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violation in the Yukawa sector we analyse the implications of the different available choices
of representations for the quarks under the S3 group. This classification is based strictly
on the exact S3-symmetric scalar potential with no soft symmetry breaking terms. The
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Motivation for three Higgs doublets

Why not more? Three fermion generations may suggest three doublets 

New sources of CP violation in the scalar sector

Possibility of having a discrete symmetry and still have CP violation, explicit or 
spontaneous 

Rich phenomenology, including DM candidates

Motivation for imposing discrete symmetries
Symmetries reduce the number of free parameters leading to (testable) predictions

Symmetries help control HFCNC (e.g. NFC or MFV suppression in BGL models)  

Symmetries are needed to stabilise DM



Our work

We discuss a three-Higgs-doublet model with an underlying  symmetry

J
H
E
P
0
7
(
2
0
2
3
)
0
1
3

Published for SISSA by Springer
Received: February 28, 2023

Revised: May 1, 2023
Accepted: June 19, 2023
Published: July 3, 2023

Complex S3-symmetric 3HDM

A. Kunčinas,a O.M. Ogreid,b P. Oslandc and M.N. Rebeloa
aCentro de Física Teórica de Partículas, CFTP, Departamento de Física,
Instituto Superior Técnico, Universidade de Lisboa,
Avenida Rovisco Pais nr. 1, 1049-001 Lisboa, Portugal

bWestern Norway University of Applied Sciences,
Postboks 7030, N-5020 Bergen, Norway

cDepartment of Physics and Technology, University of Bergen,
Postboks 7803, N-5020 Bergen, Norway
E-mail: Anton.Kuncinas@tecnico.ulisboa.pt, omo@hvl.no,
Per.Osland@uib.no, rebelo@tecnico.ulisboa.pt

Abstract: CP violation plays a very important role in nature with implications both
for Particle Physics and for Cosmology. Accounting for the observed matter-antimatter
asymmetry of the Universe requires the existence of new sources of CP violation beyond
the Standard Model. In models with an extended scalar sector CP violation can emerge
either explicitly, i.e., at the Lagrangian level, or spontaneously. Spontaneous CP violation
occurs in the framework of the electroweak symmetry breaking whenever the Lagrangian
conserves CP and the vacuum breaks it. This requires that not all vacuum expectation
values be real. In the context of multi-Higgs extensions of the Standard Model imposing
the existence of a scalar basis where all couplings are real is a sufficient condition for CP
to be explicitly conserved. We discuss a three-Higgs-doublet model with an underlying
S3 symmetry, allowing in principle for complex couplings. In this framework it is possible
to have either spontaneous or explicit CP violation in the scalar sector, depending on
the regions of parameter space corresponding to the different possible vacua of the S3
symmetric potential. We list all possible vacuum structures allowing for CP violation
in the scalar sector specifying whether it can be explicit or spontaneous. It is by now
established that CP is violated in the flavour sector and that the Cabibbo-Kobayashi-
Maskawa matrix is complex. In order to understand what are the possible sources of CP
violation in the Yukawa sector we analyse the implications of the different available choices
of representations for the quarks under the S3 group. This classification is based strictly
on the exact S3-symmetric scalar potential with no soft symmetry breaking terms. The
scalar sector of one such model was explored numerically. After applying the theoretical
and the most important experimental constraints the available parameter space is shown
to be able to give rise to light neutral scalars at the O(MeV) scale.
Keywords: CP Violation, Multi-Higgs Models
ArXiv ePrint: 2302.07210

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP07(2023)013

allowing in principle for complex couplings

We list all possible vacuum structures allowing for CP violation in the scalar sector 
specifying whether it can be explicit or spontaneous 

This classification is based strictly on the exact 
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-symmetric scalar potential 
without soft symmetry breaking terms

Different regions of parameter space correspond to different vacua with implications 
that are outlined in our work 

In a previous work the  scalar potential with real couplings was studied. In that case 
CP was explicitly conserved and could only be violated spontaneously for special 
vacua, which we identified

Emmanuel-Costa, Ogreid, Osland, M. N. R, 2016



The Scalar potential
S3 is the permutation group involving three objects, 

here all fields appear on equal footing
this representation is not irreducible, for instance, the combination

remains invariant, it splits into two irreducible representations, 

Derman, 1979
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Decomposition into these two irreducible representations

This definition does not treat equally they could be interchanged

Decomposition into these two irreducible representations
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Very interesting alternative, democratic with phases (USY)

Notice similarity with tribimaximal mixing in the leptonic sector

In our analysis we adopt the singlet-doublet representation of

Harrison, Perkins and Scott, 1999 
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The scalar potential in the singlet-doublet representation

J
H
E
P
0
7
(
2
0
2
3
)
0
1
3

(Inert Doublet Models [43–45]), it is possible to have both CP violation (in the active or
inert sector) and a possible dark matter (DM) candidate in the context of 3HDM [46–53].

The S3-symmetric 3HDM has been studied since the late 70s in the irreducible [54] and
reducible [55, 56] representations, trying to explain the fermionic structures. Since then,
different cases of the CP-conserving scalar potential were discussed [57–60]. With real
couplings CP is explicitly conserved by the scalar potential and there is only the possibility
of having spontaneous CP violation for special vacua [61]. In this paper we study the
CP properties of the S3-symmetric 3HDM allowing for complex couplings in the potential.
Different vacua correspond to different regions of parameter space which are determined by
imposing the minimisation conditions. In the case of complex couplings some of the CP-
conserving vacuum structures of the real potential now correspond to regions of parameter
space that allow for explicit CP violation. For instance, CP can be explicitly violated even
in the case where the vacuum preserves the S3 symmetry.

The paper is organised as follows. In section 2 we introduce the S3-symmetric scalar
potential along with a discussion of the starting point for our analysis corresponding to
a suitable choice of a scalar basis. Although two new phases can be introduced in the
quartic couplings, we choose to fix one of them to be zero and we allow for the vevs to
be complex, which is required for generality. After fixing the basis for our discussion, in
section 3 we employ the powerful tool of CP-odd Higgs basis invariants in order to obtain
constraints on the parameter space for the case of explicit CP conservation. The CP-odd
basis invariant conditions require the imaginary part of different possible combinations of
Y - and Z-tensors to vanish. With this information it is then possible to classify models
based on the structure of their vevs. This is done in section 4. In section 5 we cover
the building of the Yukawa Lagrangian assuming that fermions are charged under the S3
symmetry. Some of the models require further numerical investigation. These models are
discussed in section 6. In section 7 we present our conclusions.

2 The scalar potential

The S3-symmetric 3HDM is in the irreducible representation given by a singlet, a pseudos-
inglet and a doublet. We shall adopt the singlet-doublet representation. In this case the
S3-symmetric potential can be written as [62–64]:

V2 =µ2
0h

†
ShS + µ2

1(h†1h1 + h†2h2), (2.1a)
V4 =λ1(h†1h1 + h†2h2)2 + λ2(h†1h2 − h†2h1)2 + λ3[(h†1h1 − h†2h2)2 + (h†1h2 + h†2h1)2]

+
{

λ4
[
(h†Sh1)(h

†
1h2 + h†2h1) + (h†Sh2)(h

†
1h1 − h†2h2)

]
+ h.c.

}

+ λ5(h†ShS)(h
†
1h1 + h†2h2) + λ6[(h†Sh1)(h

†
1hS) + (h†Sh2)(h

†
2hS)]

+
{

λ7
[
(h†Sh1)(h

†
Sh1) + (h†Sh2)(h

†
Sh2)

]
+ h.c.

}
+ λ8(h†ShS)2.

(2.1b)

There are two couplings, λ4 and λ7, that could be complex. Hence, CP symmetry can be
broken explicitly. All other couplings have to be real due to the hermiticity of the potential.

Another option would be to consider the pseudosinglet-doublet representation. In
this case there is no unitary transformation into the defining representation of S3. Such

– 2 –

Das and Dey, 2014
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Here we are interested in expanding the set of solutions identified and classified 
previously  for the real potential by allowing for complex coefficients.

No symmetry for the interchange of 

Alternative choice of irreducible representations

S3 has three irreducible representations, doublet, singlet and 
pseudo singlet, hA

Take S3 doublet and hA  
No direct translation into initial fields �1,�2,�3

New potential (only term in �4 changes):
2.6 The potential in terms of the S3 (singlet)0 and doublet

In terms of the S3 (singlet)0 and doublet fields, the potential can be written as

V2 = µ2
0h

†
A
hA + µ2

1(h
†
1h1 + h†

2h2), (2.75a)

V4 = �1(h
†
1h1 + h†
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†
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2h2)
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2]
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†
A
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†
A
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The vacuum conditions give µ2
0 and µ2

1 in terms of the quartic coe�cients. For the case
of complex vevs, we have from the real parts of the (complex) minimization conditions):

µ2
0 =

1

2wA cos ⇠A

�
�4w1[w

2
1 cos ⇠1 � w2

2(2 cos ⇠1 + cos(2⇠2 � ⇠1))]

� (�5 + �6)(w
2
1 + w2

2)wA cos ⇠A � 2�7wA[w
2
1 cos(2⇠1 � ⇠A) + w2

2 cos(2⇠2 � ⇠A)]

� 2�8w
3
A
cos ⇠A

 
, (2.76a)

µ2
1 = ��1(w

2
1 + w2

2) + �2w
2
2


1� cos(2⇠2 � ⇠1)

cos ⇠1

�
� �3


w2

1 + w2
2

cos(2⇠2 � ⇠1)

cos ⇠1

�

+ �4
wA

2w1 cos ⇠1

�
w2

1[cos(2⇠1 � ⇠A) + 2 cos ⇠A]� w2
2[cos(2⇠2 � ⇠A) + 2 cos ⇠A]

 

� 1

2
(�5 + �6)w

2
A
� �7w

2
A

cos(2⇠A � ⇠1)

cos ⇠1
, (2.76b)

µ2
1 = ��1(w

2
1 + w2

2) + �2w
2
1


1� cos(2⇠1 � ⇠2)

cos ⇠2

�
� �3


w2

1

cos(2⇠1 � ⇠2)

cos ⇠2
+ w2

2

�

� �4w1wA


cos(⇠1 + ⇠2 � ⇠A)

cos ⇠2
+

2 cos ⇠A cos(⇠1 � ⇠2)

cos ⇠2

�

� 1

2
(�5 + �6)w

2
A
� �7w

2
A

cos(2⇠A � ⇠2)

cos ⇠2
. (2.76c)

Consistency:

1. �4 = 0 and ⇠2 = ⇠1 ⌘ ⇠.

2. w2
2 = 3w2

1 and ⇠2 = ⇠1 ⌘ ⇠.

3. �2 = �3 = �4 = �7 = 0.

The imaginary parts of the minimization conditions give further constraints, and we end
up with the overall possibilities:

1. �4 = 0 and ⇠2 = ⇠1 ⌘ ⇠ and {�7 = 0 or sin[2(⇠A � ⇠)] = 0}.

2. w2
2 = 3w2

1 and ⇠2 = ⇠1 ⌘ ⇠ and {�7 = 0 or sin[2(⇠A � ⇠)] = 0}.

3. �2 = �3 = �4 = �7 = 0.

15

reduces to the same potential we had before with h1 and h2 
interchanged, no new physics! 

The scalar potential in terms of fields from irreducible representations

M2
13 = M2

12,

M2
23 =

1

4(v1 + 2v2)
[(4A� 2C � 2C̄)v1v2(v1 + v2)� 2Dv2(v

2
1 � v1v2 � 4v22)

+ (E2 + E3 � E1)(v
3
1 + v21v2 � 4v1v

2
2 � 2v32) + E4(�v31 + v21v2 + 4v1v

2
2 � 2v32)].

