coe�cientsci={c3F+,cFF+,cD,cy,cyy,cud
R}donotdependontheircomplex-conjugatesc⇤

j:

@�ci

@c⇤
j

=0.(34)

WestartbyshowingwhenEq.(34)issatisfiedjustbysimpleinspectionoftheSMdiagrams.

Forexample,itiseasytorealizethatholomorphymustberespectedincontributionsfrom

dimension-sixoperatorsinwhichfermionswithagivenchirality,e.g.,f↵orf↵f0
�,arekept

asexternallegs;indeed,thecorrespondingHermitian-conjugateoperatorcanonlycontribute

tooperatorswithfermionsintheoppositechirality.Interestingly,wecanextendthesame

argumenttooperatorswithfield-strengthsifwewritetheloop-operatorsas

O3F+=�1

4
trF�

↵F�
�F↵

�,OFF+=
1

4
H†tatbH(Fa)↵�(Fb)�↵,OD=H†f↵(Fa)↵�taf0

�,(35)

wherewehavedefinedF↵�⌘(Fa
µ⌫t

a�µ⌫)↵�thattransformsasa(1,0)undertheLorentz

group,andwritetheHermitian-conjugateofEq.(35)withF˙↵˙�,a(0,1)undertheLorentz

group,asforexample,O†
3F+=O3F�=�1

4trF˙�
˙↵F�̇

˙�
F˙↵

�̇
.FromEq.(35)itisclearthatany

diagramwithanexternalF↵�respectsholomorphy,asitcanonlygeneratetheoperatorsof

Eq.(35)andnottheirHermitianconjugates.One-loopcontributionsfromOFF+inwhich

H†tatbHiskeptamongtheexternalfields,however,donotnecessarilyrespectholomorphy.

Anexplicitcalculationisneeded,andwhilecontributionstoOFF+vanishbythereasoning

givenin[1],contributionstoOyarefoundnottobeholomorphic.

Followingourprevioussupersymmetricapproach,itisquitesimpletocheckwhetheror

notloopcontributionsareholomorphic.IntheESFT,holomorphyistriviallyrespectedas

super-operatorswithan⌘†-spurionrenormalizeamongthemselvesandcannotinducethe

Hermitian-conjugatesuper-operatorssincethosecontainan⌘,andviceversa.Thismeans
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Figure 2: The sum of residues from all Feynman diagrams with propagators `2 and (`�p1�p2)2 on-shell
must give the product of two tree-amplitudes.

6.1 Unitarity and the generalized unitarity method

We begin with a concrete example: the color-ordered planar 5-point 1-loop gluon amplitude in

pure Yang-Mills theory. Suppose we identify31 the loop-momentum such that in each Feynman

diagram, ` is the momentum that flows between legs 1 and 5, as indicated in Figure 2. Then

we can collect all the distinct Feynman diagrams under one integral,Z
dD`

X
j

Jj . (6.2)

The integrands Jj take the form indicated in (6.1). To compute the full amplitude we need to

integrate ` over R4 (after Wick rotation from R1,3), but let us focus on the subplane where the

loop-momentum satisfies the two cut conditions

`2 = (` � p1 � p2)
2 = 0 . (6.3)

On this subplane, integrands of the form

Ji =
1

Si

cini

· · · (`2) · · · (` � p1 � p2)2 · · · (6.4)

become singular. The singularity corresponds to a kinematic configuration where two propa-

gators go on-shell. So the sum of the corresponding residues from all such integrands must be

equivalent to the product of two on-shell tree amplitudes, as shown schematically in Figure 2.

In other words, if the enemy gives us an integrand and claims that it corresponds to the 1-loop

amplitude of some (unitary) theory, we can test the claim by checking if the integrand factorizes

correctly into products of tree amplitudes. This way, our knowledge of tree amplitudes can be

recycled into information about the loop-integrand! The operation of taking loop propagators

on-shell is called a unitarity cut. It originates from the unitary constraint of the S-matrix.

To see how, recall that unitarity requires S†S = 1. Writing S = 1 + iT , where T represents

the interacting part of the S-matrix, unitarity requires �i(T � T †) = T †T . If we examine

this constraint order by order in perturbation theory, it tells us that the imaginary part of the

T -matrix at a given order is related to the product of lower-order results. In particular, the

imaginary part of the 1-loop amplitude is given by a product of two tree amplitudes. This is

31More about this choice in Section 7.1.
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that the JJ-operators O4f and O�f do not renormalize the loop-operators. For this purpose,
it is important to recall that we can write four-fermion operators, such as (q†�̄µq)(u†�̄µu), in
the equivalent form q†u†qu. From this, it is obvious that closing a loop of fermions can only
give operators containing the Lorentz structure f †f or qu that cannot be completed to give
a dipole operator (nor its equivalent forms, q�µ⌫�⇢D⇢q†F µ⌫ or Dµ�qDµuH). For the case of
O�f , the absence of renormalization of the dipole operator, as for example from diagrams
like the one in Fig. 1, can be proved just by realizing that we can always keep the Lorentz
structure �̄µDµ(�f) external to the loop; this Lorentz structure cannot be completed to form
a dipole operator. The contribution of O�f to OFF is also absent, as can be deduced from
Eq. (14): the first term, after closing the fermion loop, gives the wrong Lorentz structure
to generate OFF , while the second term gives an interaction with too many fields if we use
the fermion EOM. Finally, Oyu can only contribute to the Lorentz structure �qu, not to the
dipole one in Eq. (15).

We can be more systematic and complete using our ESFT approach. Let us see first how
the operators of Eq. (12) can be embedded in super-operators. By embedding q and u in the
chiral supermultiplets Q and U , we find that the dipole loop-operator must arise from the
✓2-term of a non-chiral superfield:

� (Q
$
D↵U) W↵ = �✓2OD + · · · .

(16)Among the JJ-operators of Eq. (13), two of them can arise from supersymmetric D-terms
and are then supersymmetry-preserving:

�

�†eV��
�

�

Q†eVQQ
�

= ✓̄2✓2O�q + · · · ,
�

Q†eVQQ
�

�

Q†eVQQ
�

= �1

2
✓̄2✓2O4q + · · · , (17)and similar operators for Q ! U , where we again use the short-hand notation VQ = 2QqV .

