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H couplings with more general assumptions
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Measurement assuming effective 
couplings for ggH, Hɣɣ, and HZɣ  

Assuming also H decays to 
invisible(≔missing pT) & undetectable 
(≔non-closure of other BR’s to unity) 

Stat. unc ≅ syst unc except for 
kμ and and kZɣ

Both invisible and undetectable 
BR’s compatible with zero

Generic coupling

How: Similar to previous setup with this time 
allowing for non-SM particles in loop processes, 
with effective coupling strengths. 

Two scenarios: with and without invisible and 
undetected non-SM Higgs decays. 

Highlights:

● SM compatibility (p-value): 61% (Binv = Bu = 0)
● Upper limits on Binv of 0.13 (0.08) and Bu of 

0.12 (0.21) at 95% CL 
○ To include Binv  and Bu one has to add some extra 

constraint (κV≤1 )

14Nature 607, 52–59 (2022)Paolo Francavilla - Higgs Hunting 2022

ATLAS and CMS Fit to Higgs Couplings

Departure from SM predictions of the order of


few tens of percent allowed at this point.



H couplings to fermions and vector bosons
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● Coupling modifiers k to quantify couplings 
deviations from SM predictions 

H couplings vs particle mass

○ Compatibility with SM within 10%

○ ~5✕ improvement wrt discovery

Likelihood scan of (kf, kV)

k μ =
 k

τ =
 k

b =
 k

t =
  

kZ = kW =  

○ Agreement with SM for 
masses within 0.1 - 200 GeV

Coupling to each particle
How: 

● All modifiers assumed to be positive
● Only SM particles in loop processes
● No invisible or undetected non-SM Higgs 

decays 
● Two setups: with and without κc to cope with 

low sensitivity 

Highlights:

SM compatibility (p-value): 
56% (κc=κt ) and 65% (κc free-floating)

Coupling precision: 

● Fermions (t, b, τ ): 7% -12% 
● Vector bosons (W, Z): 5%
● Upper limit on κc of 5.7 (7.6) x SM at 95% CL 

11Nature 607, 52–59 (2022)Paolo Francavilla - Higgs Hunting 2022

Correlation between masses and couplings consistent

with the Standard Model expectations
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v
, ghV V =

m2
V

v

All these coupling that are constrained at the 10 percent level,

will be constrained at the few percent level at the end of the LHC era



Higgs Boson Mass Combination
• Measurement combines the latest results in the H → ZZ* → 4ℓ and H → ɣɣ decay channels

• Result based on 140 fb-1 of pp collision data collected at a center of mass energy of 13 TeV during Run-2

arXiv:2308.04775

 mH = 125.11 ± 0.09 (stat.) ± 0.06 (syst.) = 125.11 ± 0.11 GeV

 mH = 125.10 ± 0.09 (stat.) ± 0.07 (syst.) = 125.10 ± 0.11 GeV

16

Full Run-2 result:

Run-1 + Run-2 result:

Extremely precise 
measurement of the 
Higgs boson mass, 
with an uncertainty 
of only 110 MeV!

T. Vickey



T. Vickey

 3.3σ obs (2.2σ exp)
 exclusion of
 μoff−shell = 0

• Predicted Higgs width of 4.1 MeV is much smaller than the detector resolution

• This 4ℓ and 2ℓ 2! ZZ combination exploits the independence of off-shell cross 

section on ΓH   and relies on identical on-shell and off-shell Higgs couplings to 
determine ΓH from measurements of μoff-shell  and μon-shell 

arXiv:2304.01532

 ΓH = 4.5+3.3
−2.5 MeV

Determination of the Higgs Boson Width 

Evidence for off-
shell Higgs boson 
production!

NB: Neyman likelihood profiles shown; ~5-10% more conservative than asymptotic 17



ATLAS Higgs self-coupling results
• Higgs self-interaction can be measured via HH production

• 103 times more rare than single Higgs processes

• Allows us to probe the shape of the Higgs potential


• Many different channels analyzed

• Sensitivity better than 3x the SM

https://physics.aps.org/articles/v8/108

22

Phys. Lett. B 843 (2023) 137745

T. Vickey



Higgs Decay H à Zg 
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Signal strength µ for Mh=125.38 GeV: µ=2.4 ±0.9
Observed significance:     2.7 s  
Upper limit on µ: 4.1 Observed     1.8 Expected           

Combined CMS and ATLAS first evidence for H à Zg decay 
with observed significance:    3.4 s  (expected 1.6 s)

Signal strength: µ=2.2 ±0.7      
1.9 s compatibility with the SM prediction

• First example of combined ATLAS and CMS evidence
 of H àZg from previously published results 2204.12945

• Similar to Hà gg already reconstructed but rate 
reduction in Zà ! ! channel 
• Sensitivity to BSM effects at the decay 

S. Tkaczyk



Why we should not be surprised

• There is a well known, amazing property of the SM as an effective field theory 


• Take any sector with gauge invariant mass terms, which do not involve the Higgs v.e.v.


• The Appelquist-Carrazonne decoupling theorem says that as we push these gauge invariant 
masses up, the low energy effective theory will reduce to the Standard Model !


• The speed of decoupling depends on how these sector couple to the SM. In general, for a 
coupling κ to the Higgs, decoupling occurs when 


• Obviously decoupling doesn’t occur if the masses are proportional to the v.e.v.   


• These properties are behind the EFT program. 

<latexit sha1_base64="quqjO6FulXRufNUvkUkZDgN2Q/c="></latexit>
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Why we should be surprised

• The Higgs potential suffers from a problem of stability under ultraviolet corrections, 
namely, given any sector that couples to the Higgs sector with gauge invariant 
masses, the Higgs mass parameter will be affected


• These are physical corrections, regularization independent and shows that unless the 
new physics is lighter than the few TeV scale of very weakly coupled to the Higgs 
sector, the presence of particles with masses much larger than the weak scale mass 
parameter is hard to understand. 


• This is particularly true in models that try to connect the Higgs with the ultraviolet 
physics, like Grand Unified Theories. 


• In such a case, we need a delicate cancellation of corrections, that only an extension 
like Supersymmetry can provide. 
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CMS-PAS-HIG-020-002

Data compatible with background-only-hypothesis
Observed Upper Limit on s x BF : from 73 to 15 fb-1 
Largest deviation M=94.5 GeV w/ Local (Global) 2.9(1.3)s

Search for additional light H → gg decays below H(125)
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ATLAS results not inconsistent with the CMS excess,  arXiv:2306.03889
KOTLARSKI, BANK

Hints of New Scalars ?



Search for neutral higgs f  
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Neutral higgs f in ggF or in association with b-quark(s)
JHEP07(2023)073

Limits set [60 - 3500 GeV] ranging from 10pb to 0.3fb
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In MSSM scenarios Mh
125 & Mh, EFT

125 additional Higgs bosons with masses below 350 GeV excluded

f → tt  in lepton or hadron decays   

S. Tkaczyk



• Combination of searches in 
bbττ, bbγγ and bbbb final 
states


• mX range: 251 GeV to 3 TeV


• Complementary sensitivity 
ranges of the three searches


• mX = 1.1 TeV


• 3.2 (2.1) local (global) 
significance

X→HH
Higgs boson pair production

14

bbγγ bbττ bbbb

DiHiggs overview: Marco Valente, Wed 10:30am

Other Interesting Excesses :   A (650 GeV) -> H (450 GeV) Z

                                                A(650 GeV) -> h (95 GeV)    Z

                                                H,A (400 GeV) —> t tbar, tau tau

                                                A(610 GeV) —> H(290 GeV) Z

arXiv:2302.13697

Resonant Di-Hiogs Production

Local Excess at 1.1—1.2 TeV



Simple Framework for analysis of coupling deviations

2HDM : General Potential

• General, renormalizable potential has seven quartic couplings, with three of them, 
given in the last line, may be complex. 


• In general, it is assumed that lambda 6 and 7 are zero, since this condition appears 
naturally in models with flavor conservation.  However, this condition is basis 
dependent and it is not necessary. 


• We will therefore concentrate on the general 2HDM, with all quartic couplings 
different from zero.  As it is well known an important parameter in these models is

the requirement of perturbative unitarity. Section 5 presents the bounds coming from
the requirement that the tree level potential be bounded from below. In Section 6,
we discuss the vacuum stability. Finally, we reserve Section 7 for a brief analysis of
the phenomenological constraints and Section 8 for our conclusions. For the impatient
reader, a table listing the relevant results may be found at the end of the Conclusions

2. The general 2HDM

As emphasized above, we focus on the scalar sector of the theory. In general, gauge
invariance implies that the potential can only include bilinear and quartic terms. Each
of the three bilinear terms has a corresponding mass parameter, of which two (m2

11 and
m2

22) are real while the third, associated with a bilinear mixing of both Higgs doublets
(m2

12) may be complex.
Regarding the quartic couplings in the scalar potential, the two associated with self

interactions of each of the Higgs fields, �1 and �2, must be real and, due to vacuum
stability, positive. There are two couplings associated with Hermitian combinations of
the Higgs fields, �3 and �4, which must be real, though not necessarily positive. The
coupling �5 is associated with the square of the gauge invariant bilinear of both Higgs
fields, and it may therefore be complex. The couplings �6 and �7 are associated with
the product of Hermitian bilinears of each of the Higgs fields with the gauge invariant
bilinear of the two Higgs fields, and, as with �5, they may be complex. The most general
scalar potential for a complex 2HDM is therefore:

V = m2
11�

†
1�1 + m2

22�
†
2�2 � (m2

12�
†
1�2 + h.c.)

+
�1

2
(�†

1�1)
2 +

�2

2
(�†

2�2)
2 + �3(�

†
1�1)(�

†
2�2) + �4(�

†
1�2)(�

†
2�1)

+


�5

2
(�†

1�2)
2 + �6(�

†
1�1)(�

†
1�2) + �7(�

†
2�2)(�

†
1�2) + h.c.

�
,

(1)

with �1,2 = (�+
1,2, �

0
1,2)

T complex SU(2) doublets with hypercharge +1.
One way to prevent Higgs-induced flavor violation in the fermion sector is to introduce

a Z2 parity symmetry under which each charged fermion species transforms as even or
odd. The Higgs doublets are assigned opposite parities and couple only to those charged
fermions that carry their own parity. In such a scenario, the terms accompanying the
couplings �6 and �7 would violate parity symmetry and hence should vanish. The mass
parameter m2

12 is also odd under the parity symmetry but induces only a soft breaking of
this symmetry, which does not affect the ultraviolet properties of the theory, and hence
may remain non-zero.

There are alternative ways of suppressing flavor violating couplings of the Higgs to
fermions which do not rely on a simple parity symmetry and hence allow for the presence
of �6 and �7 terms. One example would be to assume a discrete Z3 symmetry under
which �1 transforms with charge 1 and �2 transforms with charge -2. The bilinear �†

1�2

is invariant under this Z3, and so the �6 and �7 terms are then allowed. The right

4

<latexit sha1_base64="xKIyqBzRrIKYejKtX97Iz4laRSg="></latexit>

tan� =
v2
v1



• In 2HDM, one can define independent Yukawa couplings for each charge 
eigenstate fermion sector


• Here the Yukawas are 3x3 matrices in flavor space


• This leads to a mass matrix


• The problem is that, contrary to the SM, diagonalization of this mass matrix does 
not lead to diagonal terms for the Yukawa interactions and there is in general 
dangerous flavor violation interactions the Higgs sector. 


• This may be avoided by a simple parity symmetry, where for instance


• This marries even scalar fields with even fermion fields and odd with odd and 
kills the flavor violating interactions while keeping 


• However, in a complete theory these couplings could be generated at the loop 
level, and it is interesting to consider the general case.

<latexit sha1_base64="2Z9mC8+0xlffJE31dbfzaCYbaIg="></latexit>

Z2 symmetric case : Motivation
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M = Y1
v1p
2
+ Y2

v2p
2
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H1 ! H1, H2 ! �H2, L ! L, R ! ±R
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Higgs Basis

• An interesting basis for the phenomenological analyses of these models is the 
Higgs basis


• The field          is therefore associated with the field direction that acquires a 
vacuum expectation value and acts as a SM-like Higgs


• The behavior of the neutral mass eigenstates depend on the projection on 
the fields in this basis.  


• Typically, it is the lightest neutral Higgs boson that behaves like the SM-like 
Higgs.  The case in which one can identify the state       with the mass 
eigenstate is called alignment.


• In the alignment limit the tree-level couplings agree with the SM ones. Large 
departures from the alignment limit are heavily restricted by LHC 
measurements. 

A. Higgs basis conversion

The phenomenological properties of the Higgs sector are more easily analyzed in the
Higgs basis, in which only one of the doublets possesses a vev8. We parameterize the
doublets as:

H1 =

✓
G+

1p
2
(v + �0

1 + iG0)

◆
, H2 =

✓
H+

1p
2
(�0

2 + ia0)

◆
, (82)

where G± and G0 are the Goldstones that become the longitudinal components of W±

and Z, H± is the physical singly charged scalar state, and (�0
1, �

0
2, a

0) are the neutral
scalars. The potential in the Higgs basis reads:
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(83)

The conversion between the potential parameters in the general basis and those in the
Higgs basis have been worked out in Ref. [36]; so as to be self-contained, we reproduce
them here. They are obtained by a rotation by an angle � in field space of the original
two Higgs doublets. The mass terms in the two bases are related as:

m2
11 = M2

11c
2
�

+ M2
22s

2
�

+ Re[M2
12e

i�]s2� , (84a)
m2

22 = M2
11s

2
�

+ M2
22c

2
�

� Re[M2
12e

i�]s2� , (84b)

m2
12e

i� =
1

2
(M2

22 � M2
11)s2� + Re[M2

12e
i�]c2� + i Im[M2

12e
i�] , (84c)

where tan � = v2/v1 with range 0  � 
⇡

2 , and � is the phase accompanying v2 in the
general basis parameterization of the doublets in Eq. (56). The relations between the

8This is technically not enough to uniquely define the Higgs basis. The U(1) diagonal subgroup
of the SU(2) symmetry in Higgs flavor space remains intact following SSB. This corresponds to
transformations �1 ! e

i��1, �2 ! e
�i��2. As a result, we have a one-dimensional family of Higgs

bases parameterized by �: {e
�i�

H1, e
i�

H2}.
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H1 = �1 cos� + �2 sin�

H2 = �1 sin� � �2 cos�



Mass Matrix in the Higgs Basis

• The neutral Higgs mass matrix takes a particularly simple form in the Higgs 
basis (Zi are the quartic couplings)


• Two things are obvious from here.  First, in the CP-conserving case, the 
condition of alignment,                implying small mixing between the lightest 
and heavier eigenstates is given by


• Second, while in the alignment limit the real part of        contributes to the 
splitting of the two heavier mass eigenstates, its imaginary part contributes to 
the splitting and their mixing. 

6.3. Vacuum stability in the Higgs basis

It is particularly interesting to study vacuum stability in the Higgs basis, in which only
one of the doublets possesses a vev (see Appendix A for a review of the conversion to the
Higgs basis as well as our conventions). One advantage of this basis is that the potential
parameters are closely related to physical observables.7 For example, Z1 controls the
trilinear coupling of three SM-like Higgs bosons hhh, Z6 controls the trilinear coupling of
two SM-like and one non-SM-like CP-even Higgs bosons hhH, etc. (see e.g. Ref. [31] for
an exhaustive list of couplings). Since none of the bounds obtained in this article have
relied on the choice of basis, they can equally well be applied to Higgs basis parameters.
Using the close relationship between the Higgs basis parameters and physical quantities,
we here aim at obtaining approximate bounds on the physical observables of the model.

First, we will restrict ourselves to the alignment limit — the limit in which the scalar
associated with the vev behaves as the observed SM-like Higgs boson: i.e., it is aligned
with the 125 GeV mass eigenstate and couples to the electroweak gauge bosons with SM
strength. In our parameterization, given in Eq. (82), this is �0

1. The mass matrix for the
neutral scalars ~� = (�0

1, �
0
2, a0)T reads:

M
2 = v2

0

B@
Z1 ZR

6 �ZI

6

ZR

6

M
2
H±
v2

+ 1
2(Z4 + ZR

5 ) �
1
2Z

I

5

�ZI

6 �
1
2Z

I

5

M
2
H±
v2

+ 1
2(Z4 � ZR

5 )

1

CA , (67)

with M2
H± the charged Higgs mass:

M2
H± = M2

22 +
1

2
Z3v

2 . (68)

Looking at the above matrix, it appears that there are two ways in which we can achieve
alignment. One option — the decoupling limit — corresponds to taking M2

H± + 1
2(Z4 ±

ZR

5 )v2
� Z1v2. Then the heavy mass eigenstates h2 and h3 can simply be integrated

out alongside the heavy charged Higgs H±, leaving just one light mass eigenstate h1

which is aligned with �0
1. More interesting from a phenomenological standpoint is the

alignment without decoupling limit, since it leaves the BSM states potentially within
collider reach. This corresponds to taking |Z6| ⌧ 1, for which mixing between �0

1 and
the other neutral scalars vanishes, leading us to identify it with the mass eigenstate h1.
We will take h1 ⌘ h to be the SM-like Higgs boson, with mass:

M2
h

= Z1v
2 . (69)

To obtain a physical Higgs mass close to the experimental value of 125 GeV, it is required
that we fix Z1 ⇡ 0.25. The remaining 2⇥2 mass matrix can be diagonalized to obtain
the masses of the remaining scalars h2 and h3:

M2
h3,h2

= M2
H± +

1

2
(Z4 ± |Z5|)v

2 . (70)

7The number of physical parameters in the most general 2HDM is 14. Another advantage of the Higgs
basis is that this is reduced to 11, since the complex M

2
12 is determined by Z1, Z6, and M

2
11, and

the freedom to rephase H2 implies that only the relative phase between Z5, Z6, and Z7 is physical.
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m2
h = Z1v

2, mh = 125 GeV

<latexit sha1_base64="muL5hZWV0TPyFGZXGkGG0VtFHrQ="></latexit>

Decoupling : Z6v
2 ⌧ m2
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Z2:

U(1):

SO(3):

Higgs-Family 
Symmetries:

Generalized CP 
Transformations:

CP1:

CP2:

CP3:

Ivanov, Ferreira

New symmetries arise when g1 = 0,  13 in total  Pfilatsis



Symmetries of the 2HDM
Each symmetry has a different impact on the scalar potential, originating 
models with different phenomenologies and  a different number N of 
independent parameters:

Some of these symmetries have phenomenologically  viable extensions to the 
Yukawa sector, thus becoming symmetries of the whole lagrangian, not simply 
of the potential (Z2, U(1), CP1, CP2, CP3).