(2.19)

2.3 The potential in terms of the S3 singlet and doublet

In terms of the S3 singlet and doublet fields, the potential can be written as [2, 3, 4, 5, 6, 7]

V2 = µ2
0h

†
S
hS + µ2

1(h
†
1h1 + h†

2h2), (2.20a)

V4 = �8(h
†
S
hS)

2 + �5(h
†
S
hS)(h

†
1h1 + h†

2h2) + �1(h
†
1h1 + h†

2h2)
2

+ �2(h
†
1h2 � h†

2h1)
2 + �3[(h

†
1h1 � h†

2h2)
2 + (h†

1h2 + h†
2h1)

2]

+ �6[(h
†
S
h1)(h

†
1hS) + (h†

S
h2)(h

†
2hS)]

+ �7[(h
†
S
h1)(h

†
S
h1) + (h†

S
h2)(h

†
S
h2) + h.c.]

+ �4[(h
†
S
h1)(h

†
1h2 + h†

2h1) + (h†
S
h2)(h

†
1h1 � h†

2h2) + h.c.] (2.20b)

The vacuum conditions give µ2
0 and µ2

1 in terms of the quartic coe�cients:

µ2
0 =

1

2ṽS

⇥
�2�8ṽ

3
S
� (�5 + �6 + 2�7)(ṽ

2
1 + ṽ22)ṽS + �4(ṽ

2
2 � 3ṽ21)ṽ2

⇤
, (2.21a)

µ2
1 =

1

2

h
�(�5 + �6 + 2�7)ṽ

2
S
� 2(�1 + �3)(̃ṽ

2
1 + ṽ22)� 6�4ṽ2ṽS

i
, (2.21b)

µ2
1 =

1

2ṽ2

h
�(�5 + �6 + 2�7)ṽ2ṽ

2
S
� 2(�1 + �3)(̃ṽ

2
1 + ṽ22)ṽ2 + 3�4(ṽ

2
2 � ṽ21)ṽS

i
(2.21c)

The two equations (2.21b) and (2.21c) are not automatically consistent.
For the charged sector, the mass-squared matrix is given by

M2
11 =

1
2 [�5ṽ

2
S
+ 2�1(ṽ

2
1 + ṽ22) + 2�4ṽ2ṽS + 2�3(ṽ

2
1 � ṽ22) + 2µ2

1],

M2
22 =

1
2 [�5ṽ

2
S
+ 2�1(ṽ

2
1 + ṽ22)� 2�4ṽ2ṽS � 2�3(ṽ

2
1 � ṽ22) + 2µ2

1],

M2
SS

= 1
2 [2�8ṽ

2
S
+ �5(ṽ

2
1 + ṽ22) + 2µ2

0],

M2
12 = ṽ1(�4ṽS + 2�3ṽ2),

M2
1S = 1

2 ṽ1(2�4ṽ2 + �6ṽS + 2�7ṽS),

M2
2S = 1

2 [�4(ṽ
2
1 � ṽ22) + �6ṽ2ṽS + 2�7ṽ2ṽS]. (2.22)

For the CP-odd sector, the mass-squared matrix is given by

M2
11 =

1
2 [(�5 + �6 � 2�7)ṽ

2
S
+ 2�1(ṽ

2
1 + ṽ22)� 4�2ṽ

2
2 + 2�4ṽ2ṽS + 2�3(ṽ

2
1 � ṽ22) + 2µ2

1],

M2
22 =

1
2 [(�5 + �6 � 2�7)ṽ

2
S
+ 2�1(ṽ

2
1 + ṽ22)� 4�2ṽ

2
1 � 2�4ṽ2ṽS � 2�3(ṽ

2
1 � ṽ22) + 2µ2

1],

M2
SS

= 1
2 [2�8ṽ

2
S
+ (�5 + �6 � 2�7)(ṽ

2
1 + ṽ22) + 2µ2

0],

M2
12 = ṽ1[2(�2 + �3)ṽ2 + �4ṽS],

M2
1S = ṽ1(�4ṽ2 + 2�7ṽS),

M2
2S = 1

2 [�4(ṽ
2
1 � ṽ22) + 4�7ṽ2ṽS]. (2.23)
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no symmetry under the interchange of 

however there is symmetry for  

equivalent doublet representation

Das and Dey

h1 and h2

h1 ! �h1

2 The scalar potential

S3 is the permutation group involving three objects, {�a,�b,�c}. The three dimensional representation of S3 is
not an irreducible one simply because we can easily construct a linear combination of the elements, �a+�b+�c,
which remains unaltered under the permutation of the indices. We choose to decompose the three dimensional
representation into a singlet and doublet as follows :

1 : �3 =
1p
3
(�a + �b + �c) , (1a)

2 :

✓
�1

�2

◆
=

 
1p
2
(�a � �b)

1p
6
(�a + �b � 2�c)

!
. (1b)

The elements of S3 for this particular doublet representation are given by :
✓

cos ✓ sin ✓
� sin ✓ cos ✓

◆
,

✓
cos ✓ sin ✓
sin ✓ � cos ✓

◆
, for

✓
✓ = 0,±2⇡

3

◆
. (2)

The most general renormalizable potential invariant under S3 can be written in terms of �3, �1 and �2 as
follows [27–31]:

V (�) = V2(�) + V4(�) , (3a)

where, V2(�) = µ2
1(�

†
1�1 + �†

2�2) + µ2
3�

†
3�3 , (3b)

V4(�) = �1(�
†
1�1 + �†

2�2)
2 + �2(�

†
1�2 � �†

2�1)
2 + �3

n
(�†

1�2 + �†
2�1)

2 + (�†
1�1 � �†

2�2)
2
o

+�4

n
(�†

3�1)(�
†
1�2 + �†

2�1) + (�†
3�2)(�

†
1�1 � �†

2�2) + h.c.
o

+�5(�
†
3�3)(�

†
1�1 + �†

2�2) + �6

n
(�†

3�1)(�
†
1�3) + (�†

3�2)(�
†
2�3)

o

+�7

n
(�†

3�1)(�
†
3�1) + (�†

3�2)(�
†
3�2) + h.c.

o
+ �8(�

†
3�3)

2 . (3c)

In general �4 and �7 can be complex, but we assume them to be real so that CP symmetry is not broken
explicitly. For the stability of the vacuum in the asymptotic limit we impose the requirement that there should
be no direction in the field space along which the potential becomes infinitely negative. The necessary and
su�cient conditions for this is well known in the context of two Higgs-doublet models (2HDMs) [32]. For the
potential of Eq. (3), a 2HDM equivalent situation arise if one of the doublets is made identically zero. Then
it is quite straightforward to find the following necessary conditions for the global stability in the asymptotic
limit :

�1 > 0 , (4a)

�8 > 0 , (4b)

�1 + �3 > 0 , (4c)

2�1 + (�3 � �2) > |�2 + �3| , (4d)

�5 + 2
p

�8(�1 + �3) > 0 , (4e)

�5 + �6 + 2
p

�8(�1 + �3) > 2|�7| , (4f)

�1 + �3 + �5 + �6 + 2�7 + �8 > 2|�4| . (4g)

To avoid confusion, we wish to mention that an equivalent doublet representation,
✓
�1

�2

◆
=

1p
2

✓
i 1
�i 1

◆✓
�1

�2

◆
, (5)

has also been used in the literature. In terms of this new doublet, the quartic part of the scalar potential is
written as [33–35]:

V4 =
�1

2

⇣
�†
1�1 + �†

2�2

⌘2
+

�2

2

⇣
�†
1�1 � �†

2�2

⌘2
+ �3(�

†
1�2)(�

†
2�1) +

�4

2
(�†

3�3)
2

2

✓
h1

h2

◆

now there is symmetry for 

In the special case 

�1 $ �2

�4 = 0 the potential has SO(2) symmetry: 

m2
1+ = �

⇢
2�3 sin

2 � +
1

2
(�6 + 2�7) cos

2 �

�
v2 , (13b)

with, tan� =

p
v21 + v22
v3

. (13c)

The second charged Higgs (H+
2 ) along with the massless Goldstone (!+), which will appear as the longitudinal

component of the W -boson, can be obtained by diagonalizing the remaining 2⇥ 2 block :
✓
H+

2

!+

◆
=

✓
cos� � sin�
sin� cos�

◆✓
w0+

2

w+
3

◆
with, w0+

2 = sin � w+
1 + cos � w+

2 . (14)

The mass of the second charged Higgs is given by :

m2
2+ = �1

2
(�6 + 2�7)v

2 . (15)

Similar considerations for the pseudoscalar part gives :

XM2
P
XT =

0

@
1
2m

2
A1 0 0
0 �v23�7 v3

p
v21 + v22�7

0 v3
p
v21 + v22�7 �(v21 + v22)�7

1

A , (16)

where, the pseudoscalar state (A1) with mass eigenvalue mA1 is defined as :

A1 = cos � z1 � sin � z2 , (17a)

m2
A1 = �2

�
(�2 + �3) sin

2 � + �7 cos
2 �

 
v2 , (17b)

where, tan� has already been defined in Eq. (13c). Similar to the charged part, here also the second pseudoscalar
(A2) along with the massless Goldstone (⇣) can be obtained as follows :

✓
A2

⇣

◆
=

✓
cos� � sin�
sin� cos�

◆✓
z02
z3

◆
with, z02 = sin � z1 + cos � z2 , (18a)

and, m2
A2 = �2�7v

2 . (18b)

Finally, for the CP-even part we have :

XM2
S
XT =

0

@
0 0 0
0 A0

S
�B0

S

0 �B0
S

C 0
S

1

A , (19a)

where, A0
S

= (�1 + �3)(v
2
1 + v22) , (19b)

B0
S

= �1

2
v3

q
v21 + v22(�5 + �6 + 2�7) , (19c)

C 0
S

= �8v
2
3 . (19d)

The massless state (h0), as also noted in [36], is given by :

h0 = cos � h1 � sin � h2 . (20)

But we wish to add here that the appearance of a massless scalar is not surprising. One can easily verify that
the potential of Eq. (3) has the following SO(2) symmetry for �4 = 0 :

✓
�0
1

�0
2

◆
=

✓
cos ✓ � sin ✓
sin ✓ cos ✓

◆✓
�1

�2

◆
(21)

Since SO(2) is a continuous symmetry isomorphic to U(1), a massless physical state is expected. Other two
physical scalars are obtained as follows :

✓
h
H

◆
=

✓
cos↵ � sin↵
sin↵ cos↵

◆✓
h0
2

h3

◆
with, h0

2 = sin � h1 + cos � h2 , (22a)
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✓
h1

h2

◆✓
h0
1

h0
2

◆
= Danger: massless scalar!

plays a special rôle



Choice of a suitable basis for the analysis of the complex scalar potential

The most general approach of allowing for   

J
H
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P
0
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(Inert Doublet Models [43–45]), it is possible to have both CP violation (in the active or
inert sector) and a possible dark matter (DM) candidate in the context of 3HDM [46–53].

The S3-symmetric 3HDM has been studied since the late 70s in the irreducible [54] and
reducible [55, 56] representations, trying to explain the fermionic structures. Since then,
different cases of the CP-conserving scalar potential were discussed [57–60]. With real
couplings CP is explicitly conserved by the scalar potential and there is only the possibility
of having spontaneous CP violation for special vacua [61]. In this paper we study the
CP properties of the S3-symmetric 3HDM allowing for complex couplings in the potential.
Different vacua correspond to different regions of parameter space which are determined by
imposing the minimisation conditions. In the case of complex couplings some of the CP-
conserving vacuum structures of the real potential now correspond to regions of parameter
space that allow for explicit CP violation. For instance, CP can be explicitly violated even
in the case where the vacuum preserves the S3 symmetry.