Nevertheless, one of the JJ-operators must come from the ✓2-component of a non-chiral
superfield that is not invariant under supersymmetry:

�

�†eV��
�

�QU = ✓2Oyu + · · · .
(18)

7

F↵� 
↵ �h
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n=4; h=2
n=4; h=0

also explained by susy techniques: arXiv:1412.7151

I.  No 4-fermion (ψγμψ)2  corrections to dipoles
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that the JJ-operators O4f and O�f do not renormalize the loop-operators. For this purpose,
it is important to recall that we can write four-fermion operators, such as (q†�̄µq)(u†�̄µu), in
the equivalent form q†u†qu. From this, it is obvious that closing a loop of fermions can only
give operators containing the Lorentz structure f †f or qu that cannot be completed to give
a dipole operator (nor its equivalent forms, q�µ⌫�⇢D⇢q†F µ⌫ or Dµ�qDµuH). For the case of
O�f , the absence of renormalization of the dipole operator, as for example from diagrams
like the one in Fig. 1, can be proved just by realizing that we can always keep the Lorentz
structure �̄µDµ(�f) external to the loop; this Lorentz structure cannot be completed to form
a dipole operator. The contribution of O�f to OFF is also absent, as can be deduced from
Eq. (14): the first term, after closing the fermion loop, gives the wrong Lorentz structure
to generate OFF , while the second term gives an interaction with too many fields if we use
the fermion EOM. Finally, Oyu can only contribute to the Lorentz structure �qu, not to the
dipole one in Eq. (15).

We can be more systematic and complete using our ESFT approach. Let us see first how
the operators of Eq. (12) can be embedded in super-operators. By embedding q and u in the
chiral supermultiplets Q and U , we find that the dipole loop-operator must arise from the
✓2-term of a non-chiral superfield:
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that the JJ-operators O4f and O�f do not renormalize the loop-operators. For this purpose,
it is important to recall that we can write four-fermion operators, such as (q†�̄µq)(u†�̄µu), in
the equivalent form q†u†qu. From this, it is obvious that closing a loop of fermions can only
give operators containing the Lorentz structure f †f or qu that cannot be completed to give
a dipole operator (nor its equivalent forms, q�µ⌫�⇢D⇢q†F µ⌫ or Dµ�qDµuH). For the case of
O�f , the absence of renormalization of the dipole operator, as for example from diagrams
like the one in Fig. 1, can be proved just by realizing that we can always keep the Lorentz
structure �̄µDµ(�f) external to the loop; this Lorentz structure cannot be completed to form
a dipole operator. The contribution of O�f to OFF is also absent, as can be deduced from
Eq. (14): the first term, after closing the fermion loop, gives the wrong Lorentz structure
to generate OFF , while the second term gives an interaction with too many fields if we use
the fermion EOM. Finally, Oyu can only contribute to the Lorentz structure �qu, not to the
dipole one in Eq. (15).

We can be more systematic and complete using our ESFT approach. Let us see first how
the operators of Eq. (12) can be embedded in super-operators. By embedding q and u in the
chiral supermultiplets Q and U , we find that the dipole loop-operator must arise from the
✓2-term of a non-chiral superfield:
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D↵U) W↵ = �✓2OD + · · · .

(16)Among the JJ-operators of Eq. (13), two of them can arise from supersymmetric D-terms
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superfield that is not invariant under supersymmetry:
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from scalar leptoquarks: 
 (3,2,7/6),(3,1,-1/3)  

& extra Higgses

also explained by susy techniques: arXiv:1412.7151
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Figure 3: Non-holomorphic contribution to Oy.

3.2 Holomorphy of the anomalous dimensions

It has been recently shown in Ref. [10], based on explicit calculations, that the anomalous

dimension matrix respects, to a large extent, holomorphy. Here we would like to show how to

derive some of these properties using our ESFT approach. In particular, we will derive that,

with the exception of one case, the one-loop anomalous dimensions of the complex Wilson-

coe�cients ci = {c3F+ , cFF+ , cD, cy, cyy, cud
R } do not depend on their complex-conjugates c⇤

j :

@�ci

@c⇤
j

= 0 . (34)

We start by showing when Eq. (34) is satisfied just by simple inspection of the SM diagrams.

For example, it is easy to realize that holomorphy must be respected in contributions from

dimension-six operators in which fermions with a given chirality, e.g., f↵ or f↵f 0
�, are kept

as external legs; indeed, the corresponding Hermitian-conjugate operator can only contribute

to operators with fermions in the opposite chirality. Interestingly, we can extend the same

argument to operators with field-strengths if we write the loop-operators as

O3F+ = �1

4
tr F �

↵ F �
� F ↵

� , OFF+ =
1

4
H†tatbH(Fa)↵�(F b)�↵ , OD = H†f↵(Fa)↵�taf 0

� , (35)

where we have defined F↵� ⌘ (F a
µ⌫t

a�µ⌫)↵� that transforms as a (1,0) under the Lorentz

group, and write the Hermitian-conjugate of Eq. (35) with F ↵̇�̇, a (0,1) under the Lorentz

group, as for example, O†
3F+ = O3F� = �1

4tr F �̇
↵̇ F �̇

�̇
F ↵̇

�̇
. From Eq. (35) it is clear that any

diagram with an external F↵� respects holomorphy, as it can only generate the operators of

Eq. (35) and not their Hermitian conjugates. One-loop contributions from OFF+ in which

H†tatbH is kept among the external fields, however, do not necessarily respect holomorphy.

An explicit calculation is needed, and while contributions to OFF+ vanish by the reasoning

given in [1], contributions to Oy are found not to be holomorphic.

Following our previous supersymmetric approach, it is quite simple to check whether or

not loop contributions are holomorphic. In the ESFT, holomorphy is trivially respected as

super-operators with an ⌘†-spurion renormalize among themselves and cannot induce the

Hermitian-conjugate super-operators since those contain an ⌘, and vice versa. This means

15

{

surprisingly add to zero!

At the component level:

Holomorphy is preserved beyond SUSY

Holomorphy:
Again, we can either look at SM field loop or super-partner loop: 

The simplest, the diagrams with fermions, as you can follow 
the fermion-line to see if it changes direction. Only cases:

H

H

H

ψH

λ

ũ
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IthasbeenrecentlyshowninRef.[10],basedonexplicitcalculations,thattheanomalous

dimensionmatrixrespects,toalargeextent,holomorphy.Herewewouldliketoshowhowto

derivesomeofthesepropertiesusingourESFTapproach.Inparticular,wewillderivethat,

withtheexceptionofonecase,theone-loopanomalousdimensionsofthecomplexWilson-
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that the JJ-operators O4f and O�f do not renormalize the loop-operators. For this purpose,
it is important to recall that we can write four-fermion operators, such as (q†�̄µq)(u†�̄µu), in
the equivalent form q†u†qu. From this, it is obvious that closing a loop of fermions can only
give operators containing the Lorentz structure f †f or qu that cannot be completed to give
a dipole operator (nor its equivalent forms, q�µ⌫�⇢D⇢q†F µ⌫ or Dµ�qDµuH). For the case of
O�f , the absence of renormalization of the dipole operator, as for example from diagrams
like the one in Fig. 1, can be proved just by realizing that we can always keep the Lorentz
structure �̄µDµ(�f) external to the loop; this Lorentz structure cannot be completed to form
a dipole operator. The contribution of O�f to OFF is also absent, as can be deduced from
Eq. (14): the first term, after closing the fermion loop, gives the wrong Lorentz structure
to generate OFF , while the second term gives an interaction with too many fields if we use
the fermion EOM. Finally, Oyu can only contribute to the Lorentz structure �qu, not to the
dipole one in Eq. (15).