These symmetries may appear differently depending on the choice of basis for 
the 2HDM.

TABLE 1



New 2HDM symmetries
Combining the new relations between couplings (“r0-symmetry”) 

with the other six symmetries, we obtain new 2HDM models, with new 
coupling relationships which are RG invariant to all orders. 

We will designate the new symmetries with the prefix “0”, so for
instance, “0CP1” will refer to the application of the r0 and CP1 symmetries, 
and  “0Z2” refers to the application of r0 and Z2.

TABLE 2

Ferreira

No clear which symmetry transformations behind this relations !


All Higgs masses proportional to the Higgs vev, therefore testable in the near future.
OGREID



3HDMs

Talks by Ivanov, Keus and Rebello

Extended Symmetries


Possibility of incorporating CP Violation and Dark Matter



The Scalar potential
S3 is the permutation group involving three objects, 

here all fields appear on equal footing
this representation is not irreducible, for instance, the combination

remains invariant, it splits into two irreducible representations, 

Derman, 1979
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asymmetry of the Universe requires the existence of new sources of CP violation beyond
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either explicitly, i.e., at the Lagrangian level, or spontaneously. Spontaneous CP violation
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The scalar potential in the singlet-doublet representation
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(Inert Doublet Models [43–45]), it is possible to have both CP violation (in the active or
inert sector) and a possible dark matter (DM) candidate in the context of 3HDM [46–53].

The S3-symmetric 3HDM has been studied since the late 70s in the irreducible [54] and
reducible [55, 56] representations, trying to explain the fermionic structures. Since then,
different cases of the CP-conserving scalar potential were discussed [57–60]. With real
couplings CP is explicitly conserved by the scalar potential and there is only the possibility
of having spontaneous CP violation for special vacua [61]. In this paper we study the
CP properties of the S3-symmetric 3HDM allowing for complex couplings in the potential.
Different vacua correspond to different regions of parameter space which are determined by
imposing the minimisation conditions. In the case of complex couplings some of the CP-
conserving vacuum structures of the real potential now correspond to regions of parameter
space that allow for explicit CP violation. For instance, CP can be explicitly violated even
in the case where the vacuum preserves the S3 symmetry.

The paper is organised as follows. In section 2 we introduce the S3-symmetric scalar
potential along with a discussion of the starting point for our analysis corresponding to
a suitable choice of a scalar basis. Although two new phases can be introduced in the
quartic couplings, we choose to fix one of them to be zero and we allow for the vevs to
be complex, which is required for generality. After fixing the basis for our discussion, in
section 3 we employ the powerful tool of CP-odd Higgs basis invariants in order to obtain
constraints on the parameter space for the case of explicit CP conservation. The CP-odd
basis invariant conditions require the imaginary part of different possible combinations of
Y - and Z-tensors to vanish. With this information it is then possible to classify models
based on the structure of their vevs. This is done in section 4. In section 5 we cover
the building of the Yukawa Lagrangian assuming that fermions are charged under the S3
symmetry. Some of the models require further numerical investigation. These models are
discussed in section 6. In section 7 we present our conclusions.

2 The scalar potential

The S3-symmetric 3HDM is in the irreducible representation given by a singlet, a pseudos-
inglet and a doublet. We shall adopt the singlet-doublet representation. In this case the
S3-symmetric potential can be written as [62–64]:

V2 =µ2
0h

†
ShS + µ2

1(h†1h1 + h†2h2), (2.1a)
V4 =λ1(h†1h1 + h†2h2)2 + λ2(h†1h2 − h†2h1)2 + λ3[(h†1h1 − h†2h2)2 + (h†1h2 + h†2h1)2]

+
{

λ4
[
(h†Sh1)(h

†
1h2 + h†2h1) + (h†Sh2)(h

†
1h1 − h†2h2)

]
+ h.c.

}

+ λ5(h†ShS)(h
†
1h1 + h†2h2) + λ6[(h†Sh1)(h

†
1hS) + (h†Sh2)(h

†
2hS)]

+
{

λ7
[
(h†Sh1)(h

†
Sh1) + (h†Sh2)(h

†
Sh2)

]
+ h.c.

}
+ λ8(h†ShS)2.

(2.1b)

There are two couplings, λ4 and λ7, that could be complex. Hence, CP symmetry can be
broken explicitly. All other couplings have to be real due to the hermiticity of the potential.

Another option would be to consider the pseudosinglet-doublet representation. In
this case there is no unitary transformation into the defining representation of S3. Such

– 2 –

Das and Dey, 2014
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(Inert Doublet Models [43–45]), it is possible to have both CP violation (in the active or
inert sector) and a possible dark matter (DM) candidate in the context of 3HDM [46–53].

The S3-symmetric 3HDM has been studied since the late 70s in the irreducible [54] and
reducible [55, 56] representations, trying to explain the fermionic structures. Since then,
different cases of the CP-conserving scalar potential were discussed [57–60]. With real
couplings CP is explicitly conserved by the scalar potential and there is only the possibility
of having spontaneous CP violation for special vacua [61]. In this paper we study the
CP properties of the S3-symmetric 3HDM allowing for complex couplings in the potential.
Different vacua correspond to different regions of parameter space which are determined by
imposing the minimisation conditions. In the case of complex couplings some of the CP-
conserving vacuum structures of the real potential now correspond to regions of parameter
space that allow for explicit CP violation. For instance, CP can be explicitly violated even
in the case where the vacuum preserves the S3 symmetry.

The paper is organised as follows. In section 2 we introduce the S3-symmetric scalar
potential along with a discussion of the starting point for our analysis corresponding to
a suitable choice of a scalar basis. Although two new phases can be introduced in the
quartic couplings, we choose to fix one of them to be zero and we allow for the vevs to
be complex, which is required for generality. After fixing the basis for our discussion, in
section 3 we employ the powerful tool of CP-odd Higgs basis invariants in order to obtain
constraints on the parameter space for the case of explicit CP conservation. The CP-odd
basis invariant conditions require the imaginary part of different possible combinations of
Y - and Z-tensors to vanish. With this information it is then possible to classify models
based on the structure of their vevs. This is done in section 4. In section 5 we cover
the building of the Yukawa Lagrangian assuming that fermions are charged under the S3
symmetry. Some of the models require further numerical investigation. These models are
discussed in section 6. In section 7 we present our conclusions.

2 The scalar potential

The S3-symmetric 3HDM is in the irreducible representation given by a singlet, a pseudos-
inglet and a doublet. We shall adopt the singlet-doublet representation. In this case the
S3-symmetric potential can be written as [62–64]:

V2 =µ2
0h

†
ShS + µ2

1(h†1h1 + h†2h2), (2.1a)
V4 =λ1(h†1h1 + h†2h2)2 + λ2(h†1h2 − h†2h1)2 + λ3[(h†1h1 − h†2h2)2 + (h†1h2 + h†2h1)2]

+
{

λ4
[
(h†Sh1)(h

†
1h2 + h†2h1) + (h†Sh2)(h

†
1h1 − h†2h2)

]
+ h.c.

}

+ λ5(h†ShS)(h
†
1h1 + h†2h2) + λ6[(h†Sh1)(h

†
1hS) + (h†Sh2)(h

†
2hS)]

+
{

λ7
[
(h†Sh1)(h

†
Sh1) + (h†Sh2)(h

†
Sh2)

]
+ h.c.

}
+ λ8(h†ShS)2.

(2.1b)

There are two couplings, λ4 and λ7, that could be complex. Hence, CP symmetry can be
broken explicitly. All other couplings have to be real due to the hermiticity of the potential.

Another option would be to consider the pseudosinglet-doublet representation. In
this case there is no unitary transformation into the defining representation of S3. Such
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Here we are interested in expanding the set of solutions identified and classified 
previously  for the real potential by allowing for complex coefficients.

No symmetry for the interchange of 

Alternative choice of irreducible representations

S3 has three irreducible representations, doublet, singlet and 
pseudo singlet, hA

Take S3 doublet and hA  
No direct translation into initial fields �1,�2,�3

New potential (only term in �4 changes):
2.6 The potential in terms of the S3 (singlet)0 and doublet

In terms of the S3 (singlet)0 and doublet fields, the potential can be written as

V2 = µ2
0h

†
A
hA + µ2

1(h
†
1h1 + h†

2h2), (2.75a)

V4 = �1(h
†
1h1 + h†

2h2)
2 + �2(h

†
1h2 � h†

2h1)
2 + �3[(h

†
1h1 � h†

2h2)
2 + (h†

1h2 + h†
2h1)

2]

+ �4[(h
†
A
h2)(h

†
1h2 + h†

2h1)� (h†
A
h1)(h

†
1h1 � h†

2h2) + h.c.] + �5(h
†
A
hA)(h

†
1h1 + h†

2h2)

+ �6[(h
†
A
h1)(h

†
1hA) + (h†

A
h2)(h

†
2hA)] + �7[(h

†
A
h1)(h

†
A
h1) + (h†

A
h2)(h

†
A
h2) + h.c.]

+ �8(h
†
A
hA)

2. (2.75b)

The vacuum conditions give µ2
0 and µ2

1 in terms of the quartic coe�cients. For the case
of complex vevs, we have from the real parts of the (complex) minimization conditions):

µ2
0 =

1

2wA cos ⇠A

�
�4w1[w

2
1 cos ⇠1 � w2

2(2 cos ⇠1 + cos(2⇠2 � ⇠1))]

� (�5 + �6)(w
2
1 + w2

2)wA cos ⇠A � 2�7wA[w
2
1 cos(2⇠1 � ⇠A) + w2

2 cos(2⇠2 � ⇠A)]

� 2�8w
3
A
cos ⇠A

 
, (2.76a)

µ2
1 = ��1(w

2
1 + w2

2) + �2w
2
2


1� cos(2⇠2 � ⇠1)

cos ⇠1

�
� �3


w2

1 + w2
2

cos(2⇠2 � ⇠1)

cos ⇠1

�

+ �4
wA

2w1 cos ⇠1

�
w2

1[cos(2⇠1 � ⇠A) + 2 cos ⇠A]� w2
2[cos(2⇠2 � ⇠A) + 2 cos ⇠A]

 

� 1

2
(�5 + �6)w

2
A
� �7w

2
A

cos(2⇠A � ⇠1)

cos ⇠1
, (2.76b)

µ2
1 = ��1(w

2
1 + w2

2) + �2w
2
1


1� cos(2⇠1 � ⇠2)

cos ⇠2

�
� �3


w2

1

cos(2⇠1 � ⇠2)

cos ⇠2
+ w2

2

�

� �4w1wA


cos(⇠1 + ⇠2 � ⇠A)

cos ⇠2
+

2 cos ⇠A cos(⇠1 � ⇠2)

cos ⇠2

�

� 1

2
(�5 + �6)w

2
A
� �7w

2
A

cos(2⇠A � ⇠2)

cos ⇠2
. (2.76c)

Consistency:

1. �4 = 0 and ⇠2 = ⇠1 ⌘ ⇠.

2. w2
2 = 3w2

1 and ⇠2 = ⇠1 ⌘ ⇠.

3. �2 = �3 = �4 = �7 = 0.

The imaginary parts of the minimization conditions give further constraints, and we end
up with the overall possibilities:

1. �4 = 0 and ⇠2 = ⇠1 ⌘ ⇠ and {�7 = 0 or sin[2(⇠A � ⇠)] = 0}.

2. w2
2 = 3w2

1 and ⇠2 = ⇠1 ⌘ ⇠ and {�7 = 0 or sin[2(⇠A � ⇠)] = 0}.

3. �2 = �3 = �4 = �7 = 0.
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reduces to the same potential we had before with h1 and h2 
interchanged, no new physics! 

The scalar potential in terms of fields from irreducible representations

M2
13 = M2

12,

M2
23 =

1

4(v1 + 2v2)
[(4A� 2C � 2C̄)v1v2(v1 + v2)� 2Dv2(v

2
1 � v1v2 � 4v22)

+ (E2 + E3 � E1)(v
3
1 + v21v2 � 4v1v

2
2 � 2v32) + E4(�v31 + v21v2 + 4v1v

2
2 � 2v32)].

(2.19)

2.3 The potential in terms of the S3 singlet and doublet

In terms of the S3 singlet and doublet fields, the potential can be written as [2, 3, 4, 5, 6, 7]

V2 = µ2
0h

†
S
hS + µ2

1(h
†
1h1 + h†

2h2), (2.20a)

V4 = �8(h
†
S
hS)

2 + �5(h
†
S
hS)(h

†
1h1 + h†

2h2) + �1(h
†
1h1 + h†

2h2)
2

+ �2(h
†
1h2 � h†

2h1)
2 + �3[(h

†
1h1 � h†

2h2)
2 + (h†

1h2 + h†
2h1)

2]

+ �6[(h
†
S
h1)(h

†
1hS) + (h†

S
h2)(h

†
2hS)]

+ �7[(h
†
S
h1)(h

†
S
h1) + (h†

S
h2)(h

†
S
h2) + h.c.]

+ �4[(h
†
S
h1)(h

†
1h2 + h†

2h1) + (h†
S
h2)(h

†
1h1 � h†

2h2) + h.c.] (2.20b)

The vacuum conditions give µ2
0 and µ2

1 in terms of the quartic coe�cients:

µ2
0 =

1

2ṽS

⇥
�2�8ṽ

3
S
� (�5 + �6 + 2�7)(ṽ

2
1 + ṽ22)ṽS + �4(ṽ

2
2 � 3ṽ21)ṽ2

⇤
, (2.21a)

µ2
1 =

1

2

h
�(�5 + �6 + 2�7)ṽ

2
S
� 2(�1 + �3)(̃ṽ

2
1 + ṽ22)� 6�4ṽ2ṽS

i
, (2.21b)

µ2
1 =

1

2ṽ2

h
�(�5 + �6 + 2�7)ṽ2ṽ

2
S
� 2(�1 + �3)(̃ṽ

2
1 + ṽ22)ṽ2 + 3�4(ṽ

2
2 � ṽ21)ṽS

i
(2.21c)

The two equations (2.21b) and (2.21c) are not automatically consistent.
For the charged sector, the mass-squared matrix is given by

M2
11 =

1
2 [�5ṽ

2
S
+ 2�1(ṽ

2
1 + ṽ22) + 2�4ṽ2ṽS + 2�3(ṽ

2
1 � ṽ22) + 2µ2

1],

M2
22 =

1
2 [�5ṽ

2
S
+ 2�1(ṽ

2
1 + ṽ22)� 2�4ṽ2ṽS � 2�3(ṽ

2
1 � ṽ22) + 2µ2

1],

M2
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= 1
2 [2�8ṽ

2
S
+ �5(ṽ

2
1 + ṽ22) + 2µ2

0],

M2
12 = ṽ1(�4ṽS + 2�3ṽ2),

M2
1S = 1

2 ṽ1(2�4ṽ2 + �6ṽS + 2�7ṽS),

M2
2S = 1

2 [�4(ṽ
2
1 � ṽ22) + �6ṽ2ṽS + 2�7ṽ2ṽS]. (2.22)

For the CP-odd sector, the mass-squared matrix is given by
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1
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2
S
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2
1 + ṽ22)� 4�2ṽ

2
2 + 2�4ṽ2ṽS + 2�3(ṽ

2
1 � ṽ22) + 2µ2

1],
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22 =

1
2 [(�5 + �6 � 2�7)ṽ

2
S
+ 2�1(ṽ

2
1 + ṽ22)� 4�2ṽ

2
1 � 2�4ṽ2ṽS � 2�3(ṽ

2
1 � ṽ22) + 2µ2

1],

M2
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2 [2�8ṽ

2
S
+ (�5 + �6 � 2�7)(ṽ

2
1 + ṽ22) + 2µ2

0],

M2
12 = ṽ1[2(�2 + �3)ṽ2 + �4ṽS],
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1S = ṽ1(�4ṽ2 + 2�7ṽS),
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no symmetry under the interchange of 

however there is symmetry for  

equivalent doublet representation

Das and Dey

h1 and h2

h1 ! �h1

2 The scalar potential

S3 is the permutation group involving three objects, {�a,�b,�c}. The three dimensional representation of S3 is
not an irreducible one simply because we can easily construct a linear combination of the elements, �a+�b+�c,
which remains unaltered under the permutation of the indices. We choose to decompose the three dimensional
representation into a singlet and doublet as follows :

1 : �3 =
1p
3
(�a + �b + �c) , (1a)

2 :

✓
�1

�2

◆
=

 
1p
2
(�a � �b)

1p
6
(�a + �b � 2�c)

!
. (1b)

The elements of S3 for this particular doublet representation are given by :
✓

cos ✓ sin ✓
� sin ✓ cos ✓

◆
,

✓
cos ✓ sin ✓
sin ✓ � cos ✓

◆
, for

✓
✓ = 0,±2⇡

3

◆
. (2)

The most general renormalizable potential invariant under S3 can be written in terms of �3, �1 and �2 as
follows [27–31]:

V (�) = V2(�) + V4(�) , (3a)

where, V2(�) = µ2
1(�

†
1�1 + �†

2�2) + µ2
3�

†
3�3 , (3b)

V4(�) = �1(�
†
1�1 + �†

2�2)
2 + �2(�

†
1�2 � �†

2�1)
2 + �3

n
(�†

1�2 + �†
2�1)

2 + (�†
1�1 � �†

2�2)
2
o

+�4

n
(�†

3�1)(�
†
1�2 + �†

2�1) + (�†
3�2)(�

†
1�1 � �†

2�2) + h.c.
o

+�5(�
†
3�3)(�

†
1�1 + �†

2�2) + �6

n
(�†

3�1)(�
†
1�3) + (�†

3�2)(�
†
2�3)

o

+�7

n
(�†

3�1)(�
†
3�1) + (�†

3�2)(�
†
3�2) + h.c.

o
+ �8(�

†
3�3)

2 . (3c)

In general �4 and �7 can be complex, but we assume them to be real so that CP symmetry is not broken
explicitly. For the stability of the vacuum in the asymptotic limit we impose the requirement that there should
be no direction in the field space along which the potential becomes infinitely negative. The necessary and
su�cient conditions for this is well known in the context of two Higgs-doublet models (2HDMs) [32]. For the
potential of Eq. (3), a 2HDM equivalent situation arise if one of the doublets is made identically zero. Then
it is quite straightforward to find the following necessary conditions for the global stability in the asymptotic
limit :

