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Motivation for three Higgs doublets

New sources of CP violation in the scalar sector

Possibility of having a discrete symmetry and still have CP violation, explicit or
spontaneous

Rich phenomenology, including DM candidates

Why not more? Three fermion generations may suggest three doublets

Motivation for imposing discrete symmetries
Symmetries reduce the number of free parameters leading to (testable) predictions
Symmetries help control HFCNC (e.g. NFC or MFV suppression in BGL models)

Symmetries are needed to stabilise DM



Our work

We discuss a three-Higgs-doublet model with an underlying S5 symmetry
allowing In principle for complex couplings

We list all possible vacuum structures allowing for CP violation in the scalar sector
specifying whether it can be explicit or spontaneous

This classification is based strictly on the exact Sg -symmetric scalar potential
without soft symmetry breaking terms

Different regions of parameter space correspond to different vacua with implications
that are outlined in our work

In a previous work the scalar potential with real couplings was studied. In that case
CP was explicitly conserved and could only be violated spontaneously for special

vacua, which we identified
Emmanuel-Costa, Ogreid, Osland, M. N. R, 2016



The Scalar potential

S; is the permutation group involving three objects, ¢1, 2, @3

Vo = _>\2¢j¢z + %’YZWI% + hc]
[ 1<J ) .
Vi= A (0l00) + 3 _{C(0l1)(8]6;) + C(6]6;)(@]60) + 5 DI(6]6;)* +he]}
i i<
SELY@160(00) +he + S {5 Bal6]6;)(8]60) +he
7] i Ak, <k
1 1

2 Bsl(6100)(6}65) + he] + 5 Eal(6]65) (6] éx) + he]}

Derman, 1979
here all fields appear on equal footing

this representation is not irreducible, for instance, the combination

¢1 + @2 + @3

remains invariant, it splits into two irreducible representations,

h
doublet and singlet: ( h; >, hs of S3



Decomposition into these two irreducible representations

1 1
hy vz oy 0\ [
O Ol I
s i Vi 3 3

This definition does not treat equally  ¢1, @2, ¢3 they could be interchanged

Notice similarity with tribimaximal mixing in the leptonic sector

Harrison, Perkins and Scott, 1999

In our analysis we adopt the singlet-doublet representation of 53



The scalar potential in the singlet-doublet representation

Vo = pghlhs + p3 (h]ha + hihs),
Vi =M (hlhy + hiha)? 4+ Aa(hlho — Rih1)? + As[(h1h1 — hiho)? + (BT ho + hLR1)?]
(hha) (h{ho + hiha) + (o) (Rl hy — hiho)| + h.c.}

+ A5 (hkhs) (Wl A1 + hhha) + As[(h5h1) (Bl hs) + (Rfhe) (hhhs)]

+ {)\4

+ {)\7

(hkha)(hha) + (hha) (hho)

+ h-C-} = As(hghs)z- Das and Dey, 2014

No symmetry for the interchange of A1 and ho

A4 plays a special role

There are two couplings, A4 and A7, that could be complex. Hence, CP symmetry can be

broken explicitly. All other couplings have to be real due to the hermiticity of the potential.

Here we are interested in expanding the set of solutions identified and classified
previously for the real potential by allowing for complex coefficients.



Choice of a suitable basis for the analysis of the complex scalar potential

The most general approach of allowing for A4 and A7 to be complex together with
two vacuum phases would yield redundant solutions

In principle we could consider a basis with real vevs and complex couplings through:
hi =e%inl, i ={1,2}.
however, in this case (A2 + A3) would get a phase and the potential would change form

This can be avoided by choosing 6, = 62 = 6 in any rephasing of the Higgs doublets
This phase can be chosen in such a way that either A4 or A7 become real

so that, in general, we are left with two vacuum phases and one complex coupling

We are only interested Iin cases with non-vanishing phases in the couplings since the
cases with spontaneous CP violation were already analysed

It is convenient to choose a basis with A4 the only complex coefficient rather than A7