We can be more systematic and complete using our ESFT approach. Let us see first how
the operators of Eq. (12) can be embedded in super-operators. By embedding q and u in the
chiral supermultiplets Q and U , we find that the dipole loop-operator must arise from the
✓2-term of a non-chiral superfield:

� (Q
$
D↵U) W↵ = �✓2OD + · · · .

(16)Among the JJ-operators of Eq. (13), two of them can arise from supersymmetric D-terms
and are then supersymmetry-preserving:

�

�†eV��
�

�

Q†eVQQ
�

= ✓̄2✓2O�q + · · · ,
�

Q†eVQQ
�

�

Q†eVQQ
�

= �1

2
✓̄2✓2O4q + · · · , (17)and similar operators for Q ! U , where we again use the short-hand notation VQ = 2QqV .

Nevertheless, one of the JJ-operators must come from the ✓2-component of a non-chiral
superfield that is not invariant under supersymmetry:

�

�†eV��
�

�QU = ✓2Oyu + · · · .
(18)
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Holomorphy:
Again, we can either look at SM field loop or super-partner loop: 
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Figure 3: Non-holomorphic contribution to Oy.

3.2 Holomorphy of the anomalous dimensions

It has been recently shown in Ref. [10], based on explicit calculations, that the anomalous

dimension matrix respects, to a large extent, holomorphy. Here we would like to show how to

derive some of these properties using our ESFT approach. In particular, we will derive that,

with the exception of one case, the one-loop anomalous dimensions of the complex Wilson-

coe�cients ci = {c3F+ , cFF+ , cD, cy, cyy, cud
R } do not depend on their complex-conjugates c⇤

j :

@�ci

@c⇤
j

= 0 . (34)

We start by showing when Eq. (34) is satisfied just by simple inspection of the SM diagrams.

For example, it is easy to realize that holomorphy must be respected in contributions from

dimension-six operators in which fermions with a given chirality, e.g., f↵ or f↵f 0
�, are kept

as external legs; indeed, the corresponding Hermitian-conjugate operator can only contribute

to operators with fermions in the opposite chirality. Interestingly, we can extend the same

argument to operators with field-strengths if we write the loop-operators as

O3F+ = �1

4
tr F �

↵ F �
� F ↵

� , OFF+ =
1

4
H†tatbH(Fa)↵�(F b)�↵ , OD = H†f↵(Fa)↵�taf 0

� , (35)

where we have defined F↵� ⌘ (F a
µ⌫t

a�µ⌫)↵� that transforms as a (1,0) under the Lorentz

group, and write the Hermitian-conjugate of Eq. (35) with F ↵̇�̇, a (0,1) under the Lorentz

group, as for example, O†
3F+ = O3F� = �1

4tr F �̇
↵̇ F �̇

�̇
F ↵̇

�̇
. From Eq. (35) it is clear that any

diagram with an external F↵� respects holomorphy, as it can only generate the operators of

Eq. (35) and not their Hermitian conjugates. One-loop contributions from OFF+ in which

H†tatbH is kept among the external fields, however, do not necessarily respect holomorphy.

An explicit calculation is needed, and while contributions to OFF+ vanish by the reasoning

given in [1], contributions to Oy are found not to be holomorphic.

Following our previous supersymmetric approach, it is quite simple to check whether or

not loop contributions are holomorphic. In the ESFT, holomorphy is trivially respected as

super-operators with an ⌘†-spurion renormalize among themselves and cannot induce the

Hermitian-conjugate super-operators since those contain an ⌘, and vice versa. This means
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IthasbeenrecentlyshowninRef.[10],basedonexplicitcalculations,thattheanomalous

dimensionmatrixrespects,toalargeextent,holomorphy.Herewewouldliketoshowhowto

derivesomeofthesepropertiesusingourESFTapproach.Inparticular,wewillderivethat,

withtheexceptionofonecase,theone-loopanomalousdimensionsofthecomplexWilson-

coe�cientsci={c3F+,cFF+,cD,cy,cyy,cud
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WestartbyshowingwhenEq.(34)issatisfiedjustbysimpleinspectionoftheSMdiagrams.

Forexample,itiseasytorealizethatholomorphymustberespectedincontributionsfrom

dimension-sixoperatorsinwhichfermionswithagivenchirality,e.g.,f↵orf↵f0
�,arekept

asexternallegs;indeed,thecorrespondingHermitian-conjugateoperatorcanonlycontribute

tooperatorswithfermionsintheoppositechirality.Interestingly,wecanextendthesame

argumenttooperatorswithfield-strengthsifwewritetheloop-operatorsas
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.FromEq.(35)itisclearthatany

diagramwithanexternalF↵�respectsholomorphy,asitcanonlygeneratetheoperatorsof

Eq.(35)andnottheirHermitianconjugates.One-loopcontributionsfromOFF+inwhich

H†tatbHiskeptamongtheexternalfields,however,donotnecessarilyrespectholomorphy.

Anexplicitcalculationisneeded,andwhilecontributionstoOFF+vanishbythereasoning

givenin[1],contributionstoOyarefoundnottobeholomorphic.

Followingourprevioussupersymmetricapproach,itisquitesimpletocheckwhetheror

notloopcontributionsareholomorphic.IntheESFT,holomorphyistriviallyrespectedas

super-operatorswithan⌘†-spurionrenormalizeamongthemselvesandcannotinducethe
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that the JJ-operators O4f and O�f do not renormalize the loop-operators. For this purpose,
it is important to recall that we can write four-fermion operators, such as (q†�̄µq)(u†�̄µu), in
the equivalent form q†u†qu. From this, it is obvious that closing a loop of fermions can only
give operators containing the Lorentz structure f †f or qu that cannot be completed to give
a dipole operator (nor its equivalent forms, q�µ⌫�⇢D⇢q†F µ⌫ or Dµ�qDµuH). For the case of
O�f , the absence of renormalization of the dipole operator, as for example from diagrams
like the one in Fig. 1, can be proved just by realizing that we can always keep the Lorentz
structure �̄µDµ(�f) external to the loop; this Lorentz structure cannot be completed to form
a dipole operator. The contribution of O�f to OFF is also absent, as can be deduced from
Eq. (14): the first term, after closing the fermion loop, gives the wrong Lorentz structure
to generate OFF , while the second term gives an interaction with too many fields if we use
the fermion EOM. Finally, Oyu can only contribute to the Lorentz structure �qu, not to the
dipole one in Eq. (15).

We can be more systematic and complete using our ESFT approach. Let us see first how
the operators of Eq. (12) can be embedded in super-operators. By embedding q and u in the
chiral supermultiplets Q and U , we find that the dipole loop-operator must arise from the
✓2-term of a non-chiral superfield:

� (Q
$
D↵U) W↵ = �✓2OD + · · · .