�1 > 0 , (4a)

�8 > 0 , (4b)

�1 + �3 > 0 , (4c)

2�1 + (�3 � �2) > |�2 + �3| , (4d)

�5 + 2
p

�8(�1 + �3) > 0 , (4e)

�5 + �6 + 2
p

�8(�1 + �3) > 2|�7| , (4f)

�1 + �3 + �5 + �6 + 2�7 + �8 > 2|�4| . (4g)

To avoid confusion, we wish to mention that an equivalent doublet representation,
✓
�1

�2

◆
=

1p
2

✓
i 1
�i 1

◆✓
�1

�2

◆
, (5)

has also been used in the literature. In terms of this new doublet, the quartic part of the scalar potential is
written as [33–35]:

V4 =
�1

2

⇣
�†
1�1 + �†

2�2

⌘2
+

�2

2

⇣
�†
1�1 � �†

2�2

⌘2
+ �3(�

†
1�2)(�

†
2�1) +

�4

2
(�†

3�3)
2

2

✓
h1

h2

◆

now there is symmetry for 

In the special case 

�1 $ �2

�4 = 0 the potential has SO(2) symmetry: 

m2
1+ = �

⇢
2�3 sin

2 � +
1

2
(�6 + 2�7) cos

2 �

�
v2 , (13b)

with, tan� =

p
v21 + v22
v3

. (13c)

The second charged Higgs (H+
2 ) along with the massless Goldstone (!+), which will appear as the longitudinal

component of the W -boson, can be obtained by diagonalizing the remaining 2⇥ 2 block :
✓
H+

2

!+

◆
=

✓
cos� � sin�
sin� cos�

◆✓
w0+

2

w+
3

◆
with, w0+

2 = sin � w+
1 + cos � w+

2 . (14)

The mass of the second charged Higgs is given by :

m2
2+ = �1

2
(�6 + 2�7)v

2 . (15)

Similar considerations for the pseudoscalar part gives :

XM2
P
XT =

0

@
1
2m

2
A1 0 0
0 �v23�7 v3

p
v21 + v22�7

0 v3
p
v21 + v22�7 �(v21 + v22)�7

1

A , (16)

where, the pseudoscalar state (A1) with mass eigenvalue mA1 is defined as :

A1 = cos � z1 � sin � z2 , (17a)

m2
A1 = �2

�
(�2 + �3) sin

2 � + �7 cos
2 �

 
v2 , (17b)

where, tan� has already been defined in Eq. (13c). Similar to the charged part, here also the second pseudoscalar
(A2) along with the massless Goldstone (⇣) can be obtained as follows :

✓
A2

⇣

◆
=

✓
cos� � sin�
sin� cos�

◆✓
z02
z3

◆
with, z02 = sin � z1 + cos � z2 , (18a)

and, m2
A2 = �2�7v

2 . (18b)

Finally, for the CP-even part we have :

XM2
S
XT =

0

@
0 0 0
0 A0

S
�B0

S

0 �B0
S

C 0
S

1

A , (19a)

where, A0
S

= (�1 + �3)(v
2
1 + v22) , (19b)

B0
S

= �1

2
v3

q
v21 + v22(�5 + �6 + 2�7) , (19c)

C 0
S

= �8v
2
3 . (19d)

The massless state (h0), as also noted in [36], is given by :

h0 = cos � h1 � sin � h2 . (20)

But we wish to add here that the appearance of a massless scalar is not surprising. One can easily verify that
the potential of Eq. (3) has the following SO(2) symmetry for �4 = 0 :

✓
�0
1

�0
2

◆
=

✓
cos ✓ � sin ✓
sin ✓ cos ✓

◆✓
�1

�2

◆
(21)

Since SO(2) is a continuous symmetry isomorphic to U(1), a massless physical state is expected. Other two
physical scalars are obtained as follows :

✓
h
H

◆
=

✓
cos↵ � sin↵
sin↵ cos↵

◆✓
h0
2

h3

◆
with, h0

2 = sin � h1 + cos � h2 , (22a)
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h2

◆✓
h0
1

h0
2

◆
= Danger: massless scalar!
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8 Spontaneous CP violation

The S3-symmetric potential offers a very rich phenomenology, and can accommodate a
variety of physical situations, as outlined in sections 4 and 5, where we classified the
different vacua.

We assumed, for simplicity, that all parameters of the potential are real. Therefore our
discussion is done in the framework of explicit CP conservation. This raises the question
of whether or not CP can be violated spontaneously. For that purpose we can inspect the
list of complex solutions presented in Table 2. CP can only be spontaneously violated if
the Lagrangian is invariant under CP and if at the same time there is no transformation
that can be identified with a CP transformation, leaving both the Lagrangian and the
vacuum invariant. The idea of spontaneous CP violation was first proposed by T. D.
Lee [3] in the context of two Higgs doublets. In the context of the SM, with a single Higgs
doublet, a CP transformation of the scalar doublet amounts to its complex conjugation
and the scalar sector cannot violate CP. In models with several Higgs doublets complex
conjugation may be combined with a unitary transformation acting on the set of doublets,
since this transformation leaves the kinetic energy term of the Lagrangian invariant. In
this case the most general CP transformation is given by:

Φi
CP−→ UijΦ

∗
j (8.1)

with U an arbitrary unitary matrix4. This equation together with the assumption that
the vacuum is CP invariant:

CP|0〉 = |0〉 (8.2)

leads to the following condition [32]:

Uij〈0|Φj|0〉∗ = 〈0|Φi|0〉 (8.3)

implying that there is spontaneous CP violation if none of the CP symmetries allowed
by the Lagrangian satisfy this equation. For real vevs this condition is obviously verified.
If the Lagrangian has a discrete symmetry one must take it into consideration before
drawing conclusions. In the discussion that follows we do not take the Yukawa sector into
consideration. We now comment on each one of the cases presented in Table 2 concerning
the possibility of having spontaneous CP violation:

• The case C-I-a is a familiar one that has been discussed long ago in the framework
of the reducible representation [32]. It was pointed out that it has complex vacuum
expectation values with calculable non-trivial phases, assuming geometrical values,
entirely determined by the symmetry of the scalar potential. These phases cannot
be rotated away and yet they do not lead to spontaneous CP violation, since there
is a matrix U satisfying the constraint of Eq. (8.3), namely:

U =





1 0 0
0 0 1
0 1 0



 , (8.4)

4Some authors refer to this transformation as a “generalized” CP transformation. This is somewhat
misleading since it suggests that there is also a “non-generalized” CP transformation.
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Next we present a few illustrative examples. Important tool:
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8 Spontaneous CP violation

The S3-symmetric potential offers a very rich phenomenology, and can accommodate a
variety of physical situations, as outlined in sections 4 and 5, where we classified the
different vacua.

We assumed, for simplicity, that all parameters of the potential are real. Therefore our
discussion is done in the framework of explicit CP conservation. This raises the question
of whether or not CP can be violated spontaneously. For that purpose we can inspect the
list of complex solutions presented in Table 2. CP can only be spontaneously violated if
the Lagrangian is invariant under CP and if at the same time there is no transformation
that can be identified with a CP transformation, leaving both the Lagrangian and the
vacuum invariant. The idea of spontaneous CP violation was first proposed by T. D.
Lee [3] in the context of two Higgs doublets. In the context of the SM, with a single Higgs
doublet, a CP transformation of the scalar doublet amounts to its complex conjugation
and the scalar sector cannot violate CP. In models with several Higgs doublets complex
conjugation may be combined with a unitary transformation acting on the set of doublets,
since this transformation leaves the kinetic energy term of the Lagrangian invariant. In
this case the most general CP transformation is given by:

Φi
CP−→ UijΦ

∗
j (8.1)

with U an arbitrary unitary matrix4. This equation together with the assumption that
the vacuum is CP invariant:

CP|0〉 = |0〉 (8.2)

leads to the following condition [32]:

Uij〈0|Φj|0〉∗ = 〈0|Φi|0〉 (8.3)

implying that there is spontaneous CP violation if none of the CP symmetries allowed
by the Lagrangian satisfy this equation. For real vevs this condition is obviously verified.
If the Lagrangian has a discrete symmetry one must take it into consideration before
drawing conclusions. In the discussion that follows we do not take the Yukawa sector into
consideration. We now comment on each one of the cases presented in Table 2 concerning
the possibility of having spontaneous CP violation:

• The case C-I-a is a familiar one that has been discussed long ago in the framework
of the reducible representation [32]. It was pointed out that it has complex vacuum
expectation values with calculable non-trivial phases, assuming geometrical values,
entirely determined by the symmetry of the scalar potential. These phases cannot
be rotated away and yet they do not lead to spontaneous CP violation, since there
is a matrix U satisfying the constraint of Eq. (8.3), namely:

U =





1 0 0
0 0 1
0 1 0



 , (8.4)

4Some authors refer to this transformation as a “generalized” CP transformation. This is somewhat
misleading since it suggests that there is also a “non-generalized” CP transformation.
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The S3-symmetric potential offers a very rich phenomenology, and can accommodate a
variety of physical situations, as outlined in sections 4 and 5, where we classified the
different vacua.

We assumed, for simplicity, that all parameters of the potential are real. Therefore our
discussion is done in the framework of explicit CP conservation. This raises the question
of whether or not CP can be violated spontaneously. For that purpose we can inspect the
list of complex solutions presented in Table 2. CP can only be spontaneously violated if
the Lagrangian is invariant under CP and if at the same time there is no transformation
that can be identified with a CP transformation, leaving both the Lagrangian and the
vacuum invariant. The idea of spontaneous CP violation was first proposed by T. D.
Lee [3] in the context of two Higgs doublets. In the context of the SM, with a single Higgs
doublet, a CP transformation of the scalar doublet amounts to its complex conjugation
and the scalar sector cannot violate CP. In models with several Higgs doublets complex
conjugation may be combined with a unitary transformation acting on the set of doublets,
since this transformation leaves the kinetic energy term of the Lagrangian invariant. In
this case the most general CP transformation is given by:
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j (8.1)

with U an arbitrary unitary matrix4. This equation together with the assumption that
the vacuum is CP invariant:

CP|0〉 = |0〉 (8.2)

leads to the following condition [32]:

Uij〈0|Φj|0〉∗ = 〈0|Φi|0〉 (8.3)

implying that there is spontaneous CP violation if none of the CP symmetries allowed
by the Lagrangian satisfy this equation. For real vevs this condition is obviously verified.
If the Lagrangian has a discrete symmetry one must take it into consideration before
drawing conclusions. In the discussion that follows we do not take the Yukawa sector into
consideration. We now comment on each one of the cases presented in Table 2 concerning
the possibility of having spontaneous CP violation:

• The case C-I-a is a familiar one that has been discussed long ago in the framework
of the reducible representation [32]. It was pointed out that it has complex vacuum
expectation values with calculable non-trivial phases, assuming geometrical values,
entirely determined by the symmetry of the scalar potential. These phases cannot
be rotated away and yet they do not lead to spontaneous CP violation, since there
is a matrix U satisfying the constraint of Eq. (8.3), namely:

U =
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with U an arbitrary unitary matrix4. This equation together with the assumption that
the vacuum is CP invariant:

CP|0〉 = |0〉 (8.2)

leads to the following condition [32]:

Uij〈0|Φj|0〉∗ = 〈0|Φi|0〉 (8.3)

implying that there is spontaneous CP violation if none of the CP symmetries allowed
by the Lagrangian satisfy this equation. For real vevs this condition is obviously verified.
If the Lagrangian has a discrete symmetry one must take it into consideration before
drawing conclusions. In the discussion that follows we do not take the Yukawa sector into
consideration. We now comment on each one of the cases presented in Table 2 concerning
the possibility of having spontaneous CP violation:

• The case C-I-a is a familiar one that has been discussed long ago in the framework
of the reducible representation [32]. It was pointed out that it has complex vacuum
expectation values with calculable non-trivial phases, assuming geometrical values,
entirely determined by the symmetry of the scalar potential. These phases cannot
be rotated away and yet they do not lead to spontaneous CP violation, since there
is a matrix U satisfying the constraint of Eq. (8.3), namely:

U =


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4Some authors refer to this transformation as a “generalized” CP transformation. This is somewhat
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The S3-symmetric potential offers a very rich phenomenology, and can accommodate a
variety of physical situations, as outlined in sections 4 and 5, where we classified the
different vacua.

We assumed, for simplicity, that all parameters of the potential are real. Therefore our
discussion is done in the framework of explicit CP conservation. This raises the question
of whether or not CP can be violated spontaneously. For that purpose we can inspect the
list of complex solutions presented in Table 2. CP can only be spontaneously violated if
the Lagrangian is invariant under CP and if at the same time there is no transformation
that can be identified with a CP transformation, leaving both the Lagrangian and the
vacuum invariant. The idea of spontaneous CP violation was first proposed by T. D.
Lee [3] in the context of two Higgs doublets. In the context of the SM, with a single Higgs
doublet, a CP transformation of the scalar doublet amounts to its complex conjugation
and the scalar sector cannot violate CP. In models with several Higgs doublets complex
conjugation may be combined with a unitary transformation acting on the set of doublets,
since this transformation leaves the kinetic energy term of the Lagrangian invariant. In
this case the most general CP transformation is given by:

Φi
CP−→ UijΦ

∗
j (8.1)

with U an arbitrary unitary matrix4. This equation together with the assumption that
the vacuum is CP invariant:

CP|0〉 = |0〉 (8.2)

leads to the following condition [32]:

Uij〈0|Φj|0〉∗ = 〈0|Φi|0〉 (8.3)

implying that there is spontaneous CP violation if none of the CP symmetries allowed
by the Lagrangian satisfy this equation. For real vevs this condition is obviously verified.
If the Lagrangian has a discrete symmetry one must take it into consideration before
drawing conclusions. In the discussion that follows we do not take the Yukawa sector into
consideration. We now comment on each one of the cases presented in Table 2 concerning
the possibility of having spontaneous CP violation:

• The case C-I-a is a familiar one that has been discussed long ago in the framework
of the reducible representation [32]. It was pointed out that it has complex vacuum
expectation values with calculable non-trivial phases, assuming geometrical values,
entirely determined by the symmetry of the scalar potential. These phases cannot
be rotated away and yet they do not lead to spontaneous CP violation, since there
is a matrix U satisfying the constraint of Eq. (8.3), namely:

U =





1 0 0
0 0 1
0 1 0



 , (8.4)

4Some authors refer to this transformation as a “generalized” CP transformation. This is somewhat
misleading since it suggests that there is also a “non-generalized” CP transformation.
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£(Uc~) = £(q~), (3) 

then that would be a sure indication that there is spon- 
taneous T violation. 

It  has been emphasized some time ago [ 1 ] that in 
the framework of an SU(2) X U(1) gauge theory with 
scalar doublets, a minimum of two scalar multiplets 
are required in order to obtain spontaneous T viola- 
tion. In the case of  two scalar doublets, the most gen- 
eral Higgs potential can be written 

V(~I, ~2) = VO + [;kl ( ~ q ~ 2 ) ( ~ 2 )  + ~ 2 ( ~  ~ 2 ) ( ~  ~1) 

+ X3(¢I~2)(~t24~2) + h .c . l ,  (4) 

where V 0 denotes the part of the potential without 
any phase dependence. Since we are interested in 
spontaneously broken T invariance, we will always 
assume real coupling constants. For an appropriate 
finite range of  the parameters of  the scalar potential, 
the minimum is at: 

COS 0 = --(4XlOlO2)-l()t202 + X302), (5) 

where (014~010) --- v i =Ioil exp(i0i) and 0 = 02 - 01. 
In eq. (5), the above mentioned dependence of 0 on 
the coupling constants of  the scalar potential is illu- 
strated. In this case, it is easily seen that Tis  sponta- 
neously broken. Indeed in this example, there is no 
matrix satisfying simultaneously eqs. (2), (3). This is 
clearly the simplest example of spontaneous T viola- 
tion. However, the phase 0 is not a "calculable" quan- 
tity. In this note a "calculable phase" refers to a 
phase whose value is independent of  the coupling 
constants of  the scalar potential and therefore stable 
against radiative corrections [5]. In the case of  two 
Higgs doublets, the only way of  having a calculable 
phase in the sense defined above, is by setting X 2 = X 3 
= 0, thus implying 0 = rr/2. Assuming these coupling 
constants equal to zero is natural in the technical 
sense, since then the potential acquires an extra sym- 
metry under which: 

(ki ~ Gi/c~l" , (6) 

where 

o:(; 2) 
This transformation G, needed in order to implement 
a calculable 0 phase, supplies us with the T transfor- 

mation defined in eq. (4) * 1 : 

( l  i([011 ( [o  11 

- 1  !\1o21 exp(irr/2)) = \1o21 exp(irr/2) ) '  (8) 

and therefore implies a T-conserving solution. From 
the previous considerations, we conclude that more 
than two scalar doublets have to be introduced in 
order to achieve both calculability and spontaneous 
T violation * 1. It is also clear that calculability re- 
quires the presence of an extra symmetry in the scalar 
potential. This requirement was necessary in the case 
of  two scalar doublets and it applies a for t ior i  to the 
case of  more than two scalar doublets. 

Let us consider first the case where the scalar po- 
tential is invariant under an abelian group. We will 
show that then calculable phases always correspond 
to T conservation. In the case of  an abelian group, we 
can always choose a special basis where each scalar 
doublet ~j (] = 1 ... . .  n) transforms as a one-dimension- 
al representation of  the group. Then the unitary matrix 

fexp(-2i01) )/  
U = " . .  , (9) 

exp( -2 i0  n 

obviously satisfies eq. (2) and, as we will see, it corre- 
sponds to a symmetry of the potential. In order to 
achieve calculability, each individual term I s of  the 
scalar potential, together with its hermitian conjugate, 
has to be minimized separately with respect to the 
0 i phases. The minimization of  each function .2 
cos [0(Io)], where 0(I~) denotes the linear combina- 
tion of Oi's associated with the fields occurring in I s, 
trivially gives O(Ic~ ) -- 0, 7. In this case the transforma- 
tion (9) corresponds to a symmetry of the scalar po- 
tential and the vacuum is Tinvariant. 