Results obtained previously for the real potential



Vacuum | pq, p2, P3 w1y, Wa, Wg Comment
R-0 0,0,0 0,0,0 Not interesting
R-1I-1 T, T, T 0,0, wg e = —AgWg
R-1-2a r,—x,0 w, 0,0 i =— (A + A3) wi
R-1-2b x,0, —x w, v/ 3w, 0 pi = —3 (A + A3) w3
R-1-2c 0,2, —x w, —v 3w, 0 pi=—5 (M + A3) w3
R-II-1a T, T,y 0, w, wg = %)\45—2 a3 — AsW3,
i = — (A + A3) w2 SN\ Wals — 5 AWE
R-1I-1b T, Y, T w, —w/vV3, wg ,u(z) = —4)\4w—s — 2\ w3 — AgWw3,
—4 (A1 + A3) w2 — 3\ Wwolvg — %)\aw%
R-1I-1c Y, T, T w,w/v3, wg ,u(z) = —4\—2 — 2\ w3 — Agw%,
i = —4 (M + )\3) w5 — 3)\4w2w5 — 2\ W35
R-11-2 T, x, —2T 0,w, 0 i =— (A +A3)ws, Ay =0
R-1I-3 | z,y,—7v — vy w1, Wy, 0 1= — (A +As3) (w2 +w3),\s =0
R-I11 01, P2, P3 Wy, Wy, We ,ug = — 2\ (W] + w3) — Aswg,
— (M ¥ Az) (Wi +w3) — AW,
Ay =0
Ao = A5 + Ag + 27,
Ap = As + Ag — 27,




Complex vacua

Table 2: Complex vacua. Notation: € = 1 and —1 for C-1II-d and C-III-e, respectively;
¢ = /—3sin2p;/sin2py, ¥ = /[3 + 3cos(pa — 2p1)]/(2cos p2). With the constraints of

Table 4 the vacua labelled with an asterisk (*) are in fact real.

IRF (Irreducible Rep.) RRF (Reducible Rep.)
Wy, W2, Ws P1, P2, P3
A~ AN 2711 271
C-I-a Wy, 1wy, 0 T, ret s reT s
C-I11-a 0, Wee"2, g Y, 1y, xe'
C-III-b +1w1, 0, Wg x + iy, xr — z'y,
C-III-c wy e, wee'2, 0 rer — 2, —xef — 2y
C-III-d,e +19101, €Wq, Wy e’ xe” 'y
C-III-t +11, 1Ws, Wy re' +ix, re'f ZF X, gfre w %7“6 P
C-111-g +1wq, —1W9, Wg re " £ix,re " Fix, gre — %re w
C-III-h | +/3uqei?, £109e™2 g ze', Y,y
1T
Yy, re Y
: 3(1+tanZo1) ~ : iy
C-111-i \/ T otanZ oy W2e' ! x,ye'’ ye "
:I:UAJQG_Z arctan(3 tan cfl)7 UA}S y@w, x, ye—fw'
C-IV-a* wyet, 0, wg re’ +x,—re' +x,x
C-IV-b Wy, £y, We re’ +x,—re " +x,—re’ +re "’ +x
C-IV-c V' 1+ 2cos? oy, re’ + 7“\/3(1 + 2 cos? p) + x,
N igy o i 2 i
Wae'?, Wy repfr\/S(l—l—Zcos'p)+:1:,—2r¢"’—|—:c
C-IV-d* W€, et g re? +x,(ro —r)e’ +x, —ree’ +
sin 2092 ,~ 10 1 ) 1 7
C-1V-e \/—mwﬂi 5 re'? 4+ re'’1 & 4+ x,re'’? —re'®é 4 x,
W€ 2 g —2re'’? 4 g
2 . .
C-IV-f \/ 2 @l 01"2 e, re'f! + re'f2) +
W9e'2, Wy re'fl — re'2q) + x, —2ret + o
C-V* Wy e, Wee'’?, Wy xe' ye'?, 2