(16)Among the JJ-operators of Eq. (13), two of them can arise from supersymmetric D-terms
and are then supersymmetry-preserving:

�

�†eV��
�

�

Q†eVQQ
�

= ✓̄2✓2O�q + · · · ,
�

Q†eVQQ
�

�

Q†eVQQ
�

= �1

2
✓̄2✓2O4q + · · · , (17)and similar operators for Q ! U , where we again use the short-hand notation VQ = 2QqV .

Nevertheless, one of the JJ-operators must come from the ✓2-component of a non-chiral
superfield that is not invariant under supersymmetry:

�

�†eV��
�

�QU = ✓2Oyu + · · · .
(18)
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that the JJ-operators O4f and O�f do not renormalize the loop-operators. For this purpose,
it is important to recall that we can write four-fermion operators, such as (q†�̄µq)(u†�̄µu), in
the equivalent form q†u†qu. From this, it is obvious that closing a loop of fermions can only
give operators containing the Lorentz structure f †f or qu that cannot be completed to give
a dipole operator (nor its equivalent forms, q�µ⌫�⇢D⇢q†F µ⌫ or Dµ�qDµuH). For the case of
O�f , the absence of renormalization of the dipole operator, as for example from diagrams
like the one in Fig. 1, can be proved just by realizing that we can always keep the Lorentz
structure �̄µDµ(�f) external to the loop; this Lorentz structure cannot be completed to form
a dipole operator. The contribution of O�f to OFF is also absent, as can be deduced from
Eq. (14): the first term, after closing the fermion loop, gives the wrong Lorentz structure
to generate OFF , while the second term gives an interaction with too many fields if we use
the fermion EOM. Finally, Oyu can only contribute to the Lorentz structure �qu, not to the
dipole one in Eq. (15).

We can be more systematic and complete using our ESFT approach. Let us see first how
the operators of Eq. (12) can be embedded in super-operators. By embedding q and u in the
chiral supermultiplets Q and U , we find that the dipole loop-operator must arise from the
✓2-term of a non-chiral superfield:

� (Q
$
D↵U) W↵ = �✓2OD + · · · .

(16)Among the JJ-operators of Eq. (13), two of them can arise from supersymmetric D-terms
and are then supersymmetry-preserving:

�

�†eV��
�

�

Q†eVQQ
�

= ✓̄2✓2O�q + · · · ,
�

Q†eVQQ
�

�

Q†eVQQ
�

= �1

2
✓̄2✓2O4q + · · · , (17)and similar operators for Q ! U , where we again use the short-hand notation VQ = 2QqV .

Nevertheless, one of the JJ-operators must come from the ✓2-component of a non-chiral
superfield that is not invariant under supersymmetry:

�

�†eV��
�

�QU = ✓2Oyu + · · · .
(18)
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thattheJJ-operatorsO4fandO�fdonotrenormalizetheloop-operators.Forthispurpose,

itisimportanttorecallthatwecanwritefour-fermionoperators,suchas(q†̄�µq)(u
†̄�µu),in

theequivalentformq†u†qu.Fromthis,itisobviousthatclosingaloopoffermionscanonly

giveoperatorscontainingtheLorentzstructuref†forquthatcannotbecompletedtogive

adipoleoperator(noritsequivalentforms,q�µ⌫�⇢D
⇢q†Fµ⌫orDµ�qDµuH).Forthecaseof

O�f,theabsenceofrenormalizationofthedipoleoperator,asforexamplefromdiagrams

liketheoneinFig.1,canbeprovedjustbyrealizingthatwecanalwayskeeptheLorentz

structure�̄µDµ(�f)externaltotheloop;thisLorentzstructurecannotbecompletedtoform

adipoleoperator.ThecontributionofO�ftoOFFisalsoabsent,ascanbededucedfrom

Eq.(14):thefirstterm,afterclosingthefermionloop,givesthewrongLorentzstructure

togenerateOFF,whilethesecondtermgivesaninteractionwithtoomanyfieldsifweuse

thefermionEOM.Finally,OyucanonlycontributetotheLorentzstructure�qu,nottothe

dipoleoneinEq.(15).

WecanbemoresystematicandcompleteusingourESFTapproach.Letusseefirsthow

theoperatorsofEq.(12)canbeembeddedinsuper-operators.Byembeddingqanduinthe

chiralsupermultipletsQandU,wefindthatthedipoleloop-operatormustarisefromthe

✓2-termofanon-chiralsuperfield:

�(Q
$
D↵U)W↵=�✓2OD+···.

(16)

AmongtheJJ-operatorsofEq.(13),twoofthemcanarisefromsupersymmetricD-terms

andarethensupersymmetry-preserving:

�

�†eV��
�

�

Q†eVQQ
�

=✓̄2✓2O�q+···,
�

Q†eVQQ
�

�

Q†eVQQ
�

=�1

2
✓̄2✓2O4q+···,(17)

andsimilaroperatorsforQ!U,whereweagainusetheshort-handnotationVQ=2QqV.

Nevertheless,oneoftheJJ-operatorsmustcomefromthe✓2-componentofanon-chiral

superfieldthatisnotinvariantundersupersymmetry:

�

�†eV��
�

�QU=✓2Oyu+···.
(18)

7

n=4; h=2

F↵�F
↵�h2

<latexit sha1_base64="hqQz55FtHzLgVFOOrvvmcydJtnM=">AAACDHicbVDLSgMxFM3UV62vqks3wSK4KjNV0GVRKC4r2Ae003InzXRCM5khyQhl6Ae48VfcuFDErR/gzr8xbWdhWw8ETs45l+QeL+ZMadv+sXJr6xubW/ntws7u3v5B8fCoqaJEEtogEY9k2wNFORO0oZnmtB1LCqHHacsb3U791iOVikXiQY9j6oYwFMxnBLSR+sUSrvXTLvA4gK5HNUxwrbdwD3oVk7LL9gx4lTgZKaEM9X7xuzuISBJSoQkHpTqOHWs3BakZ4XRS6CaKxkBGMKQdQwWEVLnpbJkJPjPKAPuRNEdoPFP/TqQQKjUOPZMMQQdq2ZuK/3mdRPvXbspEnGgqyPwhP+FYR3jaDB4wSYnmY0OASGb+ikkAEog2/RVMCc7yyqukWSk7F+XK/WWpepPVkUcn6BSdIwddoSq6Q3XUQAQ9oRf0ht6tZ+vV+rA+59Gclc0cowVYX79fopsy</latexit>

also explained by susy techniques: arXiv:1412.7151



p2|HH†|2
<latexit sha1_base64="pYo/pBFB5xjMyFAhs0b7TyqWzD8=">AAAB+nicbVBNS8NAEJ3Ur1q/Uj16CRbBU0mqoMeilx4r2A9o07LZbNKlm03Y3Sgl7U/x4kERr/4Sb/4bt20O2vpg4PHeDDPzvIRRqWz72yhsbG5t7xR3S3v7B4dHZvm4LeNUYNLCMYtF10OSMMpJS1HFSDcRBEUeIx1vfDf3O49ESBrzBzVJiBuhkNOAYqS0NDTLyaA2bTQGfR+FIRHTQW1oVuyqvYC1TpycVCBHc2h+9f0YpxHhCjMkZc+xE+VmSCiKGZmV+qkkCcJjFJKephxFRLrZ4vSZda4V3wpioYsra6H+nshQJOUk8nRnhNRIrnpz8T+vl6rgxs0oT1JFOF4uClJmqdia52D5VBCs2EQThAXVt1p4hATCSqdV0iE4qy+vk3at6lxWa/dXlfptHkcRTuEMLsCBa6hDA5rQAgxP8Ayv8GZMjRfj3fhYthaMfOYE/sD4/AGdzJOV</latexit>