The paper is organised as follows. In section 2 we introduce the S3-symmetric scalar
potential along with a discussion of the starting point for our analysis corresponding to
a suitable choice of a scalar basis. Although two new phases can be introduced in the
quartic couplings, we choose to fix one of them to be zero and we allow for the vevs to
be complex, which is required for generality. After fixing the basis for our discussion, in
section 3 we employ the powerful tool of CP-odd Higgs basis invariants in order to obtain
constraints on the parameter space for the case of explicit CP conservation. The CP-odd
basis invariant conditions require the imaginary part of different possible combinations of
Y - and Z-tensors to vanish. With this information it is then possible to classify models
based on the structure of their vevs. This is done in section 4. In section 5 we cover
the building of the Yukawa Lagrangian assuming that fermions are charged under the S3
symmetry. Some of the models require further numerical investigation. These models are
discussed in section 6. In section 7 we present our conclusions.

2 The scalar potential

The S3-symmetric 3HDM is in the irreducible representation given by a singlet, a pseudos-
inglet and a doublet. We shall adopt the singlet-doublet representation. In this case the
S3-symmetric potential can be written as [62–64]:

V2 =µ2
0h

†
ShS + µ2

1(h†1h1 + h†2h2), (2.1a)
V4 =λ1(h†1h1 + h†2h2)2 + λ2(h†1h2 − h†2h1)2 + λ3[(h†1h1 − h†2h2)2 + (h†1h2 + h†2h1)2]

+
{

λ4
[
(h†Sh1)(h

†
1h2 + h†2h1) + (h†Sh2)(h

†
1h1 − h†2h2)

]
+ h.c.

}

+ λ5(h†ShS)(h
†
1h1 + h†2h2) + λ6[(h†Sh1)(h

†
1hS) + (h†Sh2)(h

†
2hS)]

+
{

λ7
[
(h†Sh1)(h

†
Sh1) + (h†Sh2)(h

†
Sh2)

]
+ h.c.

}
+ λ8(h†ShS)2.

(2.1b)

There are two couplings, λ4 and λ7, that could be complex. Hence, CP symmetry can be
broken explicitly. All other couplings have to be real due to the hermiticity of the potential.

Another option would be to consider the pseudosinglet-doublet representation. In
this case there is no unitary transformation into the defining representation of S3. Such
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to be complex together with
two vacuum phases would yield redundant solutions

In principle we could consider a basis with real vevs and complex couplings through: 
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representation would yield an equivalent scalar potential, however the Yukawa Lagrangian
would not be equivalent. We do not consider such representation here.

The S3 singlet and doublet fields will be decomposed as

hS =
(

h+S
(wS + ηS + iχS)/

√
2

)

, hi =
(

h+i
(wi + ηi + iχi)/

√
2

)

, i = {1, 2}, (2.2)

where the wS and wi parameters can be complex. If CP is not broken explicitly, such com-
plex vevs could result in spontaneous CP violation. The complex vevs shall be written as

{wS , w1, w2} → {ŵS , ŵ1e
iσ1 , ŵ2e

iσ2},

following the notation of ref. [61]. The hatted ws represent absolute values. Due to the
overall U(1) symmetry of the scalar potential it is possible to rotate away one of the phases,
which was chosen to be that of the S3 singlet, ŵS .

A different approach would be to write the scalar potential in terms of a reducible
triplet, as done by Derman [55]. He expressed the potential as a sum of five expressions,
each paired with its hermitian conjugate. However, due to the underlying S3 symme-
try, not all the hermitian conjugate pairs can be accompanied by a complex coefficient.
Transformations between the reducible and irreducible basis are covered in appendix A.

2.1 Possible choices of complex coefficients

The S3-symmetric 3HDMs were classified in ref. [61]. Here, we are interested in expanding
the set of solutions by considering complex couplings. For the purpose of the current work
we need to define a suitable basis for the scalar potential. The most general approach would
rely on the fact that both, or either, of {λ4, λ7} ∈ C. However, such an approach would
yield redundant solutions (models). In other words, there would exist different descriptions
of one and the same physical situation, related by a unitary transformation. As we shall
show, it is sufficient to consider instances when either λ4 or λ7 acquires a non-vanishing
phase. We shall see that for the purpose of discussing CP-conserving limits of the potential,
it is convenient to take λ4 complex and λ7 real.

When dealing with complex potential parameters it might be useful to perform a basis
change so that some of the phases are rotated away. Let us consider the following basis
rotation of two of the SU(2) doublets,

hi = eiθih′
i, i = {1, 2}. (2.3)

Due to the global U(1) symmetry the phase of the S3 singlet, hS , can always be rotated
away, hence it is not considered. In total, there are four couplings sensitive to such rotations:
{λ2+λ3, λ4, λ7}. As noted earlier, in the generic singlet-doublet representation basis only
two coefficients could have a phase, {λ4, λ7}. In consistency with the basis change of
eq. (2.3) we shall write couplings in a complex polar notation

λi = eiαi |λi|, i = {4, 7}. (2.4)
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At this point, we have introduced three sets of phases: the σi vev phases, θi describing a
basis change, and αi describing a polar rotation of λ4 and λ7. For simplicity we shall drop
primes from the factors appearing in a new basis.

After rotating the SU(2) doublets according to eq. (2.3), the quartic part of the scalar
potential can be split into two parts,

V4 = V 0
4 + V ph

4 , (2.5)

where the phase insensitive, V 0
4 , and the phase sensitive, V ph

4 , quartic potential parts are:

V 0
4 = λ1

(
h†1h1 + h†2h2

)2
− 2λ2

(
h†1h2

) (
h†2h1

)

+ λ3

[(
h†1h1 − h†2h2

)2
+ 2

(
h†1h2

) (
h†2h1

)]
+ λ5

(
h†ShS

) (
h†1h1 + h†2h2

)

+ λ6
[(
h†Sh1

) (
h†1hS

)
+
(
h†Sh2

) (
h†2hS

)]
+ λ8

(
h†ShS

)2
,

(2.6a)

V ph
4 = e−2i(θ1−θ2) (λ2 + λ3)

(
h†1h2

)2

+ |λ4|
{
ei(2θ1−θ2+α4)

(
h†Sh1

) (
h†2h1

)

+ ei(θ2+α4)
[(
h†Sh1

) (
h†1h2

)
+
(
h†Sh2

) (
h†1h1 − h†2h2

)]}

+ |λ7|
[
ei(2θ1+α7)

(
h†Sh1

)2
+ ei(2θ2+α7)

(
h†Sh2

)2]
+ h.c.

(2.6b)

Here, we see that the scalar potential is sensitive to different θi phases of eq. (2.3). In
principle, one can consider a basis with real vevs and complex couplings, as presented
above. We note that the sum (λ2 + λ3) would then get a phase, while the form of the
scalar potential (2.1) suggests that these couplings should be real. This is due to a possible
choice of a basis. In order to simplify the book-keeping, without loss of generality, we
choose θ1 = θ2 ≡ θ (and allow for complex vevs). Thus, (λ2 + λ3) remains real and λ4 and
λ7 each change by an overall phase rotation; meaning that either one of them can be made
real. Explicitly, this choice gives for the phase-dependent part,

(
V ph
4
)′

= |λ4|ei(θ+α4)
{(

h†Sh1
) (

h†2h1
)
+
(
h†Sh1

) (
h†1h2

)
+
(
h†Sh2

) (
h†1h1 − h†2h2

)}

+ |λ7|ei(2θ+α7)
[(

h†Sh1
)2

+
(
h†Sh2

)2]
+ h.c. (2.7)

Furthermore, we may rotate one of the αi phases away. We would like to stress that
we are only interested in cases with non-vanishing phases of the couplings. Cases with
spontaneous CP violation, and strictly real couplings, were covered in ref. [61].

After checking the minimisation conditions of all models (presented in section 4), we
concluded that it is convenient to choose a basis where the λ7 coupling becomes real,
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above. We note that the sum (λ2 + λ3) would then get a phase, while the form of the
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The different solutions can be summarised as given in Table 1, where the descriptions
in terms of both the reducible- and irreducible-representation frameworks are given. For
the purpose of making this table as well as the corresponding one for complex vacua more
compact, we introduce the abbreviations

λa = λ5 + λ6 + 2λ7, (4.5a)

λb = λ5 + λ6 − 2λ7. (4.5b)

Table 1: Possible real vacua (partly after Derman and Tsao [21]). The classification of
vacua uses the notation R-X-y, where R means that the vacuum is real. The roman
numeral X is the number of constraints on the parameters of the potential that arise from
solving the stationary-point equations. The letter y is used for distinguishing different
vev’s that have the same X, and λa is defined in Eq. (4.5).

Vacuum ρ1, ρ2, ρ3 w1, w2, wS Comment

R-0 0, 0, 0 0, 0, 0 Not interesting

R-I-1 x, x, x 0, 0, wS µ2
0 = −λ8w2

S

R-I-2a x,−x, 0 w, 0, 0 µ2
1 = − (λ1 + λ3)w2

1

R-I-2b x, 0,−x w,
√
3w, 0 µ2

1 = −4
3 (λ1 + λ3)w2

2

R-I-2c 0, x,−x w,−
√
3w, 0 µ2

1 = −4
3 (λ1 + λ3)w2

2

R-II-1a x, x, y 0, w, wS µ2
0 =

1
2λ4

w3
2

wS
− 1

2λaw
2
2 − λ8w2

S,
µ2
1 = − (λ1 + λ3)w2

2 +
3
2λ4w2wS − 1

2λaw
2
S

R-II-1b x, y, x w,−w/
√
3, wS µ2

0 = −4λ4
w3

2

wS
− 2λaw2

2 − λ8w2
S,

µ2
1 = −4 (λ1 + λ3)w2

2 − 3λ4w2wS − 1
2λaw

2
S

R-II-1c y, x, x w,w/
√
3, wS µ2

0 = −4λ4
w3

2

wS
− 2λaw2

2 − λ8w2
S,

µ2
1 = −4 (λ1 + λ3)w2

2 − 3λ4w2wS − 1
2λaw

2
S

R-II-2 x, x,−2x 0, w, 0 µ2
1 = − (λ1 + λ3)w2

2, λ4 = 0
R-II-3 x, y,−x− y w1, w2, 0 µ2

1 = − (λ1 + λ3) (w2
1 + w2

2),λ4 = 0

R-III ρ1, ρ2, ρ3 w1, w2, wS µ2
0 = −1

2λa(w
2
1 + w2

2)− λ8w2
S,

µ2
1 = − (λ1 + λ3) (w2

1 + w2
2)− 1

2λaw
2
S,

λ4 = 0

One should note that

• Vacuum R-I-1 is a special case of Vacuum R-II-1. In this case, the vacuum value x
is determined by

λ− γ = x2[A+ C + C +D + 2E1 + E2 + E3 + E4]. (4.6)

• For Vacuum R-I-1, in the irreducible framework, we have

µ2
0 = −w2

Sλ8, (4.7)

which corresponds to Eq. (4.6), with w2
S = 3x2.
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• For Vacuum R-I-1, in the irreducible framework, we have

µ2
0 = −w2

Sλ8, (4.7)

which corresponds to Eq. (4.6), with w2
S = 3x2.
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Splitting this equation into real and imaginary parts, we find

(λ2 + λ3)(ŵ1 − ŵ2){1− cos[2(σ1 − σ2)]} = 0, and (5.4a)

(λ2 + λ3) sin[2(σ1 − σ2)] = 0. (5.4b)

The solutions are

λ2 + λ3 = 0, or (5.5a)

σ2 = σ1 ± nπ, n integer. (5.5b)

Table 2: Complex vacua. Notation: ε = 1 and −1 for C-III-d and C-III-e, respectively;
ξ =

√

−3 sin 2ρ1/ sin 2ρ2, ψ =
√

[3 + 3 cos(ρ2 − 2ρ1)]/(2 cos ρ2). With the constraints of
Table 4 the vacua labelled with an asterisk (∗) are in fact real.