Constraints

Vacuum

Constraints

C-I-a

M2 = —2 (>\1 Ao) W

C-I1I-a

py=—(M+ )\3) (>\b

)\8ws,

-2
8 cos? oo \7) W3,

)\4 _ 4cosagws>\
w2

C-I1I-b

)\b )\8"605,

pi = — (>\ +)\3)w1 AW,
A =0

C-I1I-c

pi = —(A + Ag) (w7 + 03),
)\2+)\3—O,)\4:O

C-1I1-d.e

=
N
|
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») (07 + 103) — Xy —

_ wl wz (w%_f’w%)
Ay = 52 (Ao 4+ A3) —

)\8w57

L (A5 + Ag) W

C-1lI-f,g

2
1

14

4w g
T ~
—5A (w1 + Ww35) — )\gws,
3

2 __
0=
)\1 —I—)\ )(wl —I—’lfjg) 1)\(,’11}5,)\4 =0

C-I1I-h

I

= 4 ()\1 + )\3) w%

,LLO — —2)\bw2 — Agws,
5 (Ao — 8cos? oaA7) W3,
)\4 — ZFQCosang )\7

C-I11-1

2

Mo =

16(1

w2
3 tan? 01) (1 tan201)(1—3tan201))\ u}%

A= —

(1+9tan? o1)2

anQU
4143 1)<)\1 . )\2)w2 T (

Ao+ \g) 22 :I:
( 2+ ) (149 tan? 01)%

2(1+3tan® oq)
~ 149tan2 0y ()‘5 + >‘6)w2 - )‘8w57
1—3tan? 01)

4@5

A WoWg

D)
149 tan® o1 2\/1—|—9 tan? oy

—2 (X5 + Ag) W3,
4(1—3tan 01)w2 ()\2 1 )\3) -

(149 tan? o1)w%

(5—3 tan? o1 )1@2
24/149 tan2 o1 dg
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Vacuum Constraints
C-IV-a’ He = —35 (Xs + )\6) w1 — g,
pi=— (M Y A3) Wi — 5 (As + Xe) WE,
A =0, )\7 =0
(w2 IDQ)Q 1 A N
C-IV-b | pg = (Mo 4+ A3) = — 5 (A5 + Ae) (07 + 3) — AW,
i = — (A = o) (0F 4+ 103) — 5 (X5 + Ag) 03,
’UJ2 'w2
M =0, A7 = — (07—8) (Ao + A3)
C-IV-c pe = 2cos? oy (1 + cos? o3) ()\2 + A3) = w_g
— (14 cos? 03) (A5 + Ag) W )\gws,
pi = —1[2(1+ cos*o9) Ay — (2 + 3 cos? 02) Ay — cos® o9 \3] W3
—2 (A5 + Xg) W3, 2
Ay = _QCO’ISD%W ()\2 + )\3) A7 = == UQw ()\2 + )\3)
C-IV-d* o = —5 (As + Ag) (W] + %) AW,
pi = — (A + A3) (07 +3) — 5 <)‘5 + Ag) ws»
V= O, A7 =0
v A= S 0
== (1— 222) (= M) — s+ M)
sm 2(01—09))w2
)\4 — O’ >\7 — (81512101153 ) ()\ + )\3)
C-TV-f pE = — (008(01—202);—3 cgs o1)cos(o2—o1) )\4 w5
COS* 01 (S
_cos(01—22c<:)28);3cosol ()\ 4 )\6) ’UJ2 B )\8w57
12 = _cos(al—ic)fsg(zj—?)cosal (}\1 4 )\3)
st speslle o Sty g — & (3 + )
A2+ Ay = gcoi?i;’ N M» Ar = — e
C-V* o = —5 (A5 + Ag) (07 +03) — Agth3,

12 =— (A + A3) (z@%ﬂbg) 5 (A5 + o) w3,
M+ XA3=0A=0,A\7=0




Complex vacua, Spontaneous CP Violation

Table 1: Spontaneous CP violation

Vacuum | Ay | SCPV || Vacuum | Ay | SCPV || Vacuum | A\, | SCPV
C-I-a X no C-III-f,g | O no C-IV-c | X | vyes