HF  
<latexit sha1_base64="6eFtJDdMULNZ+yX9o6F5eUpJjUA=">AAAB8XicbVBNSwMxEJ3Ur1q/qh69BIvgqexWQY9FQXqsYD+wXUo2zbah2eySZIWy9F948aCIV/+NN/+N2XYP2vpg4PHeDDPz/FhwbRznGxXW1jc2t4rbpZ3dvf2D8uFRW0eJoqxFIxGprk80E1yyluFGsG6sGAl9wTr+5DbzO09MaR7JBzONmReSkeQBp8RY6bFx1481z2pQrjhVZw68StycVCBHc1D+6g8jmoRMGiqI1j3XiY2XEmU4FWxW6ieaxYROyIj1LJUkZNpL5xfP8JlVhjiIlC1p8Fz9PZGSUOtp6NvOkJixXvYy8T+vl5jg2ku5jBPDJF0sChKBTYSz9/GQK0aNmFpCqOL2VkzHRBFqbEglG4K7/PIqadeq7kW1dn9Zqd/kcRThBE7hHFy4gjo0oAktoCDhGV7hDWn0gt7Rx6K1gPKZY/gD9PkDavqQwA==</latexit>

 4
<latexit sha1_base64="0PKT6cokOqDyAIf4WF7Tk6g6qBU=">AAAB7XicbVBNTwIxEJ3FL8Qv1KOXRmLiiewiiR6JXjxi4gIJrKRbulDptpu2a0I2/AcvHjTGq//Hm//GAntQ8CWTvLw3k5l5YcKZNq777RTW1jc2t4rbpZ3dvf2D8uFRS8tUEeoTyaXqhFhTzgT1DTOcdhJFcRxy2g7HNzO//USVZlLcm0lCgxgPBYsYwcZKrV6i2UO9X664VXcOtEq8nFQgR7Nf/uoNJEljKgzhWOuu5yYmyLAyjHA6LfVSTRNMxnhIu5YKHFMdZPNrp+jMKgMUSWVLGDRXf09kONZ6Eoe2M8ZmpJe9mfif101NdBVkTCSpoYIsFkUpR0ai2etowBQlhk8swUQxeysiI6wwMTagkg3BW355lbRqVe+iWrurVxrXeRxFOIFTOAcPLqEBt9AEHwg8wjO8wpsjnRfn3flYtBacfOYY/sD5/AFQaI70</latexit>

 ̄2 2
<latexit sha1_base64="cuxH7RQnimi5VyyMObWICoDLN98=">AAAB+XicbVBNSwMxEJ3Ur1q/Vj16CRbBU9mtgh6LXjxWsLXQXUs2zbah2eySZAtl6T/x4kERr/4Tb/4b03YP2vpghsd7M2TywlRwbVz3G5XW1jc2t8rblZ3dvf0D5/CorZNMUdaiiUhUJySaCS5Zy3AjWCdVjMShYI/h6HbmP46Z0jyRD2aSsiAmA8kjTomxUs9x/JAoP9X8qb7oPafq1tw58CrxClKFAs2e8+X3E5rFTBoqiNZdz01NkBNlOBVsWvEzzVJCR2TAupZKEjMd5PPLp/jMKn0cJcqWNHiu/t7ISaz1JA7tZEzMUC97M/E/r5uZ6DrIuUwzwyRdPBRlApsEz2LAfa4YNWJiCaGK21sxHRJFqLFhVWwI3vKXV0m7XvMuavX7y2rjpoijDCdwCufgwRU04A6a0AIKY3iGV3hDOXpB7+hjMVpCxc4x/AH6/AEcYJNQ</latexit>

F 3
<latexit sha1_base64="ucbtwPJWwh1KjLmTAq2eV/EkzAk=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBA8hd1E0GNQEI8RzQOSNcxOepMhs7PLzKwQQj7BiwdFvPpF3vwbJ8keNLGgoajqprsrSATXxnW/nZXVtfWNzdxWfntnd2+/cHDY0HGqGNZZLGLVCqhGwSXWDTcCW4lCGgUCm8Hweuo3n1BpHssHM0rQj2hf8pAzaqx0f/NY6RaKbsmdgSwTLyNFyFDrFr46vZilEUrDBNW67bmJ8cdUGc4ETvKdVGNC2ZD2sW2ppBFqfzw7dUJOrdIjYaxsSUNm6u+JMY20HkWB7YyoGehFbyr+57VTE176Yy6T1KBk80VhKoiJyfRv0uMKmREjSyhT3N5K2IAqyoxNJ29D8BZfXiaNcsmrlMp358XqVRZHDo7hBM7Agwuowi3UoA4M+vAMr/DmCOfFeXc+5q0rTjZzBH/gfP4AwkaNcw==</latexit>

|H|6
<latexit sha1_base64="KNLXTL2k4B8tObu/yiwLMm6BXiE=">AAAB7HicbVBNT8JAEJ3iF+IX6tHLRmLiibRo1CPRC0dMLJBAJdtlCxu222Z3a0IKv8GLB43x6g/y5r9xKT0o+JJJXt6bycw8P+ZMadv+tgpr6xubW8Xt0s7u3v5B+fCopaJEEuqSiEey42NFORPU1Uxz2oklxaHPadsf38399hOVikXiQU9i6oV4KFjACNZGcqeN6eNVv1yxq3YGtEqcnFQgR7Nf/uoNIpKEVGjCsVJdx461l2KpGeF0VuolisaYjPGQdg0VOKTKS7NjZ+jMKAMURNKU0ChTf0+kOFRqEvqmM8R6pJa9ufif1010cOOlTMSJpoIsFgUJRzpC88/RgElKNJ8Ygolk5lZERlhiok0+JROCs/zyKmnVqs5FtXZ/Wanf5nEU4QRO4RwcuIY6NKAJLhBg8Ayv8GYJ68V6tz4WrQUrnzmGP7A+fwCO3o6E</latexit>