In view of the previous result, we consider next the 
case of  non-abelian symmetries. In the following, we 
will confine ourselves to three Higgs doublets and for 
simplicity we first analyse the case of an S 3 symmetry,  
with the scalar doublets transforming as a three-dimen- 
sional reducible representation. The most  general re- 
normalizable scalar potential can be written [6] as, 

,1 We assume that the scalar potential has no (discrete or 
continuous) accidental symmetries. 

,2 The fact that only functions of this type appear is a conse- 
quence of having assumed real coupling constants. 
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Table 1: Spontaneous CP violation

Vacuum �4 SCPV Vacuum �4 SCPV Vacuum �4 SCPV
C-I-a X no C-III-f,g 0 no C-IV-c X yes
C-III-a X yes C-III-h X yes C-IV-d 0 no
C-III-b 0 no C-III-i X no C-IV-e 0 no
C-III-c 0 no C-IV-a 0 no C-IV-f X yes
C-III-d,e X no C-IV-b 0 no C-V 0 no

C-I-a

h2 $ �h2

�2 $ �3

h1 $ �h1

ej HjZZ, HjHjZ

qj HjH
+
H

�

(w1, w2, wS) = (v, 0, 0) (6)

Uijh0|�j|0i⇤ = h0|�i|0i, (7)

(ŵ1e
i�1 , ŵ2e

i�2 , wS) ! (aei�, ae�i�
, wS) (8)

h1 $ h2 (9)

(ŵ1e
i�1 , ŵ2e

i�2 , 0) ! (aei�1 , aei�2 , 0) (10)

(aei�1 , aei�2 , 0) ! (aei�, ae�i�
, 0) (11)

U =

0

@
0 1 0
1 0 0
0 0 1

1

A (12)

5

J
H
E
P
0
7
(
2
0
2
3
)
0
1
3

confirmed by going through the basis-independent conditions provided in ref. [77]. However,
after applying the conditions for CP-odd invariants to vanish the S3-symmetric potential
gets enlarged to ∆(54). This can be verified by performing a basis rotation




h1
h2
hS



 = 1√
2




1 −i 0

−i 1 0
0 0

√
2








φ1
φ2
φ3



 . (3.5)

In the new basis the scalar potential becomes

V2 = µ2
1(φ†

1φ1 + φ†
2φ2 + φ†

3φ3), (3.6a)

V4 =
1
3 (3λ1 + λ2)

(
φ†
1φ1 + φ†

2φ2 + φ†
3φ3

)2
+ 4λ3

(∣∣∣φ†
1φ2

∣∣∣
2
+
∣∣∣φ†

2φ3
∣∣∣
2
+
∣∣∣φ†

3φ1
∣∣∣
2)

− 4λ2
3

[(
φ†
1φ1

)2
+
(
φ†
2φ2

)2
+
(
φ†
3φ3

)2

−
(
φ†
1φ1

) (
φ†
2φ2

)
−
(
φ†
2φ2

) (
φ†
3φ3

)
−
(
φ†
3φ3

) (
φ†
1φ1

)]

+
{
2iλ7

(
φ†
1φ3

) (
φ†
2φ3

)
+

√
2λ4

(
φ†
2φ1

) (
φ†
3φ1

)
− i

√
2λ4

(
φ†
3φ2

) (
φ†
1φ2

)
+ h.c.

}
,

(3.6b)

where µ2
0 = µ2

1 was imposed as required by eq. (C.21), and where λ7 is real and λ4 is
complex, see eq. (2.8). The potential has the structure of the ∆(54)-symmetric one, as
given by eqs. (52) and (53) in ref. [77].

4 CP violation in different vacua

We classify cases with complex scalar potential based on ref. [61]. We first list cases allowing
for spontaneous CP violation when the scalar potential is real:

• C-III-a (0, ŵ2eiσ2 , ŵS);

• C-III-h (
√
3ŵ2eiσ2 , ±ŵ2eiσ2 , ŵS);

• C-IV-c
(√

1 + 2 cos2 σ2ŵ2, ŵ2eiσ2 , ŵS

)
;

• C-IV-f
(√

2 + cos(σ1−2σ2)
cosσ1

ŵ2eiσ1 , ŵ2eiσ2 , ŵS

)
;

4.1 Real vacua

We consider real vacua with λ7 real and λ4 complex. In this case it is possible to have
explicit CP violation. The minimisation conditions are provided in appendix B.2. In some
cases the minimisation conditions require λI

4 = 0. Therefore, we do not consider such
models, to wit:

• R-II-1a (0, w2, ŵS);

• R-II-1b,c (∓
√
3w2, w2, ŵS);

• R-II-2 (0, w2, 0);

– 8 –
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Introduction DM SM+S 2HDM 3HDM Summary

Z2-symmetric 3HDM with dark CPV

DM is protected by a Z2 symmetry (�, �,+):

�1 ! ��1, �2 ! ��2, SM fields ! SM fields, �3 ! �3

Z2 symmetry respected by the vacuum (0, 0, v):

�1 =

✓
H
+
1

H1+iA1p
2

◆
, �2 =

✓
H
+
2

H2+iA2p
2

◆
, �3 =

 
G
+

v+h+iG
0

p
2

!

Only �3 can couple to fermions �u = �d = �e = �3 and hi = h

�LYukawa = YuQ̄
0
Li�2�

⇤
uu

0
R

+Yd Q̄
0
L�dd

0
R

+Ye L̄
0
L�ee

0
R + h.c.

where PL = (1 � �5)/2 and PR = (1 + �5)/2 are the left and right projection operators.
One, therefore, needs to explicitly calculate

aµ =
m

2
µ

4�2
Re(cL + c

⇤
R). (7)

de =
e me

4�2
Im(cL + c

⇤
R), (8)

where cL and cR are the Wilson coe�cients to be calculated for each loop diagram
separately.

2.1 1-loop contributions

The digram contributing to the aµ and de at 1-loop is shown in Figure 1, where hi are
the neutral scalars in the model with their coupling to electrons and muons represented
by Y

hi
ee and Y

hi
µµ, respectively. The charged scalar mediated version of this diagram is

sub-dominant and is therefore neglected [10]. Note also that in the models we study, we
only extend the scalar sector of SM and do not add any extra vector or fermion fields,
such as right-handed neutrinos.

l
l

l

�

hi

l

Figure 1: The 1-loop diagram mediated by neutral scalars hi contributing to muon
anomalous magnetic moment (l = µ) and to eEDM (l = e).

The contribution from the 1-loop diagrams to aµ and de are

a
1�loop
µ = �

m
2
µ

8�2

n�

i=1

� 1

0

dx

� x

0

dy
y(y � 1) | Y

hi
µµ |2 +(y � 1)Re((Y hi

µµ)2)

m2
µ[y(y � x) + (1 � y)] + m

2
hi

y
(9)

d
1�loop
e =

e me

16�2

n�

i=1

Im((Y hi
ee )2)

� 1

0

dx

� x

0

dy
(y � 1)

m2
e[y(y � x) + (1 � y)] + m

2
hi

y
(10)

where n is the number of the scalars mediating the loop in Fig. 1.

3

No contributions to electric dipole moments (EDMs)

Observable heavy scalar DM V. Keus, [Phys. Rev. D 101, 073007 (2020)]
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Keus



Introduction DM SM+S 2HDM 3HDM Summary

Z2-symmetric 3HDM with dark CPV

DM is protected by a Z2 symmetry (�, �,+):

�1 ! ��1, �2 ! ��2, SM fields ! SM fields, �3 ! �3

Z2 symmetry respected by the vacuum (0, 0, v):

�1 =

✓
H
+
1

H1+iA1p
2

◆
, �2 =

✓
H
+
2

H2+iA2p
2

◆
, �3 =

 
G
+

v+h+iG
0

p
2

!

DM candidate: the lightest CP-mixed state S1,2,3,4 (mixtures of H1,2,A1,2)

Tension released: the extended dark sector allows for annihilations,
co-annihilations and CP-violation!

V. Keus, S. F. King, S. Moretti, D. Sokolowska, et al., [JHEP 12, 014 (2016)]

Venus Keus (DIAS) Exotic DM 13.09.2023 24/32

Keus



Start MHDMs and FCNCs MHDMs with softly broken large discrete groups Summary

FCNC in MHDM

Ivo de Medeiros Varzielas MHDMs and symmetries
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Start MHDMs and FCNCs MHDMs with softly broken large discrete groups Summary

Yukawa alignment from residual symmetries

Ivo de Medeiros Varzielas MHDMs and symmetries

Start MHDMs and FCNCs MHDMs with softly broken large discrete groups Summary

Soft breaking terms

Ivo de Medeiros Varzielas MHDMs and symmetries

Start MHDMs and FCNCs MHDMs with softly broken large discrete groups Summary

Soft breaking terms

Ivo de Medeiros Varzielas MHDMs and symmetries

Start MHDMs and FCNCs MHDMs with softly broken large discrete groups Summary

⌃(36) masses

Ivo de Medeiros Varzielas MHDMs and symmetries

de Medeiros Varzielas

Vev Alignmments

Leads automatically to Higgs Alignment



General expression for neutral Higgs couplings in 2HDM
N. Coyle, D. Rocha, C.W. ‘ 23

or, equivalently

Re(ȳii1 ) =
mi

p
2

v cos �(1 +�i)
, Re(ȳii2 ) = Re(ȳii1 )

�i

tan �
(20)

where

�i =
Re(ȳii2 )

Re(ȳii1 )
tan � (21)

Replacing these expressions in Eq. (17), one obtains a diagonal coupling

LDiag1 = �mi

v


sin(� � ↵)� cos(� � ↵)

(1 +�i)

✓
tan � � �i

tan �

◆�
h
0
1f̄ifi . (22)

From Eq. (21), the last factor �i/ tan � depends only on the ratio of the diagonal cou-

plings. This expression, Eq. (22) is very useful when the couplings h2 are generated as a
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�̃i =
1

�i

(23)

Then, the above expression can be simply rewritten as

LDiag1 = �mi

v


sin(� � ↵) +

cos(� � ↵)

(1 + �̃i)

✓
1

tan �
� �̃i tan �

◆�
h
0
1f̄ifi . (24)

Again, the last term depends only on the ratio of the couplings but in the opposite order,

becoming small when the y1 elements are small. For �̃i = 0 one recovers the expression for

type I 2HDM, in which all fermions couple to �2 (y1 = 0, see Eq. (1)).
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for the coupling of the neutral Higgs h0
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!
h
0
1f̄

i

L
f
j

R
+ h.c.

#
(25)

or, equivalently,
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becoming small when the y1 elements are small. For �̃i = 0 one recovers the expression for

type I 2HDM, in which all fermions couple to �2 (y1 = 0, see Eq. (1)).

The expressions given in Eq. (17), together with the relations given in Eq. (18), and the

diagonal couplings, Eq. (22), or equivalently Eq. (24), lead to the most general expression

for the coupling of the neutral Higgs h0
1 in the case of negligible CP-violation contributions

to the neutral Higgs mass matrix. The full expression then becomes

Lh
0
1
= �mi

v


sin(� � ↵)� cos(� � ↵)

(1 +�i)

✓
tan � � �i

tan �

◆�
h
0
1f̄ifi

+

" 
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Again, the last term depends only on the ratio of the couplings but in the opposite order,

becoming small when the y1 elements are small. For �̃i = 0 one recovers the expression for

type I 2HDM, in which all fermions couple to �2 (y1 = 0, see Eq. (1)).

The expressions given in Eq. (17), together with the relations given in Eq. (18), and the
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for the coupling of the neutral Higgs h0
1 in the case of negligible CP-violation contributions

to the neutral Higgs mass matrix. The full expression then becomes
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There several advantages of working on this basis. First of all, only one of the Higgs doublets,

H1 acquires a vacuum expectation value. Second, the charged Higgs boson components are

clearly identified, with the charged Goldstone belonging to the H1 field and the physical

charged Higgs boson being in H2. Third, fermion masses will come from the coupling to H1,

implying that once we diagonalize the mass matrix, the coupling to the neutral component

of H1 will be diagonalized as in the SM, what allows for a clear definition of the flavor

couplings, as we will see below.

The fields H1 and H2 have therefore components

H1 =

0

@ G
+

1p
2
(v +H

0
1 + iG

0)

1

A , H2 =

0

@ H
+

1p
2
(H0

2 + iA
0)

1

A , (4)

where H
0
1 behaves in a Standard-Model like way. In this basis, the Lagrangian may be

rewritten as

L = f̄
L

i
(hij

1 H1 + h
ij

2 H2)f
j

R
+ h.c. (5)

where

h1 = y1 cos � + y2 sin �

h2 = �y1 sin � + y2 cos �. (6)

The mass matrix will be given by

Mij = h
ij

1

vp
2

(7)

and can be diagonalized by

Md = ULMU
†
R
. (8)

We shall now define the couplings h̄i and ȳi as the form that this Yukawa matrices take in

the fermion mass eigenststate basis, namely

h̄i = ULhiU
†
R

ȳi = ULyiU
†
R
. (9)

Observe that

h̄
ij

1 =
mi

p
2

v
�ij (10)

is diagonal, while h̄2 is an arbitrary complex matrix in this basis.
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Higgs FCNC demands flavor as well as Higgs misalignment !



IV. COUPLINGS OF h02

One can work out similar expressions for the couplings of the non-standard CP-even

Higgs boson h
0
2. In the Higgs basis, one gets

Lh
0
2
=

"
�
mi

v
�ij cos(� � ↵) +

Re(h̄ij

2 )
p
2

sin(� � ↵) + i
Im(h̄ij

2 )
p
2

sin(� � ↵)

#
h
0
2f̄

i

L
f
j

R
+ h.c. (27)

As before, it is useful to write this expression in terms of the original couplings y1 and y2,

Eq. (1). Using Eq. (16), one obtains

Lh
0
2
=
h
�
mi

v
�
ij (cos(� � ↵) + tan � sin(� � ↵))

+
Re(ȳij2 )
p
2 cos �

sin(� � ↵) + i
Im(ȳij2 )
p
2 cos �

sin(� � ↵)

#
h
0
2f̄

i

L
f
j

R
+ h.c. (28)

The main di↵erence with respect to h
0
1 is that the couplings, including the flavor and CP

violating ones, are enhanced at large values of tan � close to the alignment limit cos(��↵) '

0. As before, one can write the CP-even flavor conserving diagonal terms in a more concise

way, by using the �i expression, Eq. (21). One gets

LDiag2 = �
mi

v
�
ij


cos(� � ↵) +

✓
tan �

1 +�i

�
�i

tan �(1 +�i)

◆
sin(� � ↵)

�
h
0
2f̄ifi (29)

The above expression can also be written in terms of �̃i, in a similar way as we did for the

case of h0
1. In this case,

LDiag2 = �
mi

v
�
ij

"
cos(� � ↵)�

 
1

tan �(1 + �̃i)
�

�̃i tan �

(1 + �̃i)

!
sin(� � ↵)

#
h
0
2f̄ifi (30)

One gets the usual result that in the alignment limit the couplings of h0
2 are enhanced by

tan � factors for the case that the fermion only couples to �1 and it is suppressed by tan �

factors when it only couples to �2. Let us stress again that the lass factors in Eq. (29) and

(30) depend only on the ratios of couplings and are not linearly enhanced or suppressed for

large values of tan �.

Eq. (28), together with Eq (18), and the diagonal couplings, Eq. (29), or equivalently

Eq. (30), lead to the most general expression for the coupling of the neutral Higgs h0
2 in the

case of negligible CP-violation contributions to the neutral Higgs mass matrix, namely
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L
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R
+ h.c.

#
(31)
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or equivalently
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#
(32)

V. COUPLINGS OF A0

In the Higgs basis, the CP-odd Higgs A
0 as well as the charged Higgs, belong to the

doublet H2. Therefore, its coupling is given by

LA0 =

 
Im(h̄ij

2 )
p
2

� i
Re(h̄ij

2 )
p
2

!
A

0
f̄
i

L
f
j

R
+ h.c. (33)

One can now use Eq. (16) to write this expression in terms of mi and the original couplings

y2. We obtain

LA0 =

 
Im(ȳij2 )
p
2 cos �

+ i
mi

v
�
ij tan � � i

Re(ȳij2 )
p
2 cos �

!
A

0
f̄
i

L
f
j

R
+ h.c. (34)

We can concentrate now on the diagonal couplings, as we did with h
0
1 and h

0
2. Using Eq. (20)

we get the CP-odd diagonal couplings of A0, which are given by

LDiagA = i
mi

v(1 +�i

✓
tan � �

�i

tan �

◆
A

0
f̄i�5fi (35)

As before, one can write an equivalent expression in terms of �̃i that is more appropriate

for the case that the couplings given by the ȳ1 components are small compared to the ȳ2

ones, namely

LDiagA = i
mi

v(1 + �̃i)

✓
�

1

tan �
+ �̃i tan �

◆
A

0
f̄i�5fi (36)

The full interaction Lagrangian for A may now be written as
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#
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or, equivalently

LA0 = i
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v(1 + �̃i)
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#
(38)
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Non-SM Higgs Coupling

Higgs alignment, of course, does not ensure flavor alignment in 

the non-standard Higgs sector
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We will keep in mind that the LHC  favors and SM-like Higgs boson
LHC constraints on Higgs alignment in the 2HDM

Regions excluded by fits to the measured rates of the productions and decay of the Higgs

boson (assumed to be h of the 2HDM). Contours at 95% CL. The observed best-fit values

for cos(β −α) are −0.006 for the Type-I 2HDM and 0.002 for the Type-II 2HDM. Taken

from ATLAS Collaboration, ATLAS-CONF-2021-053 (2 November 2021).