IRF (Irreducible Rep.) RRF (Reducible Rep.)
w1, w2, wS ρ1, ρ2, ρ3
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3 , xe∓
2πi

3
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2 ,−xeiρ − y
2 , y
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C-III-f ±iŵ1, iŵ2, ŵS reiρ ± ix, reiρ ∓ ix, 32re

−iρ − 1
2re

iρ

C-III-g ±iŵ1,−iŵ2, ŵS re−iρ ± ix, re−iρ ∓ ix, 32re
iρ − 1

2re
−iρ

C-III-h
√
3ŵ2eiσ2 ,±ŵ2eiσ2 , ŵS xeiτ , y, y

y, xeiτ , y

C-III-i
√

3(1+tan2 σ1)
1+9 tan2 σ1
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C-IV-b ŵ1,±iŵ2, ŵS reiρ + x,−re−iρ + x,−reiρ + re−iρ + x

C-IV-c
√
1 + 2 cos2 σ2ŵ2, reiρ + r

√

3(1 + 2 cos2 ρ) + x,
ŵ2eiσ2 , ŵS reiρ − r

√

3(1 + 2 cos2 ρ) + x,−2reiρ + x
C-IV-d∗ ŵ1eiσ1 ,±ŵ2eiσ1 , ŵS r1eiρ + x, (r2 − r1)eiρ + x,−r2eiρ + x

C-IV-e
√

− sin 2σ2

sin 2σ1
ŵ2eiσ1 , reiρ2 + reiρ1ξ + x, reiρ2 − reiρ1ξ + x,

ŵ2eiσ2 , ŵS −2reiρ2 + x

C-IV-f
√

2 + cos(σ1−2σ2)
cosσ1

ŵ2eiσ1 , reiρ1 + reiρ2ψ + x,

ŵ2eiσ2 , ŵS reiρ1 − reiρ2ψ + x,−2reiρ1 + x

C-V∗ ŵ1eiσ1 , ŵ2eiσ2 , ŵS xeiτ1 , yeiτ2 , z

Likewise, the condition λ4 = 0 must be supplemented by

(λ2 + λ3)e
i(σ1+σ2)[ŵ2

1(1− e2i(σ1−σ2)) + ŵ2
2(e

−2i(σ1−σ2) − 1)]

+ λ7w
2
S(e

−i(σ1−σ2) − ei(σ1−σ2)) = 0. (5.6)
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Table 3: Constraints on complex vacua. Notation: ε = 1 and −1 for C-III-d and C-III-e,
respectively. Where two possible signs (± or ∓) are given, they correspond to those of
Table 2. Here, λb is defined in Eq. (4.5).

Vacuum Constraints

C-I-a µ2
1 = −2 (λ1 − λ2) ŵ2

1

C-III-a µ2
0 = −1

2λbŵ
2
2 − λ8ŵ2

S,
µ2
1 = − (λ1 + λ3) ŵ2

2 − 1
2 (λb − 8 cos2 σ2λ7) ŵ2

S,
λ4 =

4 cosσ2ŵS

ŵ2
λ7

C-III-b µ2
0 = −1

2λbŵ
2
1 − λ8ŵ2

S,
µ2
1 = − (λ1 + λ3) ŵ2

1 − 1
2λbŵ

2
S,

λ4 = 0
C-III-c µ2

1 = −(λ1 + λ3)(ŵ2
1 + ŵ2

2),
λ2 + λ3 = 0,λ4 = 0

C-III-d,e µ2
0 = (λ2 + λ3)

(ŵ2
1
−ŵ2

2
)2

ŵ2
S

− ελ4
(ŵ2

1
−ŵ2

2
)(ŵ2

1
−3ŵ2

2
)

4ŵ2ŵS

−1
2 (λ5 + λ6) (ŵ2

1 + ŵ2
2)− λ8ŵ2

S,

µ2
1 = − (λ1 − λ2) (ŵ2

1 + ŵ2
2)− ελ4

ŵS(ŵ2
1
−ŵ2

2
)

4ŵ2
− 1

2 (λ5 + λ6) ŵ2
S,

λ7 =
ŵ2

1
−ŵ2

2

ŵ2
S

(λ2 + λ3)− ε (ŵ
2
1
−5ŵ2

2
)

4ŵ2ŵS
λ4

C-III-f,g µ2
0 = −1

2λb (ŵ
2
1 + ŵ2

2)− λ8ŵ2
S,

µ2
1 = − (λ1 + λ3) (ŵ2

1 + ŵ2
2)− 1

2λbŵ
2
S,λ4 = 0

C-III-h µ2
0 = −2λbŵ2

2 − λ8ŵ2
S,

µ2
1 = −4 (λ1 + λ3) ŵ2

2 − 1
2 (λb − 8 cos2 σ2λ7) ŵ2

S,
λ4 = ∓2 cosσ2ŵS

ŵ2
λ7

C-III-i µ2
0 =

16(1−3 tan2 σ1)2
(1+9 tan2 σ1)2

(λ2 + λ3)
ŵ4

2

ŵ2
S

± 6(1−tan2 σ1)(1−3 tan2 σ1)

(1+9 tan2 σ1)
3
2

λ4
ŵ3

2

ŵS

−2(1+3 tan2 σ1)
1+9 tan2 σ1

(λ5 + λ6)ŵ2
2 − λ8ŵ2

S,

µ2
1 = −4(1+3 tan2 σ1)

1+9 tan2 σ1
(λ1 − λ2)ŵ2

2 ∓
(1−3 tan2 σ1)
2
√

1+9 tan2 σ1

λ4ŵ2ŵS

−1
2(λ5 + λ6)ŵ2

S,

λ7 = −4(1−3 tan2 σ1)ŵ2
2

(1+9 tan2 σ1)ŵ2
S

(λ2 + λ3)∓
(5−3 tan2 σ1)ŵ2

2
√

1+9 tan2 σ1ŵS

λ4

h2 would allow to remove the phase of λ7, rendering all coefficients of the potential real.
Another way of achieving the same result would be by rephasing hS alone. Neither of
these transformations alters the specifications of the vacuum corresponding to this case.

Cases C-IV-a, C-IV-d and C-V are listed in Table 2 for completeness and to allow
for an enlightening discussion. Once one takes into consideration the constraints given in
Table 4 they become real.

Solution C-IV-d is more general than solution C-IV-a and reduces to C-IV-a once we
fix w2 = 0, so it suffices to discuss C-IV-d. Both of these require λ4 = 0 and λ7 = 0,
and as a result the potential acquires symmetry for the transformation of h1, h2 and hS

under a unitary transformation of the form U = diag(eiτ , eiτ , 1) which allows to remove
the phase σ1 from the vacuum, making it real.

At first glance case C-V looks like the most general case, however we are assuming
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Table 4: Constraints on complex vacua, continued. The vacua labelled with an asterisk
(∗) are in fact real.

Vacuum Constraints

C-IV-a∗ µ2
0 = −1

2 (λ5 + λ6) ŵ2
1 − λ8ŵ2

S,
µ2
1 = − (λ1 + λ3) ŵ2

1 − 1
2 (λ5 + λ6) ŵ2

S,
λ4 = 0,λ7 = 0

C-IV-b µ2
0 = (λ2 + λ3)

(ŵ2
1
−ŵ2

2)2
ŵ2

S

− 1
2 (λ5 + λ6) (ŵ2

1 + ŵ2
2)− λ8ŵ2

S,

µ2
1 = − (λ1 − λ2) (ŵ2

1 + ŵ2
2)− 1

2 (λ5 + λ6) ŵ2
S,

λ4 = 0,λ7 = −(ŵ2
1
−ŵ2

2)
ŵ2

S

(λ2 + λ3)

C-IV-c µ2
0 = 2 cos2 σ2 (1 + cos2 σ2) (λ2 + λ3)

ŵ4
2

ŵ2
S

− (1 + cos2 σ2) (λ5 + λ6) ŵ2
2 − λ8ŵ2

S,
µ2
1 = − [2 (1 + cos2 σ2)λ1 − (2 + 3 cos2 σ2)λ2 − cos2 σ2λ3] ŵ2

2

−1
2 (λ5 + λ6) ŵ2

S,

λ4 = −2 cosσ2ŵ2

ŵS
(λ2 + λ3) ,λ7 =

cos2 σ2ŵ2
2

ŵ2
S

(λ2 + λ3)

C-IV-d∗ µ2
0 = −1

2 (λ5 + λ6) (ŵ2
1 + ŵ2

2)− λ8ŵ2
S,

µ2
1 = − (λ1 + λ3) (ŵ2

1 + ŵ2
2)− 1

2 (λ5 + λ6) ŵ2
S,

λ4 = 0,λ7 = 0

C-IV-e µ2
0 =

sin2(2(σ1−σ2))
sin2(2σ1)

(λ2 + λ3)
ŵ4

2

ŵ2
S

−1
2

(

1− sin 2σ2

sin 2σ1

)

(λ5 + λ6) ŵ2
2 − λ8ŵ2

S,

µ2
1 = −

(

1− sin 2σ2

sin 2σ1

)

(λ1 − λ2) ŵ2
2 − 1

2 (λ5 + λ6) ŵ2
S,

λ4 = 0,λ7 = − sin(2(σ1−σ2))ŵ2
2

sin 2σ1ŵ2
S

(λ2 + λ3)

C-IV-f µ2
0 = − (cos(σ1−2σ2)+3 cosσ1) cos(σ2−σ1)

2 cos2 σ1
λ4

ŵ3
2

ŵS

− cos(σ1−2σ2)+3 cosσ1

2 cosσ1
(λ5 + λ6) ŵ2

2 − λ8ŵ2
S,

µ2
1 = − cos(σ1−2σ2)+3 cosσ1

cosσ1
(λ1 + λ3) ŵ2

2

−3 cos 2σ1+2 cos(2(σ1−σ2))+cos 2σ2+4
4 cos(σ1−σ2) cosσ1

λ4ŵ2ŵS − 1
2 (λ5 + λ6) ŵ2

S,

λ2 + λ3 = − cosσ1ŵS

2 cos(σ2−σ1)ŵ2
λ4,λ7 = − cos(σ2−σ1)ŵ2

2 cosσ1ŵS
λ4

C-V∗ µ2
0 = −1

2 (λ5 + λ6) (ŵ2
1 + ŵ2

2)− λ8ŵ2
S,

µ2
1 = − (λ1 + λ3) (ŵ2

1 + ŵ2
2)− 1

2 (λ5 + λ6) ŵ2
S,

λ2 + λ3 = 0,λ4 = 0,λ7 = 0

that it does not fall into any of the previous cases, so, as a result, full generality requires
λ2 + λ3 = 0, λ4 = 0 and λ7 = 0 and there is no term in the potential sensitive to
independent rephasing of each of the h fields. As a result any phase in the vevs can be
rotated away. Under these circumstances, it is equivalent to a real set of vacua.

There are, in particular, two possible complex vacua that have been discussed previ-
ously in the literature. One of them is:

ŵeiσ, ŵe−iσ, ŵS, (5.10)

by Pakvasa and Sugawara [18]. We shall refer to this as the PS vacuum, assuming ŵ "= 0
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8 Spontaneous CP violation

The S3-symmetric potential offers a very rich phenomenology, and can accommodate a
variety of physical situations, as outlined in sections 4 and 5, where we classified the
different vacua.