C-III-a | X | yes C-III-h | X | yes C-IV-d | O no
C-I1II-b | O no C-III-1 | X no C-IV-e | 0 no
C-III-c | O no C-IV-a | 0 no C-IV-t | X | ves
C-III-de | X no C-IV-b | 0 no C-V 0 no

o C-III-a (0, W2€"2, Wg);

o C-III-h (V/39e'72, +109€'72, g);

1 + 2 cos? o9te, Woe'2, @DS);

cos(o1—202) A

COS 01

wo €

10 A
L. woe

109 A .
)




Coming back to the complex potential



Explicit CP violation

Compact notation: Va = Yab (hlhb) ,

1 Branco,Lavoura, Silva 1999
V4 — 5 abced (hjzhb) (hihd) 9

Y11 = Yoo = pi, Y33 = 1,
Z1111 = 42222 = 2A1 + 23, 73333 = 2)s,
Z1122 = 22211 = 2A1 — 2A3, 21133 = 22233 = Z3311 = £3322 = As,
Z1221 = Z2112 = —2A2 + 2A3,  Z1331 = Z2332 = 43113 = 43223 = A6,
Z1212 = 42121 = 2A2 + 23, Z1313 = 42323 = 43131 = 43232 = 2A7,
Z1123 = Z1213 = Zis12 = Z1s21 = Zo113 = Zog11 = —Zaoog = —Zazas = Ay — i)y,

R |, I
/1132 = Z1231 = 242131 = 243112 = 243121 = 43211 = — 249232 = — /43222 = A4 + 1A,.



Explicit CP violation

Powerful and elegant tool: CP odd Higgs basis invariants built from Y- and Z- tensors
See references [65-71] in our paper

I(1 = IIm | aachdbefchheszthfm]
1) = Im [ZoyeZaae f Zeghe Ziagn Z rjji) -
Iélz = Im | Zaved Zbae f ZgehiLdjke Z fkil L igih,)
Z = Im | ZopedZvaet ZgehiLdeik Z thikl Ligis)
Ir7z =1Im | ZaveaZeatc Lbgih Ziejk Z g flm LhiknLming)

Ioysz = Im | ZgpeaZvetgZdcht Y gaYen) -

Complex computation due to high number of contraction of indices requiring special
simplification techniques!

Anton Kuncinas Odd Magne Ogreid



Explicit CP violation

Theorem 1. The quadrilinear part of the Ss-symmetric SHDM potential, Vy, explicitly
conserves CP if and only if ISZ) = IéQZ) = Iélz) = IéQZ) = 1,7 =0.

e Solution 0: \} = 0;
e Solution 1: \} = 0;
e Solution 2: Ay = 0;

e Solution 3 (AFA A7 # 0):

A23 = A2+ A3
() = - e = An)(2has Ar)” A5 =2 (A1 + o).
>\7 9 )\6 — 4)\37
AL (A23 + A7)(2A23 — A7)
( 4) — )\7 y )\8:)\1_)\2-

For each of these solutions we were able to show that there exists a real basis tor V4



Explicit CP violation

Theorem 2. The S3-symmetric SHDM potential, V= Vo + V4, explicitly conserves CP if

and only if Iélz) — IéQZ) — Iélz) — I?Z) = 177 = Ivy37z = 0.

e Solution 3’ (AFA A7 # 0):

Hi = Ko, Aag = Ao+ s
th )2 e M)SA% i M)Qv As = 2(A1+ A2),
’ , A6 = 43,
(Ai)Q _ (A23 >\7)§\27>\23 — A7) | Ao = A — Ao,

For each of the solutions we were able to show that there exists a real basis for V

No additional continuous symmetries for solution 3’ de Medeiros Varzielas, Ivanov 2019
The potential has the structure of the A(54)-symmetric

For the general 3HDM, the necessary and sufficient set of CP-odd invariants needed
for explicit CP conservation has not yet been identified