LHC constraints on Higgs alignment in the 2HDM 

Regions excluded by fits to the measured rates of the productions and decay of the Higgs boson 
(assumed to be h of the 2HDM). Contours at 95% CL. ATLAS-CONF-2021-053 

<latexit sha1_base64="VbLNJYID1dP75bchpQld2jQMfd8=">AAACKHicbZBfaxNBFMVnq9Waqk310ZfBUKgUl9k/pOmDWPDFxwrmD2RDuDuZTYbMzi4zd4Ww5OP0pV+lLyKK9NVP4mQT0IoHBg7n3MvM/NJSSYuM3Xl7Dx7uP3p88KR1+PTZ86P28YuBLSrDRZ8XqjCjFKxQUos+SlRiVBoBearEMF1+2PTDL8JYWejPuCrFJIe5lpnkgC6att8vpyl9RxMr9WmSCoS3CahyAW/oGU0yA7xOeGHvV+s6QdBNtJ62O8zvsphFMWU+Cy/CuOtMEF1EvZgGPmvUITtdTdvfklnBq1xo5AqsHQesxEkNBiVXYt1KKitK4EuYi7GzGnJhJ3Xz0TU9ccmMZoVxRyNt0r83asitXeWpm8wBF/bfbhP+rxtXmPUmtdRlhULz7UVZpSgWdEONzqQRHNXKGeBGurdSvgCHBx3bVgOhF4fheUQbE0dsa8LoD4RB6AddP/wUdy67OxwH5BV5TU5JQM7JJflIrkifcHJNbsl38sO78b56P7277eiet9t5Se7J+/Ub736mLQ==</latexit>

kb = sin(� � ↵) +
cos(� � ↵)

tan�

<latexit sha1_base64="MuLYkLK2oGX50cNVyOs3JiC1uF8="></latexit>

kb = sin(� � ↵)� cos(� � ↵) tan�



Possible flavor violation in Higgs decays

No hint from CMS, though :
<latexit sha1_base64="55h8F5H8J7jhObSK1p0Wu6TfHB0="></latexit>

BR(H ! ⌧µ, e) < 0.15%



Entanglement Suppression and Alignment

3

In the case of CP-violation, Z6 is complex and the align-
ment condition is really two equations: Re(Z6) = 0 and
Im(Z6) = 0, which eliminate mass mixings of h with the
other two neutral scalars. In any case, when |Z6| ⌧ 1, h
is approximately aligned with the 125 GeV mass eigen-
state, which then becomes SM-like. Moreover, in this
limit Z1v2 is the dominant contribution to the mass of h:
M2

h
⇡ Z1v2 = �2Y1. To summarize, the mass of the SM-

like Higgs boson is controlled by Z1 while the departure
from Higgs alignment is given by Z6.

IV. S-MATRIX AS AN IDENTITY GATE

We now investigate the information-theoretic proper-
ties of 2HDMs, focusing on the S-matrix as an entan-
glement operator in the flavor-space in the scattering
�a�b ! �c�d. In terms of Alice and Bob qubits, we
identify |iiA = �+

i
and |iiB = �0

i
, i = 1, 2, respectively.

The reason for choosing di↵erent electroweak quantum
numbers is that Alice and Bob are then associated with
distinguishable qubits. The S-matrix, being a unitary
operator, then can be thought of as a two-qubit quan-
tum logic gate. Recall that the S-matrix is related to the
transition matrix T :

S = 1 + i T , (7)

where the matrix elements of the T-matrix are given by

h�c�d| iT |�a�bi

= i(2⇡)4�(4)(pa + pb � pc � pc)Mab,cd . (8)

Mab,cd are the scattering amplitudes one typically com-
putes in perturbation theory. Notice that the T-matrix,
and therefore the amplitude itself, is not a unitary oper-
ator and does not admit an interpretation as a quantum
gate. In fact, unitarity of the S-matrix requires

i(T †
� T ) = TT † , (9)

which is nothing but the optical theorem. At the tree-
level, the amplitude does not have an imaginary part and
the T-matrix is Hermitian. This can be seen from the fact
that, if T ⇠ O(�) in perturbation, T †T ⇠ O(�2) is higher
order in the coupling constants and the right-hand side
of Eq. (9) can be ignored; perturbative unitarity of the
S-matrix is fulfilled at O(�). It is worth pointing out
that our approach is di↵erent from some in the litera-
ture which looked at the entanglement property of the
amplitude, instead of the S-matrix [31–33].

We are interested in an S-matrix which suppresses fla-
vor entanglement in 2-to-2 scattering, when turning o↵
the gauge fields. A priori we need to consider the two
equivalent classes associated with the Identity and the
SWAP gates, [1] and [SWAP], respectively [3]. However,
we argue that perturbatively the S-matrix could only be
in [1] and not [SWAP]. This is most clear by looking at

Eq. (7), which implies

S ⇠ [1] , T ⇠ [1] , (10)

S ⇠ [SWAP] , T ⇠ i ([1] + [SWAP]) . (11)

In other words, the S-matrix being in [SWAP] requires
a tree-level cancellation between the T-matrix, which
we compute in perturbation, against the non-interacting
part of the S-matrix. This can only be achieved in
a strongly-coupled theory. Indeed, Refs. [7, 8] found
the SWAP gate is associated with fermionic systems in-
teracting with the largest strength allowed by unitar-
ity – fermions at unitarity – and Schrödinger symme-
try emerges from it. For weakly coupled theories, an
entanglement-suppressing S-matrix can only be in [1] at
finite orders in perturbation theory, except when a cer-
tain class of diagrams is resummed to all orders. An
example is the eikonal limit where the t-channel diagram
dominates in the 2-to-2 scattering and exponentiates, in
which case the S-matrix is manifestly unitary [34].
In what follows we will focus on the flavor subspace of

the amplitude Mab,cd defined in Eq. (8), which is Her-
mitian at the tree-level, and work out the conditions
on the amplitude in order for the S-matrix to be in
[1]. Starting from an initial product state in the fla-
vor space, |�a�bi = (|1i + ✏|2i) ⌦ (�|1i + �|2i), where
||2 + |✏|2 = |�|2 + |�|2 = 1. The outgoing state then has
the flavor structure,

|�c�di = (�ac�bd + iMab,cd)|�ai ⌦ |�bi . (12)

Demanding that the concurrence in Eq. (1) vanishes,
�(|�c�di) = 0, and working to the first order in pertur-
bation by keeping only terms linear in Mab,cd, we obtain

M11,11 +M22,22 = M12,12 +M21,21 , (13)

M11,22 = M12,21 = M21,12 = M22,11 = 0 , (14)

M11,12 = M21,22 , M11,21 = M12,22 . (15)

More details can be found in the Supplemental Materials.
These are the conditions the tree-level amplitude must
satisfy in order for the S-matrix to be in the equivalent
class of the Identity gate, S = [1], which are more gen-
eral than simply requiring Mab,cd = 1. This situation is
markedly di↵erent from that in the np scattering, where
rotational invariance constrains the s-wave S-matrix to
be exactly 1 perturbatively. If we had imposed the SU(2)
flavor symmetry in our 2HDMs, we would have arrived
at the same situation.

V. EMERGENT SO(8) SYMMETRY

In this section we compute the tree-level scattering am-
plitude for �+

a
�0

b
! �+

c
�0

d
in the broken phase. The goal

is to demonstrate that, when the 2-to-2 amplitude min-
imizes entanglement and satisfies Eqs. (13-15), a max-
imal SO(8) symmetry emerges. The 2-to-2 amplitude
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includes four Feynman diagrams shown in Fig. 1: the
4-point contact interaction and the s/t/u-channels me-
diated by cubic vertices in the broken phase. The inter-
nal propagators in Fig. 1 necessitates a rotation into the
mass eigenstates, which in general is di↵erent between
the charged sector and the neutral sector. However, an
advantage of the Higgs basis is that the charged sector is
already diagonal since t� = 0. So we will perform that
calculation in the Higgs basis, H1 = (G+, v/

p
2 +H0

1 )
T

and H2 = (H+, H0
2 ), where G

+ is the charged Goldstone
boson and H+ is the massive charged scalar. In the neu-
tral sector there are four mass eigenstates which we de-
note by (h,H,G0, A): h is the lightest CP-even scalar,
which we assume to be the 125 GeV Higgs boson, H and
A = Im[H0

2 ] are the CP-even and CP-odd heavy scalars,
respectively, and G0 = Im[H0

1 ] is a Goldstone boson. The
rotation matrix R in the neutral sector is given by

0
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h
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c↵̃ c↵̃ s↵̃ s↵̃
�i i 0 0
0 0 �i i

1

CA , (16)

where ↵̃ is the mixing angle in the neutral CP-even sector
in the Higgs basis. It is related to the corresponding
mixing angle ↵ in the general basis by ↵̃ = ↵��. Observe
that the alignment condition corresponds to c↵̃ = 0.

The full amplitude is

iMab,cd = iM0
ab,cd

�
v2

2

X

i

X

r=s,t,u

Mr

i ab,cd Pr,i , (17)
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Z1 Z6 Z6 Z5

Z6 Z3 Z4 Z7
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Z5 Z7 Z7 Z2
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CA , (18)
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i ab,cd = MabiM
⇤
cdi

, Mu

i ab,cd
= MadiM

⇤
cbi

, (19)

M t

i ab,cd
=

X

j,k

RijMajc(RikMdkb,0)
⇤ + h.c. , (20)

where the propagators entering the s/t/u-channel dia-
grams are Pt,i = i/(t � m2

0,i) and Pr,i = i/(r � m2
+,i

),
for r = s, u. Masses in the propagator run through
m0,i = {mh,mH , 0,mA} and m+,i = {mH± , 0}. More-

over, the cubic vertices Mdkb and Mdkb,0 are
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�
. (21)

In order for the S-matrix to minimize entanglement and
be in [1] for arbitrary kinematics, we will demand that
every term in Eq. (17) satisfies the conditions in Eqs. (13-
15). For M0

ab,cd
in Eq. (18), they lead to Z1 +Z2 = 2Z3,

Z4 = Z5 = 0, and Z6 = Z7. These relations greatly
simplify expressions in Mr

i ab,cd. Solving for entangle-
ment suppressing amplitudes in the s/t/u-channel then
requires:

Z1 = Z2 = Z3 ⌘ Z , Zi = 0 , i 6= 1, 2, 3 , (22)

Y1 = Y2 ⌘ Y = �Zv2/2 , Y3 = 0 , (23)

which lead to the scalar potential,

V = Y (H†
1H1 +H†

2H2) +
Z

2
(H†

1H1 +H†
2H2)

2

=
Z

2

0

@
X

i=1,2

|H0
i
|
2 +G+G� +H+H�

�
v2

2

1

A
2

,
(24)

(Complete Feynman rules and full expressions for the
amplitudes can be found in the Supplementary Material.)
The above potential exhibits a maximal SO(8) symmetry
acting on the 8 real components of the two doublets and is
spontaneously broken to SO(7). The spectrum contains
a massive scalar h withm2

h
= �2Y = Zv2, while all other

scalars are exact Goldstone bosons and massless. How-
ever, recall that the SO(8) symmetry is explicitly broken
by Yukawa and gauge couplings (when turned on) and
the Goldstone bosons will either become massive or be
“eaten” by theW and Z bosons. Furthermore, to achieve
a realistic mass spectrum consistent with null searches at
the LHC, SO(8) needs to be broken softly by the mass
terms [19]. Since one of the minimization conditions re-
lates Y3 to Z6, which controls the alignment condition,
one could leave Y3 = 0 and introduce an additional Y2

contribution, which fixes the non-standard Higgs spec-
trum m2

H
= m2

A
= m2

H± = Y2+Zv2/2 (see, for example,
Ref. [35]). The latter clearly shows that, in the SO(8)
symmetric limit, Eq. (23) leads to massless non-standard
Higgs bosons.

4

�+
a

�0
b

�+
c

�0
d

(a)

�+
a

�0
b

�+
c

�0
d

Ps,i

(b)

�+
a

�0
b

�+
c

�0
d

Pt,i

(c)

�+
a

�0
b

�+
c

�0
d

Pu,i

(d)

FIG. 1. Feynman diagrams of �+
a �

0
b ! �+

c �
0
d scattering in the symmetry broken phase.

includes four Feynman diagrams shown in Fig. 1: the
4-point contact interaction and the s/t/u-channels me-
diated by cubic vertices in the broken phase. The inter-
nal propagators in Fig. 1 necessitates a rotation into the
mass eigenstates, which in general is di↵erent between
the charged sector and the neutral sector. However, an
advantage of the Higgs basis is that the charged sector is
already diagonal since t� = 0. So we will perform that
calculation in the Higgs basis, H1 = (G+, v/

p
2 +H0

1 )
T

and H2 = (H+, H0
2 ), where G

+ is the charged Goldstone
boson and H+ is the massive charged scalar. In the neu-
tral sector there are four mass eigenstates which we de-
note by (h,H,G0, A): h is the lightest CP-even scalar,
which we assume to be the 125 GeV Higgs boson, H and
A = Im[H0

2 ] are the CP-even and CP-odd heavy scalars,
respectively, and G0 = Im[H0

1 ] is a Goldstone boson. The
rotation matrix R in the neutral sector is given by
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where ↵̃ is the mixing angle in the neutral CP-even sector
in the Higgs basis. It is related to the corresponding
mixing angle ↵ in the general basis by ↵̃ = ↵��. Observe
that the alignment condition corresponds to c↵̃ = 0.

The full amplitude is
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where the propagators entering the s/t/u-channel dia-
grams are Pt,i = i/(t � m2

0,i) and Pr,i = i/(r � m2
+,i

),
for r = s, u. Masses in the propagator run through
m0,i = {mh,mH , 0,mA} and m+,i = {mH± , 0}. More-

over, the cubic vertices Mdkb and Mdkb,0 are
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In order for the S-matrix to minimize entanglement and
be in [1] for arbitrary kinematics, we will demand that
every term in Eq. (17) satisfies the conditions in Eqs. (13-
15). For M0

ab,cd
in Eq. (18), they lead to Z1 +Z2 = 2Z3,

Z4 = Z5 = 0, and Z6 = Z7. These relations greatly
simplify expressions in Mr

i ab,cd. Solving for entangle-
ment suppressing amplitudes in the s/t/u-channel then
requires:

Z1 = Z2 = Z3 ⌘ Z , Zi = 0 , i 6= 1, 2, 3 , (22)

Y1 = Y2 ⌘ Y = �Zv2/2 , Y3 = 0 , (23)

which lead to the scalar potential,
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(Complete Feynman rules and full expressions for the
amplitudes can be found in the Supplementary Material.)
The above potential exhibits a maximal SO(8) symmetry
acting on the 8 real components of the two doublets and is
spontaneously broken to SO(7). The spectrum contains
a massive scalar h withm2

h
= �2Y = Zv2, while all other

scalars are exact Goldstone bosons and massless. How-
ever, recall that the SO(8) symmetry is explicitly broken
by Yukawa and gauge couplings (when turned on) and
the Goldstone bosons will either become massive or be
“eaten” by theW and Z bosons. Furthermore, to achieve
a realistic mass spectrum consistent with null searches at
the LHC, SO(8) needs to be broken softly by the mass
terms [19]. Since one of the minimization conditions re-
lates Y3 to Z6, which controls the alignment condition,
one could leave Y3 = 0 and introduce an additional Y2

contribution, which fixes the non-standard Higgs spec-
trum m2

H
= m2

A
= m2

H± = Y2+Zv2/2 (see, for example,
Ref. [35]). The latter clearly shows that, in the SO(8)
symmetric limit, Eq. (23) leads to massless non-standard
Higgs bosons.
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includes four Feynman diagrams shown in Fig. 1: the
4-point contact interaction and the s/t/u-channels me-
diated by cubic vertices in the broken phase. The inter-
nal propagators in Fig. 1 necessitates a rotation into the
mass eigenstates, which in general is di↵erent between
the charged sector and the neutral sector. However, an
advantage of the Higgs basis is that the charged sector is
already diagonal since t� = 0. So we will perform that
calculation in the Higgs basis, H1 = (G+, v/

p
2 +H0

1 )
T

and H2 = (H+, H0
2 ), where G

+ is the charged Goldstone
boson and H+ is the massive charged scalar. In the neu-
tral sector there are four mass eigenstates which we de-
note by (h,H,G0, A): h is the lightest CP-even scalar,
which we assume to be the 125 GeV Higgs boson, H and
A = Im[H0

2 ] are the CP-even and CP-odd heavy scalars,
respectively, and G0 = Im[H0

1 ] is a Goldstone boson. The
rotation matrix R in the neutral sector is given by
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where ↵̃ is the mixing angle in the neutral CP-even sector
in the Higgs basis. It is related to the corresponding
mixing angle ↵ in the general basis by ↵̃ = ↵��. Observe
that the alignment condition corresponds to c↵̃ = 0.
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where the propagators entering the s/t/u-channel dia-
grams are Pt,i = i/(t � m2

0,i) and Pr,i = i/(r � m2
+,i

),
for r = s, u. Masses in the propagator run through
m0,i = {mh,mH , 0,mA} and m+,i = {mH± , 0}. More-

over, the cubic vertices Mdkb and Mdkb,0 are
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In order for the S-matrix to minimize entanglement and
be in [1] for arbitrary kinematics, we will demand that
every term in Eq. (17) satisfies the conditions in Eqs. (13-
15). For M0

ab,cd
in Eq. (18), they lead to Z1 +Z2 = 2Z3,

Z4 = Z5 = 0, and Z6 = Z7. These relations greatly
simplify expressions in Mr

i ab,cd. Solving for entangle-
ment suppressing amplitudes in the s/t/u-channel then
requires:

Z1 = Z2 = Z3 ⌘ Z , Zi = 0 , i 6= 1, 2, 3 , (22)

Y1 = Y2 ⌘ Y = �Zv2/2 , Y3 = 0 , (23)

which lead to the scalar potential,
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(Complete Feynman rules and full expressions for the
amplitudes can be found in the Supplementary Material.)
The above potential exhibits a maximal SO(8) symmetry
acting on the 8 real components of the two doublets and is
spontaneously broken to SO(7). The spectrum contains
a massive scalar h withm2

h
= �2Y = Zv2, while all other

scalars are exact Goldstone bosons and massless. How-
ever, recall that the SO(8) symmetry is explicitly broken
by Yukawa and gauge couplings (when turned on) and
the Goldstone bosons will either become massive or be
“eaten” by theW and Z bosons. Furthermore, to achieve
a realistic mass spectrum consistent with null searches at
the LHC, SO(8) needs to be broken softly by the mass
terms [19]. Since one of the minimization conditions re-
lates Y3 to Z6, which controls the alignment condition,
one could leave Y3 = 0 and introduce an additional Y2

contribution, which fixes the non-standard Higgs spec-
trum m2

H
= m2

A
= m2

H± = Y2+Zv2/2 (see, for example,
Ref. [35]). The latter clearly shows that, in the SO(8)
symmetric limit, Eq. (23) leads to massless non-standard
Higgs bosons.