We assumed, for simplicity, that all parameters of the potential are real. Therefore our
discussion is done in the framework of explicit CP conservation. This raises the question
of whether or not CP can be violated spontaneously. For that purpose we can inspect the
list of complex solutions presented in Table 2. CP can only be spontaneously violated if
the Lagrangian is invariant under CP and if at the same time there is no transformation
that can be identified with a CP transformation, leaving both the Lagrangian and the
vacuum invariant. The idea of spontaneous CP violation was first proposed by T. D.
Lee [3] in the context of two Higgs doublets. In the context of the SM, with a single Higgs
doublet, a CP transformation of the scalar doublet amounts to its complex conjugation
and the scalar sector cannot violate CP. In models with several Higgs doublets complex
conjugation may be combined with a unitary transformation acting on the set of doublets,
since this transformation leaves the kinetic energy term of the Lagrangian invariant. In
this case the most general CP transformation is given by:

Φi
CP−→ UijΦ

∗
j (8.1)

with U an arbitrary unitary matrix4. This equation together with the assumption that
the vacuum is CP invariant:

CP|0〉 = |0〉 (8.2)

leads to the following condition [32]:

Uij〈0|Φj|0〉∗ = 〈0|Φi|0〉 (8.3)

implying that there is spontaneous CP violation if none of the CP symmetries allowed
by the Lagrangian satisfy this equation. For real vevs this condition is obviously verified.
If the Lagrangian has a discrete symmetry one must take it into consideration before
drawing conclusions. In the discussion that follows we do not take the Yukawa sector into
consideration. We now comment on each one of the cases presented in Table 2 concerning
the possibility of having spontaneous CP violation:

• The case C-I-a is a familiar one that has been discussed long ago in the framework
of the reducible representation [32]. It was pointed out that it has complex vacuum
expectation values with calculable non-trivial phases, assuming geometrical values,
entirely determined by the symmetry of the scalar potential. These phases cannot
be rotated away and yet they do not lead to spontaneous CP violation, since there
is a matrix U satisfying the constraint of Eq. (8.3), namely:

U =





1 0 0
0 0 1
0 1 0



 , (8.4)

4Some authors refer to this transformation as a “generalized” CP transformation. This is somewhat
misleading since it suggests that there is also a “non-generalized” CP transformation.
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entirely determined by the symmetry of the scalar potential. These phases cannot
be rotated away and yet they do not lead to spontaneous CP violation, since there
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The S3-symmetric potential offers a very rich phenomenology, and can accommodate a
variety of physical situations, as outlined in sections 4 and 5, where we classified the
different vacua.

We assumed, for simplicity, that all parameters of the potential are real. Therefore our
discussion is done in the framework of explicit CP conservation. This raises the question
of whether or not CP can be violated spontaneously. For that purpose we can inspect the
list of complex solutions presented in Table 2. CP can only be spontaneously violated if
the Lagrangian is invariant under CP and if at the same time there is no transformation
that can be identified with a CP transformation, leaving both the Lagrangian and the
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Lee [3] in the context of two Higgs doublets. In the context of the SM, with a single Higgs
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since this transformation leaves the kinetic energy term of the Lagrangian invariant. In
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leads to the following condition [32]:
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the Lagrangian is invariant under CP and if at the same time there is no transformation
that can be identified with a CP transformation, leaving both the Lagrangian and the
vacuum invariant. The idea of spontaneous CP violation was first proposed by T. D.
Lee [3] in the context of two Higgs doublets. In the context of the SM, with a single Higgs
doublet, a CP transformation of the scalar doublet amounts to its complex conjugation
and the scalar sector cannot violate CP. In models with several Higgs doublets complex
conjugation may be combined with a unitary transformation acting on the set of doublets,
since this transformation leaves the kinetic energy term of the Lagrangian invariant. In
this case the most general CP transformation is given by:

Φi
CP−→ UijΦ

∗
j (8.1)

with U an arbitrary unitary matrix4. This equation together with the assumption that
the vacuum is CP invariant:

CP|0〉 = |0〉 (8.2)

leads to the following condition [32]:

Uij〈0|Φj|0〉∗ = 〈0|Φi|0〉 (8.3)

implying that there is spontaneous CP violation if none of the CP symmetries allowed
by the Lagrangian satisfy this equation. For real vevs this condition is obviously verified.
If the Lagrangian has a discrete symmetry one must take it into consideration before
drawing conclusions. In the discussion that follows we do not take the Yukawa sector into
consideration. We now comment on each one of the cases presented in Table 2 concerning
the possibility of having spontaneous CP violation:

• The case C-I-a is a familiar one that has been discussed long ago in the framework
of the reducible representation [32]. It was pointed out that it has complex vacuum
expectation values with calculable non-trivial phases, assuming geometrical values,
entirely determined by the symmetry of the scalar potential. These phases cannot
be rotated away and yet they do not lead to spontaneous CP violation, since there
is a matrix U satisfying the constraint of Eq. (8.3), namely:

U =





1 0 0
0 0 1
0 1 0



 , (8.4)

4Some authors refer to this transformation as a “generalized” CP transformation. This is somewhat
misleading since it suggests that there is also a “non-generalized” CP transformation.
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£(Uc~) = £(q~), (3) 

then that would be a sure indication that there is spon- 
taneous T violation. 

It  has been emphasized some time ago [ 1 ] that in 
the framework of an SU(2) X U(1) gauge theory with 
scalar doublets, a minimum of two scalar multiplets 
are required in order to obtain spontaneous T viola- 
tion. In the case of  two scalar doublets, the most gen- 
eral Higgs potential can be written 

V(~I, ~2) = VO + [;kl ( ~ q ~ 2 ) ( ~ 2 )  + ~ 2 ( ~  ~ 2 ) ( ~  ~1) 

+ X3(¢I~2)(~t24~2) + h .c . l ,  (4) 

where V 0 denotes the part of the potential without 
any phase dependence. Since we are interested in 
spontaneously broken T invariance, we will always 
assume real coupling constants. For an appropriate 
finite range of  the parameters of  the scalar potential, 
the minimum is at: 

COS 0 = --(4XlOlO2)-l()t202 + X302), (5) 

where (014~010) --- v i =Ioil exp(i0i) and 0 = 02 - 01. 
In eq. (5), the above mentioned dependence of 0 on 
the coupling constants of  the scalar potential is illu- 
strated. In this case, it is easily seen that Tis  sponta- 
neously broken. Indeed in this example, there is no 
matrix satisfying simultaneously eqs. (2), (3). This is 
clearly the simplest example of spontaneous T viola- 
tion. However, the phase 0 is not a "calculable" quan- 
tity. In this note a "calculable phase" refers to a 
phase whose value is independent of  the coupling 
constants of  the scalar potential and therefore stable 
against radiative corrections [5]. In the case of  two 
Higgs doublets, the only way of  having a calculable 
phase in the sense defined above, is by setting X 2 = X 3 
= 0, thus implying 0 = rr/2. Assuming these coupling 
constants equal to zero is natural in the technical 
sense, since then the potential acquires an extra sym- 
metry under which: 

(ki ~ Gi/c~l" , (6) 

where 

o:(; 2) 
This transformation G, needed in order to implement 
a calculable 0 phase, supplies us with the T transfor- 

mation defined in eq. (4) * 1 : 

( l  i([011 ( [o  11 

- 1  !\1o21 exp(irr/2)) = \1o21 exp(irr/2) ) '  (8) 

and therefore implies a T-conserving solution. From 
the previous considerations, we conclude that more 
than two scalar doublets have to be introduced in 
order to achieve both calculability and spontaneous 
T violation * 1. It is also clear that calculability re- 
quires the presence of an extra symmetry in the scalar 
potential. This requirement was necessary in the case 
of  two scalar doublets and it applies a for t ior i  to the 
case of  more than two scalar doublets. 

Let us consider first the case where the scalar po- 
tential is invariant under an abelian group. We will 
show that then calculable phases always correspond 
to T conservation. In the case of  an abelian group, we 
can always choose a special basis where each scalar 
doublet ~j (] = 1 ... . .  n) transforms as a one-dimension- 
al representation of  the group. Then the unitary matrix 

fexp(-2i01) )/  
U = " . .  , (9) 

exp( -2 i0  n 

obviously satisfies eq. (2) and, as we will see, it corre- 
sponds to a symmetry of the potential. In order to 
achieve calculability, each individual term I s of  the 
scalar potential, together with its hermitian conjugate, 
has to be minimized separately with respect to the 
0 i phases. The minimization of  each function .2 
cos [0(Io)], where 0(I~) denotes the linear combina- 
tion of Oi's associated with the fields occurring in I s, 
trivially gives O(Ic~ ) -- 0, 7. In this case the transforma- 
tion (9) corresponds to a symmetry of the scalar po- 
tential and the vacuum is Tinvariant. 

In view of the previous result, we consider next the 
case of  non-abelian symmetries. In the following, we 
will confine ourselves to three Higgs doublets and for 
simplicity we first analyse the case of an S 3 symmetry,  
with the scalar doublets transforming as a three-dimen- 
sional reducible representation. The most  general re- 
normalizable scalar potential can be written [6] as, 

,1 We assume that the scalar potential has no (discrete or 
continuous) accidental symmetries. 

,2 The fact that only functions of this type appear is a conse- 
quence of having assumed real coupling constants. 
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Table 1: Spontaneous CP violation

Vacuum �4 SCPV Vacuum �4 SCPV Vacuum �4 SCPV
C-I-a X no C-III-f,g 0 no C-IV-c X yes
C-III-a X yes C-III-h X yes C-IV-d 0 no
C-III-b 0 no C-III-i X no C-IV-e 0 no
C-III-c 0 no C-IV-a 0 no C-IV-f X yes
C-III-d,e X no C-IV-b 0 no C-V 0 no

C-I-a

h2 $ �h2

�2 $ �3

h1 $ �h1

ej HjZZ, HjHjZ

qj HjH
+
H

�

(w1, w2, wS) = (v, 0, 0) (6)

Uijh0|�j|0i⇤ = h0|�i|0i, (7)

(ŵ1e
i�1 , ŵ2e

i�2 , wS) ! (aei�, ae�i�
, wS) (8)

h1 $ h2 (9)

(ŵ1e
i�1 , ŵ2e

i�2 , 0) ! (aei�1 , aei�2 , 0) (10)

(aei�1 , aei�2 , 0) ! (aei�, ae�i�
, 0) (11)

U =

0

@
0 1 0
1 0 0
0 0 1

1

A (12)
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confirmed by going through the basis-independent conditions provided in ref. [77]. However,
after applying the conditions for CP-odd invariants to vanish the S3-symmetric potential
gets enlarged to ∆(54). This can be verified by performing a basis rotation




h1
h2
hS



 = 1√
2




1 −i 0

−i 1 0
0 0

√
2








φ1
φ2
φ3



 . (3.5)

In the new basis the scalar potential becomes

V2 = µ2
1(φ†

1φ1 + φ†
2φ2 + φ†

3φ3), (3.6a)

V4 =
1
3 (3λ1 + λ2)

(
φ†
1φ1 + φ†

2φ2 + φ†
3φ3

)2
+ 4λ3

(∣∣∣φ†
1φ2

∣∣∣
2
+
∣∣∣φ†

2φ3
∣∣∣
2
+
∣∣∣φ†

3φ1
∣∣∣
2)

− 4λ2
3

[(
φ†
1φ1

)2
+
(
φ†
2φ2

)2
+
(
φ†
3φ3

)2

−
(
φ†
1φ1

) (
φ†
2φ2

)
−
(
φ†
2φ2

) (
φ†
3φ3

)
−
(
φ†
3φ3

) (
φ†
1φ1

)]

+
{
2iλ7

(
φ†
1φ3

) (
φ†
2φ3

)
+

√
2λ4

(
φ†
2φ1

) (
φ†
3φ1

)
− i

√
2λ4

(
φ†
3φ2

) (
φ†
1φ2

)
+ h.c.

}
,

(3.6b)

where µ2
0 = µ2

1 was imposed as required by eq. (C.21), and where λ7 is real and λ4 is
complex, see eq. (2.8). The potential has the structure of the ∆(54)-symmetric one, as
given by eqs. (52) and (53) in ref. [77].