p|H|2 ̄ 
<latexit sha1_base64="JX4CTh0JtwkW5RS1HkvXREZw828=">AAAB+3icbVBNS8NAEJ34WetXrEcvwSJ4KkkV9Fj00mMF+wFtLJvtpl262Sy7G7Gk/StePCji1T/izX/jps1BWx8MPN6bYWZeIBhV2nW/rbX1jc2t7cJOcXdv/+DQPiq1VJxITJo4ZrHsBEgRRjlpaqoZ6QhJUBQw0g7Gt5nffiRS0Zjf64kgfoSGnIYUI22kvl0S0/r0odoLkOwJRbPq22W34s7hrBIvJ2XI0ejbX71BjJOIcI0ZUqrruUL7KZKaYkZmxV6iiEB4jIakayhHEVF+Or995pwZZeCEsTTFtTNXf0+kKFJqEgWmM0J6pJa9TPzP6yY6vPZTykWiCceLRWHCHB07WRDOgEqCNZsYgrCk5lYHj5BEWJu4iiYEb/nlVdKqVryLSvXusly7yeMowAmcwjl4cAU1qEMDmoDhCZ7hFd6smfVivVsfi9Y1K585hj+wPn8AKECUhA==</latexit>

|H|2F 2
<latexit sha1_base64="yOBFxst0pQMauv7l3LDldRVdXyo=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mioMeiID1WsB/QpmWz3bRLN5u4uxFK2j/hxYMiXv073vw3btsctPXBwOO9GWbm+TFnStv2t5VbW9/Y3MpvF3Z29/YPiodHDRUlktA6iXgkWz5WlDNB65ppTluxpDj0OW36o9uZ33yiUrFIPOhxTL0QDwQLGMHaSK1JddJ177pur1iyy/YcaJU4GSlBhlqv+NXpRyQJqdCEY6Xajh1rL8VSM8LptNBJFI0xGeEBbRsqcEiVl87vnaIzo/RREElTQqO5+nsixaFS49A3nSHWQ7XszcT/vHaig2svZSJONBVksShIONIRmj2P+kxSovnYEEwkM7ciMsQSE20iKpgQnOWXV0nDLTsXZff+slS5yeLIwwmcwjk4cAUVqEIN6kCAwzO8wpv1aL1Y79bHojVnZTPH8AfW5w9CaI90</latexit>

0

1

3 4 5 6

2

3

H|H|2  
<latexit sha1_base64="yqYfQ8dTNA9wXRgbyM9tbBxJou8=">AAAB9XicbVBNT8JAEJ3iF+IX6tHLRmLiibRIokeiF46YyEcChWyXLWzYbpvdrYYU/ocXDxrj1f/izX/jFnpQ8CWTvLw3k5l5XsSZ0rb9beU2Nre2d/K7hb39g8Oj4vFJS4WxJLRJQh7KjocV5UzQpmaa004kKQ48Ttve5C71249UKhaKBz2NqBvgkWA+I1gbqV+f1Wf9Si9SLK1BsWSX7QXQOnEyUoIMjUHxqzcMSRxQoQnHSnUdO9JugqVmhNN5oRcrGmEywSPaNVTggCo3WVw9RxdGGSI/lKaERgv190SCA6WmgWc6A6zHatVLxf+8bqz9GzdhIoo1FWS5yI850iFKI0BDJinRfGoIJpKZWxEZY4mJNkEVTAjO6svrpFUpO1flyn21VLvN4sjDGZzDJThwDTWoQwOaQEDCM7zCm/VkvVjv1seyNWdlM6fwB9bnD2XBknI=</latexit>

number of states
he

lic
ity



p2|HH†|2
<latexit sha1_base64="pYo/pBFB5xjMyFAhs0b7TyqWzD8=">AAAB+nicbVBNS8NAEJ3Ur1q/Uj16CRbBU0mqoMeilx4r2A9o07LZbNKlm03Y3Sgl7U/x4kERr/4Sb/4bt20O2vpg4PHeDDPzvIRRqWz72yhsbG5t7xR3S3v7B4dHZvm4LeNUYNLCMYtF10OSMMpJS1HFSDcRBEUeIx1vfDf3O49ESBrzBzVJiBuhkNOAYqS0NDTLyaA2bTQGfR+FIRHTQW1oVuyqvYC1TpycVCBHc2h+9f0YpxHhCjMkZc+xE+VmSCiKGZmV+qkkCcJjFJKephxFRLrZ4vSZda4V3wpioYsra6H+nshQJOUk8nRnhNRIrnpz8T+vl6rgxs0oT1JFOF4uClJmqdia52D5VBCs2EQThAXVt1p4hATCSqdV0iE4qy+vk3at6lxWa/dXlfptHkcRTuEMLsCBa6hDA5rQAgxP8Ayv8GZMjRfj3fhYthaMfOYE/sD4/AGdzJOV</latexit>

HF  
<latexit sha1_base64="6eFtJDdMULNZ+yX9o6F5eUpJjUA=">AAAB8XicbVBNSwMxEJ3Ur1q/qh69BIvgqexWQY9FQXqsYD+wXUo2zbah2eySZIWy9F948aCIV/+NN/+N2XYP2vpg4PHeDDPz/FhwbRznGxXW1jc2t4rbpZ3dvf2D8uFRW0eJoqxFIxGprk80E1yyluFGsG6sGAl9wTr+5DbzO09MaR7JBzONmReSkeQBp8RY6bFx1481z2pQrjhVZw68StycVCBHc1D+6g8jmoRMGiqI1j3XiY2XEmU4FWxW6ieaxYROyIj1LJUkZNpL5xfP8JlVhjiIlC1p8Fz9PZGSUOtp6NvOkJixXvYy8T+vl5jg2ku5jBPDJF0sChKBTYSz9/GQK0aNmFpCqOL2VkzHRBFqbEglG4K7/PIqadeq7kW1dn9Zqd/kcRThBE7hHFy4gjo0oAktoCDhGV7hDWn0gt7Rx6K1gPKZY/gD9PkDavqQwA==</latexit>

 4
<latexit sha1_base64="0PKT6cokOqDyAIf4WF7Tk6g6qBU=">AAAB7XicbVBNTwIxEJ3FL8Qv1KOXRmLiiewiiR6JXjxi4gIJrKRbulDptpu2a0I2/AcvHjTGq//Hm//GAntQ8CWTvLw3k5l5YcKZNq777RTW1jc2t4rbpZ3dvf2D8uFRS8tUEeoTyaXqhFhTzgT1DTOcdhJFcRxy2g7HNzO//USVZlLcm0lCgxgPBYsYwcZKrV6i2UO9X664VXcOtEq8nFQgR7Nf/uoNJEljKgzhWOuu5yYmyLAyjHA6LfVSTRNMxnhIu5YKHFMdZPNrp+jMKgMUSWVLGDRXf09kONZ6Eoe2M8ZmpJe9mfif101NdBVkTCSpoYIsFkUpR0ai2etowBQlhk8swUQxeysiI6wwMTagkg3BW355lbRqVe+iWrurVxrXeRxFOIFTOAcPLqEBt9AEHwg8wjO8wpsjnRfn3flYtBacfOYY/sD5/AFQaI70</latexit>