4

�+
a

�0
b

�+
c

�0
d

(a)

�+
a

�0
b

�+
c

�0
d

Ps,i

(b)

�+
a

�0
b

�+
c

�0
d

Pt,i

(c)

�+
a

�0
b

�+
c

�0
d

Pu,i

(d)

FIG. 1. Feynman diagrams of �+
a �

0
b ! �+

c �
0
d scattering in the symmetry broken phase.

includes four Feynman diagrams shown in Fig. 1: the
4-point contact interaction and the s/t/u-channels me-
diated by cubic vertices in the broken phase. The inter-
nal propagators in Fig. 1 necessitates a rotation into the
mass eigenstates, which in general is di↵erent between
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where ↵̃ is the mixing angle in the neutral CP-even sector
in the Higgs basis. It is related to the corresponding
mixing angle ↵ in the general basis by ↵̃ = ↵��. Observe
that the alignment condition corresponds to c↵̃ = 0.
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In order for the S-matrix to minimize entanglement and
be in [1] for arbitrary kinematics, we will demand that
every term in Eq. (17) satisfies the conditions in Eqs. (13-
15). For M0

ab,cd
in Eq. (18), they lead to Z1 +Z2 = 2Z3,

Z4 = Z5 = 0, and Z6 = Z7. These relations greatly
simplify expressions in Mr

i ab,cd. Solving for entangle-
ment suppressing amplitudes in the s/t/u-channel then
requires:

Z1 = Z2 = Z3 ⌘ Z , Zi = 0 , i 6= 1, 2, 3 , (22)

Y1 = Y2 ⌘ Y = �Zv2/2 , Y3 = 0 , (23)

which lead to the scalar potential,

V = Y (H†
1H1 +H†

2H2) +
Z

2
(H†

1H1 +H†
2H2)

2

=
Z

2

0

@
X

i=1,2

|H0
i
|
2 +G+G� +H+H�

�
v2

2

1

A
2

,
(24)

(Complete Feynman rules and full expressions for the
amplitudes can be found in the Supplementary Material.)
The above potential exhibits a maximal SO(8) symmetry
acting on the 8 real components of the two doublets and is
spontaneously broken to SO(7). The spectrum contains
a massive scalar h withm2

h
= �2Y = Zv2, while all other

scalars are exact Goldstone bosons and massless. How-
ever, recall that the SO(8) symmetry is explicitly broken
by Yukawa and gauge couplings (when turned on) and
the Goldstone bosons will either become massive or be
“eaten” by theW and Z bosons. Furthermore, to achieve
a realistic mass spectrum consistent with null searches at
the LHC, SO(8) needs to be broken softly by the mass
terms [19]. Since one of the minimization conditions re-
lates Y3 to Z6, which controls the alignment condition,
one could leave Y3 = 0 and introduce an additional Y2

contribution, which fixes the non-standard Higgs spec-
trum m2

H
= m2

A
= m2

H± = Y2+Zv2/2 (see, for example,
Ref. [35]). The latter clearly shows that, in the SO(8)
symmetric limit, Eq. (23) leads to massless non-standard
Higgs bosons.

We shall perform the calculation in the Higgs basis: such U(2) rotation - no mixing 
between Φ0 and Φ+ - corresponds to a single-qubit operation and does not change 
the entanglement power of the S-Matrix

From the scalar potential the Feyman rules follow

• Tree level contributions
• Gauge coupling turned off
• Yukawa couplings do not 

contribute at this order
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Derivation of Eqs. (13-15): we assume the initial state is

|�ai = |1i+ ✏|2i , |�bi = �|1i+ �|2i , (25)

where ||2 + |✏|2 = |�|2 + |�|2 = 1. The final state is

|�c�di = (�ac�bd + iMab,cd)|�ai ⌦ |�bi = cij |iji

c11 = (1 + iM11,11)� + iM12,11 � + iM21,11 ✏� + iM22,11 ✏� ,

c12 = iM11,12 � + (1 + iM12,12)� + iM21,12 ✏� + iM22,12 ✏� ,

c21 = iM11,21 � + iM12,21 � + (1 + iM21,21) ✏� + iM22,21 ✏� ,

c22 = iM11,22 � + iM12,22 � + iM21,22 ✏� + (1 + iM22,22) ✏� ,

(26)

The concurrence �(|�c�di) = c11c22 � c12c21 reads

�(|�c�di) = i✏��(M11,11 �M12,12 �M21,21 +M22,22)

+ i✏(�2
� �2)(M21,22 �M11,12) + i(2

� ✏2)��(M12,22 �M11,21)

� iM12,21 2�2 � iM21,12 ✏2�2 + iM11,22 2�2 + iM22,11 ✏2�2 +O((Mab,cd)
2) .

(27)

Since , ✏, � and � are arbitrary, setting �(|�c�di) = 0 leads to the conditions in Eqs. (13-15).
In the Higgs basis, the minimization condition leads to the quadratic coe�cients Y1 = �Z1v2/2 and Y3 = �Z6v2/2,

while the mass matrices of the charged and CP even/odd neutral scalars are given by

m2
+ =

✓
0 0
0 Y2 + Z3v2/2

◆
, (28)

m2
even =

✓
Z1v2 Z6v2

Z6v2 Y2 + (Z3 + Z4 + Z5)v2/2

◆
, (29)

m2
odd =

✓
0 0
0 Y2 + (Z3 + Z4 � Z5)v2/2

◆
. (30)

The Feynman rules are given by (time goes from left to right)

H0
1

H+
a

H�
b

=
iv
p
2

✓
Z1 Z6

Z6 Z3

◆

ab

, (31)

H0
2

H+
a

H�
b

=
iv
p
2

✓
Z6 Z5

Z4 Z7

◆

ab

, (32)

H0
1

H0
a

H0
b

=
iv
p
2

✓
Z1 2Z6

2Z6 Z5

◆

ab

, (33)

6

[35] H. Bahl, M. Carena, N. M. Coyle, A. Ireland,
and C. E. M. Wagner, JHEP 03, 165 (2023),
arXiv:2210.00024 [hep-ph].

Supplementary Material for “Entanglement Suppression, Enhanced Symmetry and a

Standard-Model-like Higgs Boson”

Derivation of Eqs. (13-15): we assume the initial state is

|�ai = |1i+ ✏|2i , |�bi = �|1i+ �|2i , (25)

where ||2 + |✏|2 = |�|2 + |�|2 = 1. The final state is

|�c�di = (�ac�bd + iMab,cd)|�ai ⌦ |�bi = cij |iji

c11 = (1 + iM11,11)� + iM12,11 � + iM21,11 ✏� + iM22,11 ✏� ,

c12 = iM11,12 � + (1 + iM12,12)� + iM21,12 ✏� + iM22,12 ✏� ,

c21 = iM11,21 � + iM12,21 � + (1 + iM21,21) ✏� + iM22,21 ✏� ,

c22 = iM11,22 � + iM12,22 � + iM21,22 ✏� + (1 + iM22,22) ✏� ,

(26)

The concurrence �(|�c�di) = c11c22 � c12c21 reads

�(|�c�di) = i✏��(M11,11 �M12,12 �M21,21 +M22,22)

+ i✏(�2
� �2)(M21,22 �M11,12) + i(2

� ✏2)��(M12,22 �M11,21)

� iM12,21 2�2 � iM21,12 ✏2�2 + iM11,22 2�2 + iM22,11 ✏2�2 +O((Mab,cd)
2) .

(27)

Since , ✏, � and � are arbitrary, setting �(|�c�di) = 0 leads to the conditions in Eqs. (13-15).
In the Higgs basis, the minimization condition leads to the quadratic coe�cients Y1 = �Z1v2/2 and Y3 = �Z6v2/2,

while the mass matrices of the charged and CP even/odd neutral scalars are given by

m2
+ =

✓
0 0
0 Y2 + Z3v2/2

◆
, (28)

m2
even =

✓
Z1v2 Z6v2

Z6v2 Y2 + (Z3 + Z4 + Z5)v2/2

◆
, (29)

m2
odd =

✓
0 0
0 Y2 + (Z3 + Z4 � Z5)v2/2

◆
. (30)

The Feynman rules are given by (time goes from left to right)
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H0
2

H0
a

H0
b

=
iv
p
2

✓
Z6 Z3 + Z4

Z3 + Z4 Z7

◆

ab

, (34)

H+
a

H0
b

H+
c

H0
d

= i

0

B@

Z1 Z6 Z6 Z5

Z6 Z3 Z4 Z7

Z6 Z4 Z3 Z7

Z5 Z7 Z7 Z2

1

CA

ab,cd

. (35)

Applying Eqs. (13-15) to the four-point coupling in Eq. (35) we arrive at

Z1 + Z2 = 2Z3 ,

Z4 = Z5 = 0 ,

Z6 = Z7 .

(36)

Using the relations in Eq. (36), the s/u-channel amplitudes are,

Ms

1 =

0

B@

Z2
1 Z1Z6 Z1Z6 0

Z1Z6 Z2
6 Z2

6 0
Z1Z6 Z2

6 Z2
6 0

0 0 0 0

1

CA , (37)

Ms

2 =

0

B@

Z2
6 0 Z3Z6 Z2

6
0 0 0 0

Z3Z6 0 Z2
3 Z3Z6

Z2
6 0 Z3Z6 Z2

6

1

CA , (38)

Mu

1 =

0

B@

Z2
1 Z1Z6 Z1Z6 Z2

6
Z1Z6 Z2

6 0 0
Z1Z6 0 Z2

6 0
Z2
6 0 0 0

1

CA , (39)

Mu

2 =

0

B@

Z2
6 0 Z3Z6 0
0 0 Z2

6 0
Z3Z6 Z2

6 Z2
3 Z3Z6

0 0 Z3Z6 Z2
6

1

CA , (40)

The condition M11,22 = M12,21 = 0 then requires

Z6 = 0 . (41)

The resulting amplitude in the t-channel is:

M t

1 =

0

B@

8Z2
1s

2
↵̃

�2Z1Z3c↵̃s↵̃ 0 0
�2Z1Z3c↵̃s↵̃ 4Z1Z3s2↵̃ 0 0

0 0 8Z1Z3s2↵̃ �2Z2
3c↵̃s↵̃

0 0 �2Z2
3c↵̃s↵̃ 4Z2
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2
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1

CA , (42)
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1

CA , (43)

M t

3 = M t

4 = 0 . (44)
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FIG. 1. Feynman diagrams of �+
a �

0
b ! �+

c �
0
d scattering in the symmetry broken phase.

includes four Feynman diagrams shown in Fig. 1: the
4-point contact interaction and the s/t/u-channels me-
diated by cubic vertices in the broken phase. The inter-
nal propagators in Fig. 1 necessitates a rotation into the
mass eigenstates, which in general is di↵erent between
the charged sector and the neutral sector. However, an
advantage of the Higgs basis is that the charged sector is
already diagonal since t� = 0. So we will perform that
calculation in the Higgs basis, H1 = (G+, v/

p
2 +H0

1 )
T

and H2 = (H+, H0
2 ), where G

+ is the charged Goldstone
boson and H+ is the massive charged scalar. In the neu-
tral sector there are four mass eigenstates which we de-
note by (h,H,G0, A): h is the lightest CP-even scalar,
which we assume to be the 125 GeV Higgs boson, H and
A = Im[H0

2 ] are the CP-even and CP-odd heavy scalars,
respectively, and G0 = Im[H0

1 ] is a Goldstone boson. The
rotation matrix R in the neutral sector is given by

0

B@

h
H
G0

A

1

CA = R

0

B@

H0
1

H0
1
⇤

H0
2

H0
2
⇤

1

CA , R =
1

2

0

B@

�s↵̃ �s↵̃ c↵̃ c↵̃
c↵̃ c↵̃ s↵̃ s↵̃
�i i 0 0
0 0 �i i

1

CA , (16)

where ↵̃ is the mixing angle in the neutral CP-even sector
in the Higgs basis. It is related to the corresponding
mixing angle ↵ in the general basis by ↵̃ = ↵��. Observe
that the alignment condition corresponds to c↵̃ = 0.

The full amplitude is

iMab,cd = iM0
ab,cd

�
v2

2

X

i

X

r=s,t,u

Mr

i ab,cd Pr,i , (17)

M0
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=

0

B@

Z1 Z6 Z6 Z5

Z6 Z3 Z4 Z7

Z6 Z4 Z3 Z7

Z5 Z7 Z7 Z2

1

CA , (18)

Ms

i ab,cd = MabiM
⇤
cdi

, Mu

i ab,cd
= MadiM

⇤
cbi

, (19)

M t

i ab,cd
=

X

j,k

RijMajc(RikMdkb,0)
⇤ + h.c. , (20)

where the propagators entering the s/t/u-channel dia-
grams are Pt,i = i/(t � m2

0,i) and Pr,i = i/(r � m2
+,i

),
for r = s, u. Masses in the propagator run through
m0,i = {mh,mH , 0,mA} and m+,i = {mH± , 0}. More-

over, the cubic vertices Mdkb and Mdkb,0 are

@V

@v

����
v=0

=
1
p
2

X

a,b,c

⇥
MabcH

+
a
H0

b
H�

c

+
1

2
Mabc,0H

0
a
H0

b
H0

c

⇤ + h.c.

�
. (21)

In order for the S-matrix to minimize entanglement and
be in [1] for arbitrary kinematics, we will demand that
every term in Eq. (17) satisfies the conditions in Eqs. (13-
15). For M0

ab,cd
in Eq. (18), they lead to Z1 +Z2 = 2Z3,

Z4 = Z5 = 0, and Z6 = Z7. These relations greatly
simplify expressions in Mr

i ab,cd. Solving for entangle-
ment suppressing amplitudes in the s/t/u-channel then
requires:

Z1 = Z2 = Z3 ⌘ Z , Zi = 0 , i 6= 1, 2, 3 , (22)

Y1 = Y2 ⌘ Y = �Zv2/2 , Y3 = 0 , (23)

which lead to the scalar potential,

V = Y (H†
1H1 +H†

2H2) +
Z

2
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1

A
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,
(24)

(Complete Feynman rules and full expressions for the
amplitudes can be found in the Supplementary Material.)
The above potential exhibits a maximal SO(8) symmetry
acting on the 8 real components of the two doublets and is
spontaneously broken to SO(7). The spectrum contains
a massive scalar h withm2

h
= �2Y = Zv2, while all other

scalars are exact Goldstone bosons and massless. How-
ever, recall that the SO(8) symmetry is explicitly broken
by Yukawa and gauge couplings (when turned on) and
the Goldstone bosons will either become massive or be
“eaten” by theW and Z bosons. Furthermore, to achieve
a realistic mass spectrum consistent with null searches at
the LHC, SO(8) needs to be broken softly by the mass
terms [19]. Since one of the minimization conditions re-
lates Y3 to Z6, which controls the alignment condition,
one could leave Y3 = 0 and introduce an additional Y2

contribution, which fixes the non-standard Higgs spec-
trum m2

H
= m2

A
= m2

H± = Y2+Zv2/2 (see, for example,
Ref. [35]). The latter clearly shows that, in the SO(8)
symmetric limit, Eq. (23) leads to massless non-standard
Higgs bosons.

4-point contact interac-on
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In order for the S-matrix to minimize entanglement and
be in [1] for arbitrary kinematics, we will demand that
every term in Eq. (17) satisfies the conditions in Eqs. (13-
15). For M0

ab,cd
in Eq. (18), they lead to Z1 +Z2 = 2Z3,

Z4 = Z5 = 0, and Z6 = Z7. These relations greatly
simplify expressions in Mr

i ab,cd. Solving for entangle-
ment suppressing amplitudes in the s/t/u-channel then
requires:

Z1 = Z2 = Z3 ⌘ Z , Zi = 0 , i 6= 1, 2, 3 , (22)

Y1 = Y2 ⌘ Y = �Zv2/2 , Y3 = 0 , (23)

which lead to the scalar potential,
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(Complete Feynman rules and full expressions for the
amplitudes can be found in the Supplementary Material.)
The above potential exhibits a maximal SO(8) symmetry
acting on the 8 real components of the two doublets and is
spontaneously broken to SO(7). The spectrum contains
a massive scalar h withm2

h
= �2Y = Zv2, while all other

scalars are exact Goldstone bosons and massless. How-
ever, recall that the SO(8) symmetry is explicitly broken
by Yukawa and gauge couplings (when turned on) and
the Goldstone bosons will either become massive or be
“eaten” by theW and Z bosons. Furthermore, to achieve
a realistic mass spectrum consistent with null searches at
the LHC, SO(8) needs to be broken softly by the mass
terms [19]. Since one of the minimization conditions re-
lates Y3 to Z6, which controls the alignment condition,
one could leave Y3 = 0 and introduce an additional Y2

contribution, which fixes the non-standard Higgs spec-
trum m2

H
= m2

A
= m2

H± = Y2+Zv2/2 (see, for example,
Ref. [35]). The latter clearly shows that, in the SO(8)
symmetric limit, Eq. (23) leads to massless non-standard
Higgs bosons.
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includes four Feynman diagrams shown in Fig. 1: the
4-point contact interaction and the s/t/u-channels me-
diated by cubic vertices in the broken phase. The inter-
nal propagators in Fig. 1 necessitates a rotation into the
mass eigenstates, which in general is di↵erent between
the charged sector and the neutral sector. However, an
advantage of the Higgs basis is that the charged sector is
already diagonal since t� = 0. So we will perform that
calculation in the Higgs basis, H1 = (G+, v/

p
2 +H0

1 )
T

and H2 = (H+, H0
2 ), where G

+ is the charged Goldstone
boson and H+ is the massive charged scalar. In the neu-
tral sector there are four mass eigenstates which we de-
note by (h,H,G0, A): h is the lightest CP-even scalar,
which we assume to be the 125 GeV Higgs boson, H and
A = Im[H0

2 ] are the CP-even and CP-odd heavy scalars,
respectively, and G0 = Im[H0

1 ] is a Goldstone boson. The
rotation matrix R in the neutral sector is given by
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where ↵̃ is the mixing angle in the neutral CP-even sector
in the Higgs basis. It is related to the corresponding
mixing angle ↵ in the general basis by ↵̃ = ↵��. Observe
that the alignment condition corresponds to c↵̃ = 0.