4 CP violation in different vacua

We classify cases with complex scalar potential based on ref. [61]. We first list cases allowing
for spontaneous CP violation when the scalar potential is real:

• C-III-a (0, ŵ2eiσ2 , ŵS);

• C-III-h (
√
3ŵ2eiσ2 , ±ŵ2eiσ2 , ŵS);

• C-IV-c
(√

1 + 2 cos2 σ2ŵ2, ŵ2eiσ2 , ŵS

)
;

• C-IV-f
(√

2 + cos(σ1−2σ2)
cosσ1

ŵ2eiσ1 , ŵ2eiσ2 , ŵS

)
;

4.1 Real vacua

We consider real vacua with λ7 real and λ4 complex. In this case it is possible to have
explicit CP violation. The minimisation conditions are provided in appendix B.2. In some
cases the minimisation conditions require λI

4 = 0. Therefore, we do not consider such
models, to wit:

• R-II-1a (0, w2, ŵS);

• R-II-1b,c (∓
√
3w2, w2, ŵS);

• R-II-2 (0, w2, 0);
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Furthermore, since the scalar potential is not invariant under a phase rotation (2.3) we
shall consider both real and complex vacua.

3 Explicit CP violation

Allowing for complex parameters in the potential of the S3-symmetric 3HDM opens up
the possibility for explicit CP violation. If the potential explicitly violates CP, the CP
violation will either be hard (CP violating phases present in V4 cannot be removed from V4
by basis changes) or soft (CP violating phases present in the potential can by a change of
basis be moved to V2, but they cannot be removed from the potential). It has been shown
that there exist models where phases present in the potential cannot be removed from the
potential using basis changes, yet the potential is CP invariant, i.e. CP4 [39–42]. When we
refer to irremovable CP violating phases, we do not refer to the irremovable phases of CP4
models since such phases do not violate CP. If the potential does not explicitly violate CP,
the nature of the vacuum will determine the CP properties of the model, leaving open the
possibilities of spontaneous CP violation or CP conservation. We shall proceed to write
the scalar potential (2.1) in a more compact form,

V2 = Yab
(
h†ahb

)
, (3.1a)

V4 =
1
2Zabcd

(
h†ahb

) (
h†chd

)
, (3.1b)

where the non-zero elements of the Y - and Z-tensors are

Y11 = Y22 = µ2
1,

Z1111 = Z2222 = 2λ1 + 2λ3,

Z1122 = Z2211 = 2λ1 − 2λ3,

Z1221 = Z2112 = −2λ2 + 2λ3,

Z1212 = Z2121 = 2λ2 + 2λ3,

Y33 = µ2
0,

Z3333 = 2λ8,

Z1133 = Z2233 = Z3311 = Z3322 = λ5,

Z1331 = Z2332 = Z3113 = Z3223 = λ6,

Z1313 = Z2323 = Z3131 = Z3232 = 2λ7,

Z1123 = Z1213 = Z1312 = Z1321 = Z2113 = Z2311 = −Z2223 = −Z2322 = λR
4 − iλI

4,

Z1132 = Z1231 = Z2131 = Z3112 = Z3121 = Z3211 = −Z2232 = −Z3222 = λR
4 + iλI

4.

(3.2)

This form enables us to easily establish quantities that are invariant under basis changes.
Utilizing the elegant technique of creating CP-odd invariants from the Y - and Z-tensors
will provide us with a powerful and elegant tool for establishing the CP properties of the
potential. For descriptions of this technique consult refs. [65–71]. Some other methods
were discussed in refs. [72–76]. We shall start by defining six CP-odd invariants, namely

I(1)5Z = Im [ZaabcZdbefZcgheZidghZfijj ] , (3.3a)

I(2)5Z = Im [ZabbcZdaefZcgheZidghZfjji] , (3.3b)

I(1)6Z = Im [ZabcdZbaefZgchiZdjkeZfkilZjglh] , (3.3c)

I(2)6Z = Im [ZabcdZbaefZgchiZdejkZfhklZlgij ] , (3.3d)
I7Z = Im [ZabcdZeafcZbgdhZiejkZgflmZhlknZminj ] , (3.3e)
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Next, we establish two theorems which serve as invaluable tools in the discussion of the
CP properties of the potential.

Theorem 1. The quadrilinear part of the S3-symmetric 3HDM potential, V4, explicitly
conserves CP if and only if I(1)5Z = I(2)5Z = I(1)6Z = I(2)6Z = I7Z = 0.

Proof. We must prove that the two statements of the theorem imply each other. First, we
prove that if V4 is CP invariant, then I(1)5Z = I(2)5Z = I(1)6Z = I(2)6Z = I7Z = 0. This follows by
definition, since whenever V4 is CP invariant, all CP-odd invariants constructed from only
Z-tensors must vanish.

Next, we must prove that I(1)5Z = I(2)5Z = I(1)6Z = I(2)6Z = I7Z = 0 imply a CP invariant V4. In
order to do this, we demand the vanishing of all five invariants and work out algebraically
solutions in terms of the potential parameters:

• Solution 0: λI
4 = 0;

• Solution 1: λR
4 = 0;

• Solution 2: λ7 = 0;

• Solution 3 (λR
4 λI

4λ7 != 0):
(
λR
4
)2

= − (λ23 − λ7)(2λ23 + λ7)2
λ7

,

(
λI
4
)2

= (λ23 + λ7)(2λ23 − λ7)2
λ7

,

λ5 = 2 (λ1 + λ2) ,
λ6 = 4λ3,

λ8 = λ1 − λ2.

For each of these solutions we were able to show that there exists a real basis for V4, which
concludes the proof of the theorem. The technical details demonstrating this are relegated
to appendix C.

This theorem deals only with properties of V4 and gives us the conditions for CP
invariance of V4. The possibility of having explicit CP violation is still present, but CP
must then be softly broken (CP violating phases can be transferred to V2 by a change of
basis). As shown in appendix C, Solutions 0–2 do not allow for explicit CP violation, only
spontaneous CP violation is possible. The possibility of explicit CP violation is therefore
restricted to Solution 3. For Solution 3, the basis transformations to a real V4 basis will, in
general, generate extra terms in the transformed V2, containing also complex parameters.

One might wonder if there could exist an explicitly CP conserving S3-symmetric 3HDM
without the existence of a real basis, like in CP4 models. The proof of the theorem tells
us that this is not the case for the complex S3-symmetric 3HDM. We show in appendix C
that all the possible solutions can be written in a real basis when all of the five invariants
vanish. In conclusion, a solution without a real basis does not exist.

Finally, we also include the quadratic part of the potential, V2, and formulate the CP
properties of the whole potential in our second theorem.
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For each of these solutions we were able to show that there exists a real basis for V4, which
concludes the proof of the theorem. The technical details demonstrating this are relegated
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invariance of V4. The possibility of having explicit CP violation is still present, but CP
must then be softly broken (CP violating phases can be transferred to V2 by a change of
basis). As shown in appendix C, Solutions 0–2 do not allow for explicit CP violation, only
spontaneous CP violation is possible. The possibility of explicit CP violation is therefore
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general, generate extra terms in the transformed V2, containing also complex parameters.

One might wonder if there could exist an explicitly CP conserving S3-symmetric 3HDM
without the existence of a real basis, like in CP4 models. The proof of the theorem tells
us that this is not the case for the complex S3-symmetric 3HDM. We show in appendix C
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Solution 3.1 yields:

I7Z = 128λR
4 λI

4λ7

[(
λR
4
)2

+
(
λI
4
)2

− 2λ2
7

]2
. (C.9)

After substituting for λR
4 we find that the I7Z CP invariant vanishes when

(λI
4)2 =

(λ2 + λ3 + λ7) (2λ2 + 2λ3 − λ7)2
λ7

. (C.10)

For Solution 3.2 we get the following expression:

I7Z = 2304λR
4 λI

4λ7(λ1 − λ2 − λ8)2

× (λ1 + λ2 + 2λ3 + λ7 − λ8)(λ1 + λ2 + 2λ3 − λ7 − λ8).
(C.11)

Since eq. (C.7b) would result in CP conservation the only other possible condition for the
CP invariant to vanish is

λ8 = λ1 − λ2. (C.12)

The two cases mentioned above coincide as both require (we introduced λ23 ≡ λ2+λ3):

(
λR
4
)2

= − (λ23 − λ7)(2λ23 + λ7)2
λ7

, (C.13a)
(
λI
4
)2

= (λ23 + λ7)(2λ23 − λ7)2
λ7

, (C.13b)

λR
4 λI

4λ7 $= 0, (C.13c)
λ5 = 2 (λ1 + λ2) , (C.13d)
λ6 = 4λ3, (C.13e)
λ8 = λ1 − λ2, (C.13f)

with
|λ4|2 = (λR

4 )2 + (λI
4)2 = 2λ2

7. (C.14)

If we prove that the scalar potential, specifically the quartic part, is CP-invariant
provided that the eq. (C.13) constraints are satisfied, we would be assured that all other
invariants would vanish. The phase-sensitive part of the quartic potential, (2.6b), is given
by

V phase
4 = λ23

2
[
(h†1h1 − h†2h2)2 + 2(h†1h2)2 + 2(h†2h1)2 + 2(h†ShS)(h

†
1h1 + h†2h2)

− (h†ShS)2 + 4(h†1hS)(h
†
Sh1) + 4(h†2hS)(h

†
Sh2)

]

+
{

λ4
[
(h†Sh1)(h

†
1h2 + h†2h1) + (h†Sh2)(h

†
1h1 − h†2h2)

]
+ h.c.

}

+
{

λ7
[
(h†Sh1)(h

†
Sh1) + (h†Sh2)(h

†
Sh2)

]
+ h.c.

}
.

(C.15)

Note that, apart from sign ambiguities, λ4 is determined by λ23 and λ7.
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Theorem 2. The S3-symmetric 3HDM potential, V = V2 + V4, explicitly conserves CP if
and only if I(1)5Z = I(2)5Z = I(1)6Z = I(2)6Z = I7Z = I2Y 3Z = 0.

Proof. Again, we must prove that the two statements of the theorem imply each other.
First, we prove that if V is CP invariant, then I(1)5Z = I(2)5Z = I(1)6Z = I(2)6Z = I7Z = I2Y 3Z = 0.
This follows by definition, since whenever the scalar potential, V , is CP invariant, all
CP-odd invariants constructed from only Y - and Z-tensors must vanish.

Then, we must prove that I(1)5Z = I(2)5Z = I(1)6Z = I(2)6Z = I7Z = I2Y 3Z = I2Y 3Z = 0 implies a
CP invariant V . In order to do this we demand the vanishing of all six invariants and work
out algebraically the solutions in terms of the potential parameters. The difference from
Theorem 1 is that we now include the vanishing of I2Y 3Z . We find that Solutions 0–2 make
all six invariants vanish. On the other hand, Solution 3 is modified with one additional
constraint, namely µ2

1 = µ2
0:

• Solution 3′ (λR
4 λI

4λ7 != 0):

µ2
1 = µ2

0,
(
λR
4
)2

= − (λ23 − λ7)(2λ23 + λ7)2
λ7

,

(
λI
4
)2

= (λ23 + λ7)(2λ23 − λ7)2
λ7

,

λ5 = 2 (λ1 + λ2) ,
λ6 = 4λ3,

λ8 = λ1 − λ2.

For Solutions 0–2, the changes of basis to a real V4 basis were expressed in terms of a
phase rotation of a doublet, and did not affect V2, which stayed real. For Solution 3′,
the constraint µ2

1 = µ2
0 yields V2 invariant under the U(3) transformations, and hence the

quadratic V2 remains real. To summarise, for each of the solutions found we were able to
show that there exists a real basis for V , and this concludes the proof of the theorem.