Summary of different CP violating models

Scalar
Vacuum Vevs CPV Ly
potential
complex R-I-1 (0, 0, wg) explicit trivial
complex | R-I-2a (w1, 0, 0) explicit -
complex | R-I-2b,c (w1, ++/3wy, 0) explicit -
complex C-I-a (w1, Fiwy, 0) explicit -
complex . explicit
PR O (0, Waei®, tg) P trivial
real spontaneous
complex . explicit
P cttn (39l , +iinei®?, iig) P trivial
real spontaneous
real® C-IV-c (\/ 1 + 2 cos? op1h, Wee'd2, UAjs> spontaneous | any
real® C-IV-f <\/ 2 COS((E;?@)QDQ@Z“, Woe'2. ?f]g) spontaneous | any
complex? | C-IV-g (1€, LieL, wg) explicit any
complex C-V (1€, Wae'2, g) explicit any

“In C-IV-c and C-IV-f there is a massless scalar present. Soft symmetry breaking would

remove the massless scalar.

B C-IV-g results in at least two negative mass-squared eigenvalues. Introduction of soft sym-

metry breaking terms might solve the issue.

It is possible to have CP

violation without breaking

Sa (see R-1-1)

entries with “-“ indicate
that it Is not possible to
generate realistic masses
and mixing



R-1-1  there is a pair of charged mass degenerate states and two pairs of neutral
mass-degenerate states

C-lll-a  realistic masses and mixing require the fermions to transform trivially
under the symmetry and require complex Yukawa couplings. Has a
viable DM candidate for a real potential

C-lll-h  realistic masses and mixing require the fermions to transform trivially
under the symmetry and require complex Yukawa couplings

C-IV-c  possible to fit both fermion masses and the CKM matrix however, there
IS an accidental massless scalar state in the model

C-IV-f  this vacuum is a generalisation of C-IV-c but a massless scalar state is
also present

C-IV-g possible to fit both fermion masses and mixing however, there are negative
mass-squared scalars

C-V possible to fit both fermion masses and the CKM matrix; can also yield a
realistic scalar sector. Remarkable possibility of having light neutral scalars
of order a few Mev escaping detection. More details in our paper.



Potentially realistic models with real Yukawa couplings

C-IV-c C-IV-f C-IV-g C-V only C-V survives without the need for soft breaking terms
due to unrealistic scalar spectrum

A numerical study of C-V was performed fitting several parameters

e Masses of the up- and down-quarks;

o The absolute values, arguments of the unitarity triangle («, sin 23, v) and indepen-
dent measure of CP violation (J) [89, 90] of the CKM matrix;

e Interactions of the SM-like Higgs boson with fermions. We assume the Higgs boson
signal strength in the b-quark channel [91-93| as a reference point and apply the
corresponding limits to other channels;

o Suppressed scalar mediated FCNC [94, 95];

o CP properties of the SM-like Higgs boson [96, 97|;

o« Upper limit on the decay of the t-quark into lighter charged scalars when decays are
not kinematically suppressed [98, 99];
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Figure 2. Scatter plots of masses that satisfy constraints in the C-V model. Top: the charged
sector, H ,Li Bottom: the active sector, H;. In the neutral sector the red line indicates a 125 GeV
state.



Conclusions

Many interesting aspects of the models presented here remain to be analysed

Potential DM candidates exist as was shown in previous works of ours

Khater, KuncCinas, Ogreid, Osland, MNR, 2021 Kuncinas, Ogreid, Osland, MNR, 2022

Many important studies of SHDM have appeared in the literature,
and several of them are cited in our paper.

Still many important questions remain open
Multi-Higgs models are at present a fertile ground of research

The LHC may bring important news for this field in the near future



Back-up slide



We have the following S35 doublets:

(8;) . (Zi)R (Z;)R, (h1 ho)

Q3L7 U3R, d3R7 hS?

and singlets:

where indices 1,2,3 on quark fields Q, u, d label the families. Mass terms arise from the following
generic structures: Qrédgr or Qrour, where ¢ and ¢ = —i[¢plos]T are scalar SU(2) doublets.

As a result, the mass matrix will have the structure

d d d d
Y7 Ws + Yswa Yoy Wi Y, w1

_ d d d d
M = Yo W1 Jiws — Yygwz Y, w2

d d d
Ys W1 Ys W2 Yswes