The full amplitude is
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where the propagators entering the s/t/u-channel dia-
grams are Pt,i = i/(t � m2

0,i) and Pr,i = i/(r � m2
+,i

),
for r = s, u. Masses in the propagator run through
m0,i = {mh,mH , 0,mA} and m+,i = {mH± , 0}. More-

over, the cubic vertices Mdkb and Mdkb,0 are
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In order for the S-matrix to minimize entanglement and
be in [1] for arbitrary kinematics, we will demand that
every term in Eq. (17) satisfies the conditions in Eqs. (13-
15). For M0

ab,cd
in Eq. (18), they lead to Z1 +Z2 = 2Z3,

Z4 = Z5 = 0, and Z6 = Z7. These relations greatly
simplify expressions in Mr

i ab,cd. Solving for entangle-
ment suppressing amplitudes in the s/t/u-channel then
requires:

Z1 = Z2 = Z3 ⌘ Z , Zi = 0 , i 6= 1, 2, 3 , (22)

Y1 = Y2 ⌘ Y = �Zv2/2 , Y3 = 0 , (23)

which lead to the scalar potential,
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(Complete Feynman rules and full expressions for the
amplitudes can be found in the Supplementary Material.)
The above potential exhibits a maximal SO(8) symmetry
acting on the 8 real components of the two doublets and is
spontaneously broken to SO(7). The spectrum contains
a massive scalar h withm2

h
= �2Y = Zv2, while all other

scalars are exact Goldstone bosons and massless. How-
ever, recall that the SO(8) symmetry is explicitly broken
by Yukawa and gauge couplings (when turned on) and
the Goldstone bosons will either become massive or be
“eaten” by theW and Z bosons. Furthermore, to achieve
a realistic mass spectrum consistent with null searches at
the LHC, SO(8) needs to be broken softly by the mass
terms [19]. Since one of the minimization conditions re-
lates Y3 to Z6, which controls the alignment condition,
one could leave Y3 = 0 and introduce an additional Y2

contribution, which fixes the non-standard Higgs spec-
trum m2

H
= m2

A
= m2

H± = Y2+Zv2/2 (see, for example,
Ref. [35]). The latter clearly shows that, in the SO(8)
symmetric limit, Eq. (23) leads to massless non-standard
Higgs bosons.
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includes four Feynman diagrams shown in Fig. 1: the
4-point contact interaction and the s/t/u-channels me-
diated by cubic vertices in the broken phase. The inter-
nal propagators in Fig. 1 necessitates a rotation into the
mass eigenstates, which in general is di↵erent between
the charged sector and the neutral sector. However, an
advantage of the Higgs basis is that the charged sector is
already diagonal since t� = 0. So we will perform that
calculation in the Higgs basis, H1 = (G+, v/

p
2 +H0

1 )
T

and H2 = (H+, H0
2 ), where G

+ is the charged Goldstone
boson and H+ is the massive charged scalar. In the neu-
tral sector there are four mass eigenstates which we de-
note by (h,H,G0, A): h is the lightest CP-even scalar,
which we assume to be the 125 GeV Higgs boson, H and
A = Im[H0

2 ] are the CP-even and CP-odd heavy scalars,
respectively, and G0 = Im[H0

1 ] is a Goldstone boson. The
rotation matrix R in the neutral sector is given by
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where ↵̃ is the mixing angle in the neutral CP-even sector
in the Higgs basis. It is related to the corresponding
mixing angle ↵ in the general basis by ↵̃ = ↵��. Observe
that the alignment condition corresponds to c↵̃ = 0.

The full amplitude is
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where the propagators entering the s/t/u-channel dia-
grams are Pt,i = i/(t � m2
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+,i

),
for r = s, u. Masses in the propagator run through
m0,i = {mh,mH , 0,mA} and m+,i = {mH± , 0}. More-

over, the cubic vertices Mdkb and Mdkb,0 are
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In order for the S-matrix to minimize entanglement and
be in [1] for arbitrary kinematics, we will demand that
every term in Eq. (17) satisfies the conditions in Eqs. (13-
15). For M0

ab,cd
in Eq. (18), they lead to Z1 +Z2 = 2Z3,

Z4 = Z5 = 0, and Z6 = Z7. These relations greatly
simplify expressions in Mr

i ab,cd. Solving for entangle-
ment suppressing amplitudes in the s/t/u-channel then
requires:

Z1 = Z2 = Z3 ⌘ Z , Zi = 0 , i 6= 1, 2, 3 , (22)

Y1 = Y2 ⌘ Y = �Zv2/2 , Y3 = 0 , (23)

which lead to the scalar potential,
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(Complete Feynman rules and full expressions for the
amplitudes can be found in the Supplementary Material.)
The above potential exhibits a maximal SO(8) symmetry
acting on the 8 real components of the two doublets and is
spontaneously broken to SO(7). The spectrum contains
a massive scalar h withm2

h
= �2Y = Zv2, while all other

scalars are exact Goldstone bosons and massless. How-
ever, recall that the SO(8) symmetry is explicitly broken
by Yukawa and gauge couplings (when turned on) and
the Goldstone bosons will either become massive or be
“eaten” by theW and Z bosons. Furthermore, to achieve
a realistic mass spectrum consistent with null searches at
the LHC, SO(8) needs to be broken softly by the mass
terms [19]. Since one of the minimization conditions re-
lates Y3 to Z6, which controls the alignment condition,
one could leave Y3 = 0 and introduce an additional Y2

contribution, which fixes the non-standard Higgs spec-
trum m2

H
= m2

A
= m2

H± = Y2+Zv2/2 (see, for example,
Ref. [35]). The latter clearly shows that, in the SO(8)
symmetric limit, Eq. (23) leads to massless non-standard
Higgs bosons.
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includes four Feynman diagrams shown in Fig. 1: the
4-point contact interaction and the s/t/u-channels me-
diated by cubic vertices in the broken phase. The inter-
nal propagators in Fig. 1 necessitates a rotation into the
mass eigenstates, which in general is di↵erent between
the charged sector and the neutral sector. However, an
advantage of the Higgs basis is that the charged sector is
already diagonal since t� = 0. So we will perform that
calculation in the Higgs basis, H1 = (G+, v/

p
2 +H0

1 )
T

and H2 = (H+, H0
2 ), where G

+ is the charged Goldstone
boson and H+ is the massive charged scalar. In the neu-
tral sector there are four mass eigenstates which we de-
note by (h,H,G0, A): h is the lightest CP-even scalar,
which we assume to be the 125 GeV Higgs boson, H and
A = Im[H0

2 ] are the CP-even and CP-odd heavy scalars,
respectively, and G0 = Im[H0

1 ] is a Goldstone boson. The
rotation matrix R in the neutral sector is given by
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where ↵̃ is the mixing angle in the neutral CP-even sector
in the Higgs basis. It is related to the corresponding
mixing angle ↵ in the general basis by ↵̃ = ↵��. Observe
that the alignment condition corresponds to c↵̃ = 0.
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for r = s, u. Masses in the propagator run through
m0,i = {mh,mH , 0,mA} and m+,i = {mH± , 0}. More-
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In order for the S-matrix to minimize entanglement and
be in [1] for arbitrary kinematics, we will demand that
every term in Eq. (17) satisfies the conditions in Eqs. (13-
15). For M0

ab,cd
in Eq. (18), they lead to Z1 +Z2 = 2Z3,

Z4 = Z5 = 0, and Z6 = Z7. These relations greatly
simplify expressions in Mr

i ab,cd. Solving for entangle-
ment suppressing amplitudes in the s/t/u-channel then
requires:

Z1 = Z2 = Z3 ⌘ Z , Zi = 0 , i 6= 1, 2, 3 , (22)

Y1 = Y2 ⌘ Y = �Zv2/2 , Y3 = 0 , (23)

which lead to the scalar potential,
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(Complete Feynman rules and full expressions for the
amplitudes can be found in the Supplementary Material.)
The above potential exhibits a maximal SO(8) symmetry
acting on the 8 real components of the two doublets and is
spontaneously broken to SO(7). The spectrum contains
a massive scalar h withm2

h
= �2Y = Zv2, while all other

scalars are exact Goldstone bosons and massless. How-
ever, recall that the SO(8) symmetry is explicitly broken
by Yukawa and gauge couplings (when turned on) and
the Goldstone bosons will either become massive or be
“eaten” by theW and Z bosons. Furthermore, to achieve
a realistic mass spectrum consistent with null searches at
the LHC, SO(8) needs to be broken softly by the mass
terms [19]. Since one of the minimization conditions re-
lates Y3 to Z6, which controls the alignment condition,
one could leave Y3 = 0 and introduce an additional Y2

contribution, which fixes the non-standard Higgs spec-
trum m2

H
= m2

A
= m2

H± = Y2+Zv2/2 (see, for example,
Ref. [35]). The latter clearly shows that, in the SO(8)
symmetric limit, Eq. (23) leads to massless non-standard
Higgs bosons.

rotation matrix in the neutral sector

Full amplitude:

3

In the case of CP-violation, Z6 is complex and the align-
ment condition is really two equations: Re(Z6) = 0 and
Im(Z6) = 0, which eliminate mass mixings of h with the
other two neutral scalars. In any case, when |Z6| ⌧ 1, h
is approximately aligned with the 125 GeV mass eigen-
state, which then becomes SM-like. Moreover, in this
limit Z1v2 is the dominant contribution to the mass of h:
M2

h
⇡ Z1v2 = �2Y1. To summarize, the mass of the SM-

like Higgs boson is controlled by Z1 while the departure
from Higgs alignment is given by Z6.

IV. S-MATRIX AS AN IDENTITY GATE

We now investigate the information-theoretic proper-
ties of 2HDMs, focusing on the S-matrix as an entan-
glement operator in the flavor-space in the scattering
�a�b ! �c�d. In terms of Alice and Bob qubits, we
identify |iiA = �+

i
and |iiB = �0

i
, i = 1, 2, respectively.

The reason for choosing di↵erent electroweak quantum
numbers is that Alice and Bob are then associated with
distinguishable qubits. The S-matrix, being a unitary
operator, then can be thought of as a two-qubit quan-
tum logic gate. Recall that the S-matrix is related to the
transition matrix T :

S = 1 + i T , (7)

where the matrix elements of the T-matrix are given by

h�c�d| iT |�a�bi

= i(2⇡)4�(4)(pa + pb � pc � pc)Mab,cd . (8)

Mab,cd are the scattering amplitudes one typically com-
putes in perturbation theory. Notice that the T-matrix,
and therefore the amplitude itself, is not a unitary oper-
ator and does not admit an interpretation as a quantum
gate. In fact, unitarity of the S-matrix requires

i(T †
� T ) = TT † , (9)

which is nothing but the optical theorem. At the tree-
level, the amplitude does not have an imaginary part and
the T-matrix is Hermitian. This can be seen from the fact
that, if T ⇠ O(�) in perturbation, T †T ⇠ O(�2) is higher
order in the coupling constants and the right-hand side
of Eq. (9) can be ignored; perturbative unitarity of the
S-matrix is fulfilled at O(�). It is worth pointing out
that our approach is di↵erent from some in the litera-
ture which looked at the entanglement property of the
amplitude, instead of the S-matrix [31–33].

We are interested in an S-matrix which suppresses fla-
vor entanglement in 2-to-2 scattering, when turning o↵
the gauge fields. A priori we need to consider the two
equivalent classes associated with the Identity and the
SWAP gates, [1] and [SWAP], respectively [3]. However,
we argue that perturbatively the S-matrix could only be
in [1] and not [SWAP]. This is most clear by looking at

Eq. (7), which implies

S ⇠ [1] , T ⇠ [1] , (10)

S ⇠ [SWAP] , T ⇠ i ([1] + [SWAP]) . (11)

In other words, the S-matrix being in [SWAP] requires
a tree-level cancellation between the T-matrix, which
we compute in perturbation, against the non-interacting
part of the S-matrix. This can only be achieved in
a strongly-coupled theory. Indeed, Refs. [7, 8] found
the SWAP gate is associated with fermionic systems in-
teracting with the largest strength allowed by unitar-
ity – fermions at unitarity – and Schrödinger symme-
try emerges from it. For weakly coupled theories, an
entanglement-suppressing S-matrix can only be in [1] at
finite orders in perturbation theory, except when a cer-
tain class of diagrams is resummed to all orders. An
example is the eikonal limit where the t-channel diagram
dominates in the 2-to-2 scattering and exponentiates, in
which case the S-matrix is manifestly unitary [34].
In what follows we will focus on the flavor subspace of

the amplitude Mab,cd defined in Eq. (8), which is Her-
mitian at the tree-level, and work out the conditions
on the amplitude in order for the S-matrix to be in
[1]. Starting from an initial product state in the fla-
vor space, |�a�bi = (|1i + ✏|2i) ⌦ (�|1i + �|2i), where
||2 + |✏|2 = |�|2 + |�|2 = 1. The outgoing state then has
the flavor structure,

|�c�di = (�ac�bd + iMab,cd)|�ai ⌦ |�bi . (12)

Demanding that the concurrence in Eq. (1) vanishes,
�(|�c�di) = 0, and working to the first order in pertur-
bation by keeping only terms linear in Mab,cd, we obtain

M11,11 +M22,22 = M12,12 +M21,21 , (13)

M11,22 = M12,21 = M21,12 = M22,11 = 0 , (14)

M11,12 = M21,22 , M11,21 = M12,22 . (15)

More details can be found in the Supplemental Materials.
These are the conditions the tree-level amplitude must
satisfy in order for the S-matrix to be in the equivalent
class of the Identity gate, S = [1], which are more gen-
eral than simply requiring Mab,cd = 1. This situation is
markedly di↵erent from that in the np scattering, where
rotational invariance constrains the s-wave S-matrix to
be exactly 1 perturbatively. If we had imposed the SU(2)
flavor symmetry in our 2HDMs, we would have arrived
at the same situation.

V. EMERGENT SO(8) SYMMETRY

In this section we compute the tree-level scattering am-
plitude for �+

a
�0

b
! �+

c
�0

d
in the broken phase. The goal

is to demonstrate that, when the 2-to-2 amplitude min-
imizes entanglement and satisfies Eqs. (13-15), a max-
imal SO(8) symmetry emerges. The 2-to-2 amplitude

Every term should satisfy the conditions: 
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includes four Feynman diagrams shown in Fig. 1: the
4-point contact interaction and the s/t/u-channels me-
diated by cubic vertices in the broken phase. The inter-
nal propagators in Fig. 1 necessitates a rotation into the
mass eigenstates, which in general is di↵erent between
the charged sector and the neutral sector. However, an
advantage of the Higgs basis is that the charged sector is
already diagonal since t� = 0. So we will perform that
calculation in the Higgs basis, H1 = (G+, v/

p
2 +H0

1 )
T

and H2 = (H+, H0
2 ), where G

+ is the charged Goldstone
boson and H+ is the massive charged scalar. In the neu-
tral sector there are four mass eigenstates which we de-
note by (h,H,G0, A): h is the lightest CP-even scalar,
which we assume to be the 125 GeV Higgs boson, H and
A = Im[H0

2 ] are the CP-even and CP-odd heavy scalars,
respectively, and G0 = Im[H0

1 ] is a Goldstone boson. The
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where ↵̃ is the mixing angle in the neutral CP-even sector
in the Higgs basis. It is related to the corresponding
mixing angle ↵ in the general basis by ↵̃ = ↵��. Observe
that the alignment condition corresponds to c↵̃ = 0.
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where the propagators entering the s/t/u-channel dia-
grams are Pt,i = i/(t � m2
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),
for r = s, u. Masses in the propagator run through
m0,i = {mh,mH , 0,mA} and m+,i = {mH± , 0}. More-

over, the cubic vertices Mdkb and Mdkb,0 are
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In order for the S-matrix to minimize entanglement and
be in [1] for arbitrary kinematics, we will demand that
every term in Eq. (17) satisfies the conditions in Eqs. (13-
15). For M0

ab,cd
in Eq. (18), they lead to Z1 +Z2 = 2Z3,

Z4 = Z5 = 0, and Z6 = Z7. These relations greatly
simplify expressions in Mr

i ab,cd. Solving for entangle-
ment suppressing amplitudes in the s/t/u-channel then
requires:

Z1 = Z2 = Z3 ⌘ Z , Zi = 0 , i 6= 1, 2, 3 , (22)

Y1 = Y2 ⌘ Y = �Zv2/2 , Y3 = 0 , (23)

which lead to the scalar potential,
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(Complete Feynman rules and full expressions for the
amplitudes can be found in the Supplementary Material.)
The above potential exhibits a maximal SO(8) symmetry
acting on the 8 real components of the two doublets and is
spontaneously broken to SO(7). The spectrum contains
a massive scalar h withm2

h
= �2Y = Zv2, while all other

scalars are exact Goldstone bosons and massless. How-
ever, recall that the SO(8) symmetry is explicitly broken
by Yukawa and gauge couplings (when turned on) and
the Goldstone bosons will either become massive or be
“eaten” by theW and Z bosons. Furthermore, to achieve
a realistic mass spectrum consistent with null searches at
the LHC, SO(8) needs to be broken softly by the mass
terms [19]. Since one of the minimization conditions re-
lates Y3 to Z6, which controls the alignment condition,
one could leave Y3 = 0 and introduce an additional Y2

contribution, which fixes the non-standard Higgs spec-
trum m2

H
= m2

A
= m2

H± = Y2+Zv2/2 (see, for example,
Ref. [35]). The latter clearly shows that, in the SO(8)
symmetric limit, Eq. (23) leads to massless non-standard
Higgs bosons.
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includes four Feynman diagrams shown in Fig. 1: the
4-point contact interaction and the s/t/u-channels me-
diated by cubic vertices in the broken phase. The inter-
nal propagators in Fig. 1 necessitates a rotation into the
mass eigenstates, which in general is di↵erent between
the charged sector and the neutral sector. However, an
advantage of the Higgs basis is that the charged sector is
already diagonal since t� = 0. So we will perform that
calculation in the Higgs basis, H1 = (G+, v/
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2 ), where G