This theorem deals only with the CP properties of the potential, not the vacuum. CP
violation may still occur, but CP will then be spontaneously broken by the vacuum.

We emphasise that the two theorems only apply to the S3-symmetric 3HDM. For the
general 3HDM, the necessary and sufficient set of the CP-odd invariants needed for explicit
CP conservation has not yet been identified. The above theorems are formulated in terms
of basis invariant quantities, hence they may be used to determine the CP properties of
the potential in any scalar basis.

We are now in a position to discuss and classify different cases of explicit CP conser-
vation of the S3-symmetric 3HDM, based on these theorems. There is a common factor,
λR
4 λI

4λ7, contained within every CP-odd I-invariant.
For Solutions 0–2 it suffices to have λR

4 λI
4λ7 = 0 to eliminate the possibility of having

explicit CP violation. Solution 0, given by λI
4 = 0, reduces to the cases studied in ref. [61].

For Solutions 1 and 2 it is easy to find simple basis changes that make all potential param-
eters real as given in appendix C.

Solution 3 requires some further explanation. No additional continuous symmetries
are realised in the scalar potential when the CP-conserving conditions of eqs. (C.13) are
applied. This was verified by checking the scalar mass eigenstates and the claim was also

– 7 –

J
H
E
P
0
7
(
2
0
2
3
)
0
1
3

Theorem 2. The S3-symmetric 3HDM potential, V = V2 + V4, explicitly conserves CP if
and only if I(1)5Z = I(2)5Z = I(1)6Z = I(2)6Z = I7Z = I2Y 3Z = 0.

Proof. Again, we must prove that the two statements of the theorem imply each other.
First, we prove that if V is CP invariant, then I(1)5Z = I(2)5Z = I(1)6Z = I(2)6Z = I7Z = I2Y 3Z = 0.
This follows by definition, since whenever the scalar potential, V , is CP invariant, all
CP-odd invariants constructed from only Y - and Z-tensors must vanish.

Then, we must prove that I(1)5Z = I(2)5Z = I(1)6Z = I(2)6Z = I7Z = I2Y 3Z = I2Y 3Z = 0 implies a
CP invariant V . In order to do this we demand the vanishing of all six invariants and work
out algebraically the solutions in terms of the potential parameters. The difference from
Theorem 1 is that we now include the vanishing of I2Y 3Z . We find that Solutions 0–2 make
all six invariants vanish. On the other hand, Solution 3 is modified with one additional
constraint, namely µ2

1 = µ2
0:

• Solution 3′ (λR
4 λI

4λ7 != 0):

µ2
1 = µ2

0,
(
λR
4
)2

= − (λ23 − λ7)(2λ23 + λ7)2
λ7

,

(
λI
4
)2

= (λ23 + λ7)(2λ23 − λ7)2
λ7

,

λ5 = 2 (λ1 + λ2) ,
λ6 = 4λ3,

λ8 = λ1 − λ2.

For Solutions 0–2, the changes of basis to a real V4 basis were expressed in terms of a
phase rotation of a doublet, and did not affect V2, which stayed real. For Solution 3′,
the constraint µ2

1 = µ2
0 yields V2 invariant under the U(3) transformations, and hence the

quadratic V2 remains real. To summarise, for each of the solutions found we were able to
show that there exists a real basis for V , and this concludes the proof of the theorem.

This theorem deals only with the CP properties of the potential, not the vacuum. CP
violation may still occur, but CP will then be spontaneously broken by the vacuum.

We emphasise that the two theorems only apply to the S3-symmetric 3HDM. For the
general 3HDM, the necessary and sufficient set of the CP-odd invariants needed for explicit
CP conservation has not yet been identified. The above theorems are formulated in terms
of basis invariant quantities, hence they may be used to determine the CP properties of
the potential in any scalar basis.

We are now in a position to discuss and classify different cases of explicit CP conser-
vation of the S3-symmetric 3HDM, based on these theorems. There is a common factor,
λR
4 λI

4λ7, contained within every CP-odd I-invariant.
For Solutions 0–2 it suffices to have λR

4 λI
4λ7 = 0 to eliminate the possibility of having

explicit CP violation. Solution 0, given by λI
4 = 0, reduces to the cases studied in ref. [61].

For Solutions 1 and 2 it is easy to find simple basis changes that make all potential param-
eters real as given in appendix C.

Solution 3 requires some further explanation. No additional continuous symmetries
are realised in the scalar potential when the CP-conserving conditions of eqs. (C.13) are
applied. This was verified by checking the scalar mass eigenstates and the claim was also

– 7 –

For each of the solutions we were able to show that there exists a real basis for V 

Explicit CP violation

No additional continuous symmetries for solution de Medeiros Varzielas, Ivanov 2019

J
H
E
P
0
7
(
2
0
2
3
)
0
1
3

Solution 3.1 yields:

I7Z = 128λR
4 λI

4λ7

[(
λR
4
)2

+
(
λI
4
)2

− 2λ2
7

]2
. (C.9)

After substituting for λR
4 we find that the I7Z CP invariant vanishes when

(λI
4)2 =

(λ2 + λ3 + λ7) (2λ2 + 2λ3 − λ7)2
λ7

. (C.10)

For Solution 3.2 we get the following expression:

I7Z = 2304λR
4 λI

4λ7(λ1 − λ2 − λ8)2

× (λ1 + λ2 + 2λ3 + λ7 − λ8)(λ1 + λ2 + 2λ3 − λ7 − λ8).
(C.11)

Since eq. (C.7b) would result in CP conservation the only other possible condition for the
CP invariant to vanish is

λ8 = λ1 − λ2. (C.12)

The two cases mentioned above coincide as both require (we introduced λ23 ≡ λ2+λ3):

(
λR
4
)2

= − (λ23 − λ7)(2λ23 + λ7)2
λ7

, (C.13a)
(
λI
4
)2

= (λ23 + λ7)(2λ23 − λ7)2
λ7

, (C.13b)

λR
4 λI

4λ7 $= 0, (C.13c)
λ5 = 2 (λ1 + λ2) , (C.13d)
λ6 = 4λ3, (C.13e)
λ8 = λ1 − λ2, (C.13f)

with
|λ4|2 = (λR

4 )2 + (λI
4)2 = 2λ2

7. (C.14)
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applied. This was verified by checking the scalar mass eigenstates and the claim was also
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confirmed by going through the basis-independent conditions provided in ref. [77]. However,
after applying the conditions for CP-odd invariants to vanish the S3-symmetric potential
gets enlarged to ∆(54). This can be verified by performing a basis rotation




h1
h2
hS



 = 1√
2




1 −i 0

−i 1 0
0 0

√
2








φ1
φ2
φ3



 . (3.5)

In the new basis the scalar potential becomes

V2 = µ2
1(φ†

1φ1 + φ†
2φ2 + φ†

3φ3), (3.6a)

V4 =
1
3 (3λ1 + λ2)

(
φ†
1φ1 + φ†

2φ2 + φ†
3φ3

)2
+ 4λ3

(∣∣∣φ†
1φ2

∣∣∣
2
+
∣∣∣φ†

2φ3
∣∣∣
2
+
∣∣∣φ†

3φ1
∣∣∣
2)

− 4λ2
3

[(
φ†
1φ1

)2
+
(
φ†
2φ2

)2
+
(
φ†
3φ3

)2

−
(
φ†
1φ1

) (
φ†
2φ2

)
−
(
φ†
2φ2

) (
φ†
3φ3

)
−
(
φ†
3φ3

) (
φ†
1φ1

)]

+
{
2iλ7

(
φ†
1φ3

) (
φ†
2φ3

)
+

√
2λ4

(
φ†
2φ1

) (
φ†
3φ1

)
− i

√
2λ4

(
φ†
3φ2

) (
φ†
1φ2

)
+ h.c.

}
,

(3.6b)

where µ2
0 = µ2

1 was imposed as required by eq. (C.21), and where λ7 is real and λ4 is
complex, see eq. (2.8). The potential has the structure of the ∆(54)-symmetric one, as
given by eqs. (52) and (53) in ref. [77].

4 CP violation in different vacua

We classify cases with complex scalar potential based on ref. [61]. We first list cases allowing
for spontaneous CP violation when the scalar potential is real:

• C-III-a (0, ŵ2eiσ2 , ŵS);

• C-III-h (
√
3ŵ2eiσ2 , ±ŵ2eiσ2 , ŵS);

• C-IV-c
(√

1 + 2 cos2 σ2ŵ2, ŵ2eiσ2 , ŵS

)
;

• C-IV-f
(√

2 + cos(σ1−2σ2)
cosσ1

ŵ2eiσ1 , ŵ2eiσ2 , ŵS

)
;

4.1 Real vacua

We consider real vacua with λ7 real and λ4 complex. In this case it is possible to have
explicit CP violation. The minimisation conditions are provided in appendix B.2. In some
cases the minimisation conditions require λI

4 = 0. Therefore, we do not consider such
models, to wit:

• R-II-1a (0, w2, ŵS);

• R-II-1b,c (∓
√
3w2, w2, ŵS);

• R-II-2 (0, w2, 0);
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Summary of different CP violating models
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Scalar
potential

Vacuum vevs CPV LY

complex R-I-1 (0, 0, wS) explicit trivial
complex R-I-2a (w1, 0, 0) explicit -
complex R-I-2b,c (w1, ±

√
3w1, 0) explicit -

complex C-I-a (ŵ1, ±iŵ1, 0) explicit -
complex
real

C-III-a (0, ŵ2eiσ2 , ŵS)
explicit

spontaneous
trivial

complex
real

C-III-h (
√
3ŵ2eiσ2 , ±ŵ2eiσ2 , ŵS)

explicit
spontaneous

trivial

realα C-IV-c
(√

1 + 2 cos2 σ2ŵ2, ŵ2eiσ2 , ŵS

)
spontaneous any

realα C-IV-f
(√

2 + cos(σ1−2σ2)
cosσ1

ŵ2eiσ1 , ŵ2eiσ2 , ŵS

)
spontaneous any

complexβ C-IV-g (ŵ1eiσ1 , ±iŵ1eiσ1 , ŵS) explicit any
complex C-V

(
ŵ1eiσ1 , ŵ2eiσ2 , ŵS

)
explicit any

α In C-IV-c and C-IV-f there is a massless scalar present. Soft symmetry breaking would
remove the massless scalar.

β C-IV-g results in at least two negative mass-squared eigenvalues. Introduction of soft sym-
metry breaking terms might solve the issue.

Table 1. A summary of different CP violating models. In the first column we list if the scalar
potential can be complex. The CPV column indicates whether there is spontaneous CP violation,
as presented in ref. [61] with λI

4 = 0, or explicit, which requires strictly complex λs. In the last
column possible structures of the Yukawa Lagrangian (LY ) are presented. Entries with “-” indicate
that it is not possible to construct a realistic LY .

7 Discussion

In total there are four S3-based models which do not require complex quartic couplings
but due to phases of vevs yield spontaneous CP violation. These are [61]: C-III-a, C-III-h,
C-IV-c, C-IV-f. Two of these (C-III-a, C-III-h) require all of the fermions to be trivially
charged under S3, or in other words fermions couple only to hS , the S3 singlet and SU(2)
scalar doublet. The C-III-a model was found to contain a viable dark matter candidate [52].
It would be interesting to see how the parameter space of the model changes when a complex
coupling is introduced since C-III-a could be completely ruled out assuming some specific
DM halo distribution profiles [112].