 ̄2 2
<latexit sha1_base64="cuxH7RQnimi5VyyMObWICoDLN98=">AAAB+XicbVBNSwMxEJ3Ur1q/Vj16CRbBU9mtgh6LXjxWsLXQXUs2zbah2eySZAtl6T/x4kERr/4Tb/4b03YP2vpghsd7M2TywlRwbVz3G5XW1jc2t8rblZ3dvf0D5/CorZNMUdaiiUhUJySaCS5Zy3AjWCdVjMShYI/h6HbmP46Z0jyRD2aSsiAmA8kjTomxUs9x/JAoP9X8qb7oPafq1tw58CrxClKFAs2e8+X3E5rFTBoqiNZdz01NkBNlOBVsWvEzzVJCR2TAupZKEjMd5PPLp/jMKn0cJcqWNHiu/t7ISaz1JA7tZEzMUC97M/E/r5uZ6DrIuUwzwyRdPBRlApsEz2LAfa4YNWJiCaGK21sxHRJFqLFhVWwI3vKXV0m7XvMuavX7y2rjpoijDCdwCufgwRU04A6a0AIKY3iGV3hDOXpB7+hjMVpCxc4x/AH6/AEcYJNQ</latexit>

F 3
<latexit sha1_base64="ucbtwPJWwh1KjLmTAq2eV/EkzAk=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBA8hd1E0GNQEI8RzQOSNcxOepMhs7PLzKwQQj7BiwdFvPpF3vwbJ8keNLGgoajqprsrSATXxnW/nZXVtfWNzdxWfntnd2+/cHDY0HGqGNZZLGLVCqhGwSXWDTcCW4lCGgUCm8Hweuo3n1BpHssHM0rQj2hf8pAzaqx0f/NY6RaKbsmdgSwTLyNFyFDrFr46vZilEUrDBNW67bmJ8cdUGc4ETvKdVGNC2ZD2sW2ppBFqfzw7dUJOrdIjYaxsSUNm6u+JMY20HkWB7YyoGehFbyr+57VTE176Yy6T1KBk80VhKoiJyfRv0uMKmREjSyhT3N5K2IAqyoxNJ29D8BZfXiaNcsmrlMp358XqVRZHDo7hBM7Agwuowi3UoA4M+vAMr/DmCOfFeXc+5q0rTjZzBH/gfP4AwkaNcw==</latexit>

|H|6
<latexit sha1_base64="KNLXTL2k4B8tObu/yiwLMm6BXiE=">AAAB7HicbVBNT8JAEJ3iF+IX6tHLRmLiibRo1CPRC0dMLJBAJdtlCxu222Z3a0IKv8GLB43x6g/y5r9xKT0o+JJJXt6bycw8P+ZMadv+tgpr6xubW8Xt0s7u3v5B+fCopaJEEuqSiEey42NFORPU1Uxz2oklxaHPadsf38399hOVikXiQU9i6oV4KFjACNZGcqeN6eNVv1yxq3YGtEqcnFQgR7Nf/uoNIpKEVGjCsVJdx461l2KpGeF0VuolisaYjPGQdg0VOKTKS7NjZ+jMKAMURNKU0ChTf0+kOFRqEvqmM8R6pJa9ufif1010cOOlTMSJpoIsFgUJRzpC88/RgElKNJ8Ygolk5lZERlhiok0+JROCs/zyKmnVqs5FtXZ/Wanf5nEU4QRO4RwcuIY6NKAJLhBg8Ayv8GYJ68V6tz4WrQUrnzmGP7A+fwCO3o6E</latexit>

p|H|2 ̄ 
<latexit sha1_base64="JX4CTh0JtwkW5RS1HkvXREZw828=">AAAB+3icbVBNS8NAEJ34WetXrEcvwSJ4KkkV9Fj00mMF+wFtLJvtpl262Sy7G7Gk/StePCji1T/izX/jps1BWx8MPN6bYWZeIBhV2nW/rbX1jc2t7cJOcXdv/+DQPiq1VJxITJo4ZrHsBEgRRjlpaqoZ6QhJUBQw0g7Gt5nffiRS0Zjf64kgfoSGnIYUI22kvl0S0/r0odoLkOwJRbPq22W34s7hrBIvJ2XI0ejbX71BjJOIcI0ZUqrruUL7KZKaYkZmxV6iiEB4jIakayhHEVF+Or995pwZZeCEsTTFtTNXf0+kKFJqEgWmM0J6pJa9TPzP6yY6vPZTykWiCceLRWHCHB07WRDOgEqCNZsYgrCk5lYHj5BEWJu4iiYEb/nlVdKqVryLSvXusly7yeMowAmcwjl4cAU1qEMDmoDhCZ7hFd6smfVivVsfi9Y1K585hj+wPn8AKECUhA==</latexit>

|H|2F 2
<latexit sha1_base64="yOBFxst0pQMauv7l3LDldRVdXyo=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mioMeiID1WsB/QpmWz3bRLN5u4uxFK2j/hxYMiXv073vw3btsctPXBwOO9GWbm+TFnStv2t5VbW9/Y3MpvF3Z29/YPiodHDRUlktA6iXgkWz5WlDNB65ppTluxpDj0OW36o9uZ33yiUrFIPOhxTL0QDwQLGMHaSK1JddJ177pur1iyy/YcaJU4GSlBhlqv+NXpRyQJqdCEY6Xajh1rL8VSM8LptNBJFI0xGeEBbRsqcEiVl87vnaIzo/RREElTQqO5+nsixaFS49A3nSHWQ7XszcT/vHaig2svZSJONBVksShIONIRmj2P+kxSovnYEEwkM7ciMsQSE20iKpgQnOWXV0nDLTsXZff+slS5yeLIwwmcwjk4cAUVqEIN6kCAwzO8wpv1aL1Y79bHojVnZTPH8AfW5w9CaI90</latexit>

0

1

3 4 5 6

2

3

H|H|2  
<latexit sha1_base64="yqYfQ8dTNA9wXRgbyM9tbBxJou8=">AAAB9XicbVBNT8JAEJ3iF+IX6tHLRmLiibRIokeiF46YyEcChWyXLWzYbpvdrYYU/ocXDxrj1f/izX/jFnpQ8CWTvLw3k5l5XsSZ0rb9beU2Nre2d/K7hb39g8Oj4vFJS4WxJLRJQh7KjocV5UzQpmaa004kKQ48Ttve5C71249UKhaKBz2NqBvgkWA+I1gbqV+f1Wf9Si9SLK1BsWSX7QXQOnEyUoIMjUHxqzcMSRxQoQnHSnUdO9JugqVmhNN5oRcrGmEywSPaNVTggCo3WVw9RxdGGSI/lKaERgv190SCA6WmgWc6A6zHatVLxf+8bqz9GzdhIoo1FWS5yI850iFKI0BDJinRfGoIJpKZWxEZY4mJNkEVTAjO6svrpFUpO1flyn21VLvN4sjDGZzDJThwDTWoQwOaQEDCM7zCm/VkvVjv1seyNWdlM6fwB9bnD2XBknI=</latexit>

number of states
he

lic
ity

renormalization  
cone

Δn ≥ |Δh|



  Bottom-up approach to Goldstone physics:

Only assume:

a) πi ϵ reps of H   (no coset input) 

b) A(1234)→qi    (for  qi→0)  (Adler’s zeros)

II.

in collaboration with P. Baratella & B. Harling
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inv. tensors

invariant  
under crossingkin. functions

= f(s, t,u)TIJKL + · · ·
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Tensor invariants (for π ϵ Adj of SU(N)):

●I

J

L

K

inv. tensors

invariant  
under crossingkin. functions

● single trace (6):

● double trace (3):

Figure 1: Representation of the amplitude AIJKL. All momenta are taken incoming.