The other two models (C-IV-c, C-IV-f) do not survive when complex quartic couplings
are introduced since λ4 is not allowed to be complex in these cases. However this fact (also
for the C-V case) does not contradict the results of ref. [113] where it is conjectured that
whenever a symmetry of the scalar potential prevents explicit CP violation it also prevents
spontaneous CP violation, since here we are considering specific vacuum directions. Apart
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R-I-1 there is a pair of charged mass degenerate states and two pairs of neutral 

mass-degenerate states 

C-III-a realistic masses and mixing require the fermions to transform trivially 

under the symmetry and require complex Yukawa couplings. Has  a 

viable DM candidate for a real potential

C-III-h realistic masses and mixing require the fermions to transform trivially 

under the symmetry and require complex Yukawa couplings

C-IV-c possible to fit both fermion masses and the CKM matrix however, there 

is an accidental massless scalar state in the model

C-IV-f this vacuum is a generalisation of C-IV-c but a massless scalar state is 

also present  

C-IV-g possible to fit both fermion masses and mixing however, there are negative 

mass-squared scalars

C-V possible to fit both fermion masses and the CKM matrix; can also yield a 

realistic scalar sector. Remarkable possibility of having light neutral scalars

of order a few Mev escaping detection. More details in our paper.



Potentially realistic models with real Yukawa couplings 
C-IV-c C-IV-f C-IV-g C-V only C-V survives without the need for soft breaking terms


due to unrealistic scalar spectrum 

A numerical study of C-V was performed fitting several  parameters
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• C-III-a
After a unitary transformation (only in the case of the pseudo-singlet representation)
it is possible to write the mass matrix for both singlet and pseudo-singlet represen-
tations as

Md = 1√
2




eiσ2yd2ŵ2 + yd1ŵS 0 0

0 −eiσ2yd2ŵ2 + yd1ŵS eiσ2yd4ŵ2
0 eiσ2yd5ŵ2 yd3ŵS



 , (5.6)

Due to the block-diagonal form of the matrix it is impossible to generate a realistic
CKM matrix. The mixed representations yields det (Mf ) = 0.
Another possibility would be to construct a trivial Yukawa sector. As in the case of
R-I-1 the Yukawa couplings would need to be complex.

• C-III-h
When the singlet representation is considered, the mass matrix can be rotated by

U =




cos θ sin θ 0

− sin θ cos θ 0
0 0 1



 , (5.7)

with θ = −π/3, so that

UMdU
T = 1√

2




−2eiσ2yd2ŵ2 + yd1ŵS 0 0

0 2eiσ2yd2ŵ2 + yd1ŵS 2eiσ2yd4ŵ2
0 2eiσ2yd5ŵ2 yd3ŵS



 . (5.8)

In the case of the pseudo-singlet representation it is possible to get an identical matrix
by choosing θ = −5π/6 and changing the sign yd2 → −yd2 . In these cases it is not
possible to generate a realistic CKM matrix.
The mixed representation results in det (Mf ) = 0. The only viable possibility is to
consider a trivial Yukawa sector.

6 Numerical studies

The remaining cases (C-IV-c, C-IV-f, C-IV-g, C-V) require further discussion as those
were explored numerically. A complete systematic study of the models presented here,
involving both the scalar and Yukawa sectors, is beyond the scope of this work. We rely
on a simplified check of the models at tree level (and also disregarding the leptonic sector)
to draw a conclusion if a specific model can be rejected or not. In total, we fit several
parameters, adopting a 3-σ tolerance of values taken from the PDG [88]:

• Masses of the up- and down-quarks;

• The absolute values, arguments of the unitarity triangle (α, sin 2β, γ) and indepen-
dent measure of CP violation (J) [89, 90] of the CKM matrix;
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For the C-V model, we perform several additional checks. These are:

• Interactions of the SM-like Higgs boson with fermions. We assume the Higgs boson
signal strength in the b-quark channel [91–93] as a reference point and apply the
corresponding limits to other channels;

• Suppressed scalar mediated FCNC [94, 95];

• CP properties of the SM-like Higgs boson [96, 97];

• Upper limit on the decay of the t-quark into lighter charged scalars when decays are
not kinematically suppressed [98, 99];

The additional checks are performed only in case of C-V as those demand input from the
scalar sector; to be more precise, one needs to know how the scalar mass eigenstates look
like to determine the interaction strength of the SM-like Higgs boson with the fermions.
Neither of the other models (C-IV-c, C-IV-f, C-IV-g) can generate a realistic scalar content,
unless the S3 symmetry is softly broken. We do not consider soft symmetry breaking.

Fitting the discussed constraints is performed by taking vevs as inputs and scanning
over ten free Yukawa couplings (yui , ydi ) in the range {|yui |, |ydi |} ≤

√
4π. Only one (one

for the up-quarks and one for the down-quarks) of the Yukawa couplings (largest in ab-
solute value) tends to be in the range of 0.1 ≤ {|yui |, |ydi |} ≤ 1.5, while others are within
O(10−10) − O(10−3). It is also possible to achieve a valid (simplified) fit, when two out of
the ten Yukawa couplings vanish. However, in this case there will be less freedom to fit
the scalar-fermion interactions.

The strategy adopted for the fitting was as follows. Due to a non-linear fitting func-
tion we found that the easiest approach is to optimise the numerical values of the Yukawa
couplings by utilising the gradient descent and random search techniques. Since the op-
timisation of the scalar-fermionic sector is a computationally expensive task time-wise, a
simplified scan was performed. This involves performing a scan over the constraints by
binning the free variables of vevs (n) into approximately 103 n-dimensional boxes. Then,
the vevs are kept fixed while only the values of (yui , ydi ) are evolved. If the fitting procedure
would take longer than a set threshold (one hour) a new vev would be chosen within the
same bin. Also, the scan was performed over all possible combinations of the up- and
down-quarks, left- and right-chiral states having different S3 charges assigned. Scanning
over all representations might seem to be a redundant procedure since some representations
are more constraining (can have vanishing Yukawa couplings) than others. However, this
could also be viewed as a wider coverage of the available parameter space to balance the
poor 103 data sampling of vevs. Regardless, we would like to emphasize that the reader
should be cautious when interpreting the results (especially the C-IV-c, C-IV-f and C-IV-
g models) since the checks were performed using a rather scarce grid and not all of the
experimental data were fitted.

We shall next comment on models which could generate a non-trivial Yukawa sector:

• C-IV-c
In the case of real Yukawa couplings it is possible to fit both the fermionic masses
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Figure 2. Scatter plots of masses that satisfy constraints in the C-V model. Top: the charged
sector, H±

i . Bottom: the active sector, Hi. In the neutral sector the red line indicates a 125GeV
state.

considered. Nevertheless, it is of interest to consider light scalars [107–111], which
are present in many extensions of the scalar potential.
Quite a remarkable aspect of the model is the presence of mH1 = O(MeV) neutral
scalar states, which are not excluded by the constraints. Due to freedom of the
model it is possible to have suppressed decays of the SM-like h state into the H1
states, g(hH1H1) ∼ O(10−6). We shall focus our discussion on the sub-GeV states.
The light states arise when |λ4| ! O(10−3) and λ7 ! O(10−5). A naive idea could be
that this case becomes comparable to the one (C-V) with λI

4 = 0. However, this is
not true since 0.1 < λ23 < 3 in the discussed parameter space and the minimisation
condition of the real scalar potential would require λ23 = 0. Note that the discussed
light states are specific to C-V with λ4 complex, in C-V with real λ4 there are three
unwanted Goldstone states present.
With input from the scalar sector one can check if the constraints coming from the
Yukawa Lagrangian are satisfied. Since the fermionic masses and the CKM-related
fits can be satisfied for more constrained models (C-IV-c, C-IV-f, C-IV-g), of primary
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Conclusions
Many interesting aspects of the models presented here remain to be analysed 

Potential DM candidates exist as was shown in previous works of ours
Khater, Kunčinas, Ogreid, Osland, MNR, 2021 Kunčinas, Ogreid, Osland, MNR, 2022 

Many important studies of 3HDM have appeared in the literature, 

and several of them are cited in our paper. 

Multi-Higgs models are at present a fertile ground of research

The LHC may bring important news for this field in the near future  

Still many important questions remain open
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S3 Yukawa, C-IV-c, C-IV-f

1 Notation

We have the following S3 doublets:

✓
Q̄1

Q̄2

◆

L

,

✓
u1

u2

◆

R

,

✓
d1

d2

◆

R

,
�
h1 h2

�
(1.1)

and singlets:
Q̄3L, u3R, d3R, hS , (1.2)

where indices 1,2,3 on quark fields Q̄, u, d label the families. Mass terms arise from the following
generic structures: Q̄L�dR or Q̄L�̃uR, where � and �̃ = �i[�†

�2]T are scalar SU(2) doublets.
Singlets of S3 can be obtained from the multiplication of two singlets or two doublets, where

one factor could arise from the product of two doublets. Yukawa couplings of d-quarks that are
invariant under S3 can thus be constructed in 5 di↵erent ways, with independent coe�cients
y
d

1 , . . . , y
d

5 :

y
d

1 : Q̄1LhSd1R + Q̄2LhSd2R, (1.3a)

y
d

2 : (Q̄1Lh2 + Q̄2Lh1)d1R + (Q̄1Lh1 � Q̄2Lh2)d2R, (1.3b)

y
d

3 : Q̄3LhSd3R, (1.3c)

y
d

4 : (Q̄1Lh1 + Q̄2Lh2)d3R (1.3d)

y
d

5 : Q̄3L(h1d1R + h2d2R), (1.3e)

As a result, the mass matrix will have the structure

M =

0

@
y
d

1wS + y
d

2w2 y
d

2w1 y
d

4w1

y
d

2w1 y
d

1wS � y
d

2w2 y
d

4w2

y
d

5w1 y
d

5w2 y
d

3wS

1

A , (1.4)

where w1, w2 and wS are the three vevs.
We define

H ⌘ MM
†
. (1.5)

For reference, let us write it out for the case of real vevs:

H =

0

@
w

2
1(y

2
2 + y

2
4) + (w2y2 + wSy1)2 w1(w2y

2
4 + 2wSy1y2) w1[2w2y2y5 + wS(y1y5 + y3y4)]

w1(w2y
2
4 + 2wSy1y2) w

2
1y

2
2 + w

2
2y

2
4 + (w2y2 � wSy1)2 w

2
1y2y5 � w

2
2y2y5 + w2wS(y1y5 + y3y4)

w1[2w2y2y5 + wS(y1y5 + y3y4)] w
2
1y2y5 � w

2
2y2y5 + w2wS(y1y5 + y3y4) (w2

1 + w
2
2)y

2
5 + w

2
Sy

2
3

1

A

(1.6)

and note that M†
M = H(y4 $ y5). It is automatically block diagonal if w1 = 0.

1.1 Invariants

Consider real y’s, but allow w1 and w2 to be complex:

(w1, w2, wS) = (ŵ1e
i�1 , ŵ2e

i�2 , ŵS) (1.7)
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1

A , (1.4)

where w1, w2 and wS are the three vevs.
We define

H ⌘ MM
†
. (1.5)

For reference, let us write it out for the case of real vevs:

H =

0

@
w

2
1(y

2
2 + y

2
4) + (w2y2 + wSy1)2 w1(w2y

2
4 + 2wSy1y2) w1[2w2y2y5 + wS(y1y5 + y3y4)]

w1(w2y
2
4 + 2wSy1y2) w

2
1y

2
2 + w

2
2y

2
4 + (w2y2 � wSy1)2 w

2
1y2y5 � w

2
2y2y5 + w2wS(y1y5 + y3y4)

w1[2w2y2y5 + wS(y1y5 + y3y4)] w
2
1y2y5 � w

2
2y2y5 + w2wS(y1y5 + y3y4) (w2

1 + w
2
2)y

2
5 + w

2
Sy

2
3

1

A

(1.6)

and note that M†
M = H(y4 $ y5). It is automatically block diagonal if w1 = 0.

1.1 Invariants

Consider real y’s, but allow w1 and w2 to be complex:

(w1, w2, wS) = (ŵ1e
i�1 , ŵ2e

i�2 , ŵS) (1.7)

1