2.1 (a) Adjoint of SU(N)

2.1.1 Invariant tensors

We start by listing the SU(N)-invariant tensors with four indexes in the adjoint. These can
be constructed out of traces of generators (tI)ij. With four indexes, given that tr(tI) = 0,
one can have only single or double traces

tr(tItJtKtL) , tr(tItJ) tr(tKtL) (2)

plus permutations. The (naively, at least) inequivalent permutations are 3!=6 for the single
traces (due to the ciclicity of the trace, one can always put I in the first position) and 3 for
the double traces.

The double traces are proportional to we will call the “��” tensors

�IJ�KL , �IL�JK , �IK�JL . (3)

For SU(N = 2, 3) not all the 9 tensors are independent. For N = 2, all single traces can be
expressed with double traces, and the independent tensors are 3. For N = 3, the permutation
invariant combination of the single traces is proportional to the sum of the �� tensors

X

�2S4

tr(t�·It�·Jt�·Kt�·L) = �IJ�KL + �IL�JK + �IK�JL (N = 3) (4)

and the independent tensors are 8. Notice that this expression is valid for generators nor-
malized as tr(tItJ) = �IJ/2. For N > 3, all 9 tensors are independent.

We call ⌧ (↵)IJKL a generic invariant tensors.

2.1.2 Kinematic invariant functions

Lorentz invariant 4pt amplitudes for scalars are function of the Mandelstam variables

s = 2p
1

· p
2

, t = 2p
1

· p
4

, u = 2p
1

· p
3

(5)

which are subject to the constraint, coming from momentum conservation

s+ t+ u = 0 . (6)

2

Figure 1: Representation of the amplitude AIJKL. All momenta are taken incoming.
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= f(s, t,u)TIJKL + · · ·
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Tensor invariants (for π ϵ Adj of SU(N)):

Kinematics:
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invariant  
under crossingkin. functions

● single trace (6):

● double trace (3):

Figure 1: Representation of the amplitude AIJKL. All momenta are taken incoming.

2.1 (a) Adjoint of SU(N)

2.1.1 Invariant tensors

We start by listing the SU(N)-invariant tensors with four indexes in the adjoint. These can
be constructed out of traces of generators (tI)ij. With four indexes, given that tr(tI) = 0,
one can have only single or double traces

tr(tItJtKtL) , tr(tItJ) tr(tKtL) (2)

plus permutations. The (naively, at least) inequivalent permutations are 3!=6 for the single
traces (due to the ciclicity of the trace, one can always put I in the first position) and 3 for
the double traces.

The double traces are proportional to we will call the “��” tensors

�IJ�KL , �IL�JK , �IK�JL . (3)

For SU(N = 2, 3) not all the 9 tensors are independent. For N = 2, all single traces can be
expressed with double traces, and the independent tensors are 3. For N = 3, the permutation
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<latexit sha1_base64="MxrpA9GnKmBEl9ebHBfBYoHdfYQ=">AAAB+HicbVBNS8NAEJ34WetHqx69LBbBU0mqoMeqFw8eKtgPaELYbDft0s0m7G6EGvpLvHhQxKs/xZv/xk2bg7Y+GHi8N8PMvCDhTGnb/rZWVtfWNzZLW+Xtnd29SnX/oKPiVBLaJjGPZS/AinImaFszzWkvkRRHAafdYHyT+91HKhWLxYOeJNSL8FCwkBGsjeRXK24QoswlmKOrqX9X9qs1u27PgJaJU5AaFGj51S93EJM0okITjpXqO3aivQxLzQin07KbKppgMsZD2jdU4IgqL5sdPkUnRhmgMJamhEYz9fdEhiOlJlFgOiOsR2rRy8X/vH6qw0svYyJJNRVkvihMOdIxylNAAyYp0XxiCCaSmVsRGWGJiTZZ5SE4iy8vk06j7pzVG/fnteZ1EUcJjuAYTsGBC2jCLbSgDQRSeIZXeLOerBfr3fqYt65Yxcwh/IH1+QM0OJIj</latexit>

AR
<latexit sha1_base64="UDdXPv3C+aa859VN7uyiof5JyH0=">AAAB+HicbVBNS8NAEJ34WetHox69LBbBU0mqoMeqF49V7Ac0oWy2m3bpZhN2N0IN/SVePCji1Z/izX/jps1BWx8MPN6bYWZekHCmtON8Wyura+sbm6Wt8vbO7l7F3j9oqziVhLZIzGPZDbCinAna0kxz2k0kxVHAaScY3+R+55FKxWLxoCcJ9SM8FCxkBGsj9e2KF4Qo8wjm6Gravy/37apTc2ZAy8QtSBUKNPv2lzeISRpRoQnHSvVcJ9F+hqVmhNNp2UsVTTAZ4yHtGSpwRJWfzQ6fohOjDFAYS1NCo5n6eyLDkVKTKDCdEdYjtejl4n9eL9XhpZ8xkaSaCjJfFKYc6RjlKaABk5RoPjEEE8nMrYiMsMREm6zyENzFl5dJu15zz2r1u/Nq47qIowRHcAyn4MIFNOAWmtACAik8wyu8WU/Wi/VufcxbV6xi5hD+wPr8AT1Wkik=</latexit>

● ●

thanks to Jacobi identity & s+t+u=0
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uL -  tL( )
M

N K

L M

N K

L

uR -  tR( )

⨋ (uLuR+tLtR) + ⨋ (uLtR+tLuR)=

● single trace:



ONE LOOP

+ crossing

= (s2 + t2 + u2) ( Tr[ FI FJ FK FL
 ] + crossing )
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● ●

Unclear why so simple!

(FI)JK = fIJK

● single trace:



Conclusions

• Amplitude methods seems quite suited for calculating 
indirect BSM effects, e.g. anomalous dimensions of O6 

• Allows to construct BSM without Lagrangians: 
           ☛ new theories of Goldstones? 
           ☛ new methods of unitarization?

☛  many selection rules

A lot to do! Stay Tuned!