+ is the charged Goldstone
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note by (h,H,G0, A): h is the lightest CP-even scalar,
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where ↵̃ is the mixing angle in the neutral CP-even sector
in the Higgs basis. It is related to the corresponding
mixing angle ↵ in the general basis by ↵̃ = ↵��. Observe
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In order for the S-matrix to minimize entanglement and
be in [1] for arbitrary kinematics, we will demand that
every term in Eq. (17) satisfies the conditions in Eqs. (13-
15). For M0

ab,cd
in Eq. (18), they lead to Z1 +Z2 = 2Z3,

Z4 = Z5 = 0, and Z6 = Z7. These relations greatly
simplify expressions in Mr
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(Complete Feynman rules and full expressions for the
amplitudes can be found in the Supplementary Material.)
The above potential exhibits a maximal SO(8) symmetry
acting on the 8 real components of the two doublets and is
spontaneously broken to SO(7). The spectrum contains
a massive scalar h withm2

h
= �2Y = Zv2, while all other

scalars are exact Goldstone bosons and massless. How-
ever, recall that the SO(8) symmetry is explicitly broken
by Yukawa and gauge couplings (when turned on) and
the Goldstone bosons will either become massive or be
“eaten” by theW and Z bosons. Furthermore, to achieve
a realistic mass spectrum consistent with null searches at
the LHC, SO(8) needs to be broken softly by the mass
terms [19]. Since one of the minimization conditions re-
lates Y3 to Z6, which controls the alignment condition,
one could leave Y3 = 0 and introduce an additional Y2

contribution, which fixes the non-standard Higgs spec-
trum m2

H
= m2

A
= m2

H± = Y2+Zv2/2 (see, for example,
Ref. [35]). The latter clearly shows that, in the SO(8)
symmetric limit, Eq. (23) leads to massless non-standard
Higgs bosons.
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includes four Feynman diagrams shown in Fig. 1: the
4-point contact interaction and the s/t/u-channels me-
diated by cubic vertices in the broken phase. The inter-
nal propagators in Fig. 1 necessitates a rotation into the
mass eigenstates, which in general is di↵erent between
the charged sector and the neutral sector. However, an
advantage of the Higgs basis is that the charged sector is
already diagonal since t� = 0. So we will perform that
calculation in the Higgs basis, H1 = (G+, v/
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T

and H2 = (H+, H0
2 ), where G

+ is the charged Goldstone
boson and H+ is the massive charged scalar. In the neu-
tral sector there are four mass eigenstates which we de-
note by (h,H,G0, A): h is the lightest CP-even scalar,
which we assume to be the 125 GeV Higgs boson, H and
A = Im[H0

2 ] are the CP-even and CP-odd heavy scalars,
respectively, and G0 = Im[H0

1 ] is a Goldstone boson. The
rotation matrix R in the neutral sector is given by
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where ↵̃ is the mixing angle in the neutral CP-even sector
in the Higgs basis. It is related to the corresponding
mixing angle ↵ in the general basis by ↵̃ = ↵��. Observe
that the alignment condition corresponds to c↵̃ = 0.
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where the propagators entering the s/t/u-channel dia-
grams are Pt,i = i/(t � m2
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for r = s, u. Masses in the propagator run through
m0,i = {mh,mH , 0,mA} and m+,i = {mH± , 0}. More-

over, the cubic vertices Mdkb and Mdkb,0 are
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In order for the S-matrix to minimize entanglement and
be in [1] for arbitrary kinematics, we will demand that
every term in Eq. (17) satisfies the conditions in Eqs. (13-
15). For M0

ab,cd
in Eq. (18), they lead to Z1 +Z2 = 2Z3,

Z4 = Z5 = 0, and Z6 = Z7. These relations greatly
simplify expressions in Mr

i ab,cd. Solving for entangle-
ment suppressing amplitudes in the s/t/u-channel then
requires:

Z1 = Z2 = Z3 ⌘ Z , Zi = 0 , i 6= 1, 2, 3 , (22)

Y1 = Y2 ⌘ Y = �Zv2/2 , Y3 = 0 , (23)
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(Complete Feynman rules and full expressions for the
amplitudes can be found in the Supplementary Material.)
The above potential exhibits a maximal SO(8) symmetry
acting on the 8 real components of the two doublets and is
spontaneously broken to SO(7). The spectrum contains
a massive scalar h withm2

h
= �2Y = Zv2, while all other

scalars are exact Goldstone bosons and massless. How-
ever, recall that the SO(8) symmetry is explicitly broken
by Yukawa and gauge couplings (when turned on) and
the Goldstone bosons will either become massive or be
“eaten” by theW and Z bosons. Furthermore, to achieve
a realistic mass spectrum consistent with null searches at
the LHC, SO(8) needs to be broken softly by the mass
terms [19]. Since one of the minimization conditions re-
lates Y3 to Z6, which controls the alignment condition,
one could leave Y3 = 0 and introduce an additional Y2

contribution, which fixes the non-standard Higgs spec-
trum m2

H
= m2

A
= m2

H± = Y2+Zv2/2 (see, for example,
Ref. [35]). The latter clearly shows that, in the SO(8)
symmetric limit, Eq. (23) leads to massless non-standard
Higgs bosons.
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includes four Feynman diagrams shown in Fig. 1: the
4-point contact interaction and the s/t/u-channels me-
diated by cubic vertices in the broken phase. The inter-
nal propagators in Fig. 1 necessitates a rotation into the
mass eigenstates, which in general is di↵erent between
the charged sector and the neutral sector. However, an
advantage of the Higgs basis is that the charged sector is
already diagonal since t� = 0. So we will perform that
calculation in the Higgs basis, H1 = (G+, v/
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T

and H2 = (H+, H0
2 ), where G

+ is the charged Goldstone
boson and H+ is the massive charged scalar. In the neu-
tral sector there are four mass eigenstates which we de-
note by (h,H,G0, A): h is the lightest CP-even scalar,
which we assume to be the 125 GeV Higgs boson, H and
A = Im[H0

2 ] are the CP-even and CP-odd heavy scalars,
respectively, and G0 = Im[H0

1 ] is a Goldstone boson. The
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where ↵̃ is the mixing angle in the neutral CP-even sector
in the Higgs basis. It is related to the corresponding
mixing angle ↵ in the general basis by ↵̃ = ↵��. Observe
that the alignment condition corresponds to c↵̃ = 0.
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for r = s, u. Masses in the propagator run through
m0,i = {mh,mH , 0,mA} and m+,i = {mH± , 0}. More-

over, the cubic vertices Mdkb and Mdkb,0 are
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In order for the S-matrix to minimize entanglement and
be in [1] for arbitrary kinematics, we will demand that
every term in Eq. (17) satisfies the conditions in Eqs. (13-
15). For M0

ab,cd
in Eq. (18), they lead to Z1 +Z2 = 2Z3,

Z4 = Z5 = 0, and Z6 = Z7. These relations greatly
simplify expressions in Mr

i ab,cd. Solving for entangle-
ment suppressing amplitudes in the s/t/u-channel then
requires:

Z1 = Z2 = Z3 ⌘ Z , Zi = 0 , i 6= 1, 2, 3 , (22)
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(Complete Feynman rules and full expressions for the
amplitudes can be found in the Supplementary Material.)
The above potential exhibits a maximal SO(8) symmetry
acting on the 8 real components of the two doublets and is
spontaneously broken to SO(7). The spectrum contains
a massive scalar h withm2

h
= �2Y = Zv2, while all other

scalars are exact Goldstone bosons and massless. How-
ever, recall that the SO(8) symmetry is explicitly broken
by Yukawa and gauge couplings (when turned on) and
the Goldstone bosons will either become massive or be
“eaten” by theW and Z bosons. Furthermore, to achieve
a realistic mass spectrum consistent with null searches at
the LHC, SO(8) needs to be broken softly by the mass
terms [19]. Since one of the minimization conditions re-
lates Y3 to Z6, which controls the alignment condition,
one could leave Y3 = 0 and introduce an additional Y2

contribution, which fixes the non-standard Higgs spec-
trum m2

H
= m2

A
= m2

H± = Y2+Zv2/2 (see, for example,
Ref. [35]). The latter clearly shows that, in the SO(8)
symmetric limit, Eq. (23) leads to massless non-standard
Higgs bosons.

This leads to the scalar potential with maximal SO(8) symmetry: 
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nal propagators in Fig. 1 necessitates a rotation into the
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which we assume to be the 125 GeV Higgs boson, H and
A = Im[H0

2 ] are the CP-even and CP-odd heavy scalars,
respectively, and G0 = Im[H0

1 ] is a Goldstone boson. The
rotation matrix R in the neutral sector is given by

0

B@

h
H
G0

A

1

CA = R

0

B@

H0
1

H0
1
⇤

H0
2

H0
2
⇤

1

CA , R =
1

2

0

B@

�s↵̃ �s↵̃ c↵̃ c↵̃
c↵̃ c↵̃ s↵̃ s↵̃
�i i 0 0
0 0 �i i

1

CA , (16)

where ↵̃ is the mixing angle in the neutral CP-even sector
in the Higgs basis. It is related to the corresponding
mixing angle ↵ in the general basis by ↵̃ = ↵��. Observe
that the alignment condition corresponds to c↵̃ = 0.
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In order for the S-matrix to minimize entanglement and
be in [1] for arbitrary kinematics, we will demand that
every term in Eq. (17) satisfies the conditions in Eqs. (13-
15). For M0
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in Eq. (18), they lead to Z1 +Z2 = 2Z3,

Z4 = Z5 = 0, and Z6 = Z7. These relations greatly
simplify expressions in Mr

i ab,cd. Solving for entangle-
ment suppressing amplitudes in the s/t/u-channel then
requires:

Z1 = Z2 = Z3 ⌘ Z , Zi = 0 , i 6= 1, 2, 3 , (22)

Y1 = Y2 ⌘ Y = �Zv2/2 , Y3 = 0 , (23)

which lead to the scalar potential,

V = Y (H†
1H1 +H†

2H2) +
Z

2
(H†

1H1 +H†
2H2)

2

=
Z

2

0

@
X

i=1,2

|H0
i
|
2 +G+G� +H+H�

�
v2

2

1

A
2

,
(24)

(Complete Feynman rules and full expressions for the
amplitudes can be found in the Supplementary Material.)
The above potential exhibits a maximal SO(8) symmetry
acting on the 8 real components of the two doublets and is
spontaneously broken to SO(7). The spectrum contains
a massive scalar h withm2

h
= �2Y = Zv2, while all other

scalars are exact Goldstone bosons and massless. How-
ever, recall that the SO(8) symmetry is explicitly broken
by Yukawa and gauge couplings (when turned on) and
the Goldstone bosons will either become massive or be
“eaten” by theW and Z bosons. Furthermore, to achieve
a realistic mass spectrum consistent with null searches at
the LHC, SO(8) needs to be broken softly by the mass
terms [19]. Since one of the minimization conditions re-
lates Y3 to Z6, which controls the alignment condition,
one could leave Y3 = 0 and introduce an additional Y2

contribution, which fixes the non-standard Higgs spec-
trum m2

H
= m2

A
= m2

H± = Y2+Zv2/2 (see, for example,
Ref. [35]). The latter clearly shows that, in the SO(8)
symmetric limit, Eq. (23) leads to massless non-standard
Higgs bosons.

Acting on the 8 real components 
of the two doublets 
This is then broken spontaneously 
to SO(7) by the Higgs vev

è è Z6 = 0
Alignment

MC, Low, Wagner, Xiao [2307.08112]

Carena
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Higgs pair production in SM/BSM

Methodology and results

The�excess� is� larger�than�PDF�and�scale�uncertainties

Note: We used LO PDFs, obviously with a NLO implementation and
NLO PDFs these uncertainties will be smaller.
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Single vs. di-Higgs (n=1 and n=2)

read off from their values in the heavy quark limit, FQ
4
= 2

3 +O(m�2
Q ) and FQ

⇤ = �
2
3 +O(m�2

Q ).
To understand why this also applies to our coloured scalars we can make use of the Low En-
ergy Theorem as was done in [88, 89] (for squarks) to deduce the sign of Ffq

⇤1
. By this theorem,

Ffq
⇤1

is given by the derivative in mass of the term Ffq
4

/m2
fq

. Since we already know that the

triangle form factor for large scalar masses decreases with the mass, the sign of Ffq
⇤1

will be
negative. Therefore the negative contributions for positive couplings we are observing are due
to the interference terms of the NP form factors, Ffq

4
· Ffq

⇤1
and Ffq

⇤2
· Ffq

⇤1
, but also from the inter-

ference between SM and NP form factors, FQ
⇤ · Ffq

4
, FQ

⇤ · Ffq
⇤2

and FQ
4
· Ffq

⇤1
. The remaining F · F

terms involving at least one NP form factor are positive. As for GQ
⇤ · Gfq

⇤1
, its contribution to

the amplitude is suppressed by (1/m2
Q) · (1/m6

fq
), where the latter factor stems from the Gfq

⇤1

dependence ⇠ 1/m2
fq

multiplied by the coupling factor (gh
fq
)2 ⇠ 1/m4

fq
.
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Figure 18: dhh (blue) and dh (brown) as a function of the averaged coupling for n = 1 (left) and
for n = 2 (right). For these plots only, the minimum coupling used was �4p instead of the
previous bounded-from-below condition.

In Fig. 18 we present dhh (blue) and dh (brown) as a function of the averaged coloured cou-
pling Â lk/n for n = 1 (left) and n = 2 (right). The mass of the coloured scalars has been
chosen equal and set to 1 TeV. We note that with the chosen input values given above we ob-
tain at

p
s = 14 TeV at LO for the SM the single Higgs cross section value sh

SM = 15.76 pb
calculated with HIGLU including the bottom, charm and top quark loops, and the double Higgs
cross section value shh

SM = 16.37 fb calculated with HPAIR including the bottom and top quark
loops. The complementarity between the dependence of dh and dhh w.r.t. the coupling lk is very
clear from the figure. We also note that for n = 1 the dh and dhh values are lines while for n = 2
there is an allowed region for dhh due to the additional dependence on Âk l2

k . This leads to
the observation that, with a single Higgs measurement very close to the SM value constraining
Â lk/n to small values, any significant excess of di-Higgs production would provide a strong
indication that n � 2.

We finalise this section with a plot (Fig. 19) where we show the region of the coloured mass
versus the number of scalars that leads to a maximal deviation of 1% (black) or 0.1% (red)
in dh (left) and to a maximal deviation of 1% in dhh (right) of single, respectively, double Higgs
production from the corresponding SM value, while varying the couplings within their allowed
theoretical bounds. This gives us a feeling on the region where it will not be possible to probe
these models even in the long run. For double Higgs production we indicate the 1% region only,

24

 and  as a function of the averaged coupling  for n=1 and n=2 and for a mass of 1 TeV. For 

this plot we have taken .

δh δhh (∑ λk)/n
−4π ≤ λk ≤ 4π

The complementarity between the dependence of δh and δhh w.r.t. the coupling λk is very clear.  

For n = 1 the δh and δhh values are lines while for n = 2 there is an allowed region for δhh due to the additional 
dependence on ∑k λ2

k.  
If single Higgs is very close to the SM value constraining ∑ λk /n to small values, any significant excess of di-Higgs 

production would provide a strong indication that n ≥ 2.  

R. Santos, Scalars 2023, 14 September 2023

Dark Stops Santos



Gravitational Waves from Cosmological Phase Transitions
First Order Phase Transition

r

ϕ ⟹
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LewickiGravitational waves from a PT

Gravitational wave signals are produced by three main mechanisms:

collisions of bubble walls ⌦col /
⇣
col

↵
↵+1

⌘2
(HR⇤)

2

Kamionkowski ‘93, Konstandin ‘08 ’17, Hindmarsh ‘18 ‘20, Lewicki ‘19 ‘20 ‘22,

sound waves ⌦sw /
⇣
sw

↵
↵+1

⌘2
(HR⇤) (H⌧sw)

Hindmarsh ‘13 ‘15 ‘17 ‘19 ‘21 ‘22, Ellis ‘18 ‘19 ‘20, Jinno ’20 ‘22 Lewicki ‘22

turbulence ⌦turb / ?
Caprini ‘06 ‘09 ‘20, Brandenburg ‘10 ‘12 ‘17, Roper-Pol ‘17 ‘19 ‘21, Ellis ‘19 ‘20

Latent heat



  

Stochastic GW landscape

PT at around T ~ 100 GeV

courtesy of Peera Simakachor

  

Stochastic GW landscape

PT at around T ~ 10 MeV

Konstandin



  

Where do they come from?

The currently favored interpretation is in terms of 
a population of supermassive black hole mergers.
Still, the amplitude is on the low side and the spectrum seems a 
bit steep. 

[NanoGrav 2023]

power law slope

  

Anisotropies

No anisotropies have been found so far. 

The bands denote expectations from SMBH.
The measurements are upper limits.

[NanoGrav 2023]

Konstandin



Best Fits to NANOGrav including SMBH
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Phase Transtion

Cosmic SuperStrings

Domain WallsA
udible

axions

First-orderG
W
s

Scalar-induced
G
W
s

Super Massive Black Holes

John Ellis et al. arXiv: 2308.08546Scenario Best-fit parameters �BIC

GW-driven SMBH binaries pBH = 0.25 5.2

GW + environment-driven pBH = 1

SMBH binaries ↵ = 3.8 (BIC = 57.3)

fref = 12 nHz

Cosmic (super)strings Gµ = 2⇥ 10�12 -4.3

(CS) p = 6.3⇥ 10�3 (2.5)

Phase transition T⇤ = 0.24 GeV -8.9

(PT) �/H = 6.0 (-1.0)

Domain walls Tann = 0.79 GeV -8.8

(DWs) ↵⇤ = 0.026 (-1.5)

Scalar-induced GWs k⇤ = 107.6/Mpc -5.4

(SIGWs) A = 0.08 (2.5)

� = 0.28

First-order GWs log10 r = �16, nt = 2.9 -5.5

(FOGWs) Trh = 0.35GeV (2.4)

“Audible” axions ma = 3.1⇥ 10�11 eV -7.7

fa = 0.87MP (0.7)

For each model, we tabulate their best-fit values, and the Bayesian information criterion

BIC ⌘ �2�`+ k ln 14 relative to that for the purely SMBH model with environmental

e↵ects that we take as the baseline. The quantity in the parentheses in the third column

shows the �BIC for the best-fit combined SMBH+cosmological scenario.

Lewicki



Phenomenological 
constraints

• A complete theory could be one with an intermediate 
brane at the TeV, where the SM is localized, and thus 
providing an explanation of the hierarchy problem


• The comparison with PTA data is the same as it only 
depends on the  braneℬ1

25

S.J. Lee et al., 2109.10938
E. Megias, G. Nardini, M.Q., 2306.17071

Quiros
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Computation of the Gravitational Waves Spectrum

•Relevant quantities for GW spectrum: 
  

- PT strength, resp. released latent heat during PT 
 
 
 
 

- inverse time scale of the PT 
 
- bubble wall velocity vb 

 
  

•Peak frequency and amplitude of acoustic GWs [Hindmarsh eal,’17;Caprini eal,’20] 

M. Mühlleitner (KIT), 14 Sept 2023                                  Scalars 2023, Warsaw                                                               15
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- ∃ points w/ SNR(LISA-3yrs)>10, compatible w/ all relevant theor. and exp. constraints 
 

- all points lead to EW minimum at T=0 (no vacuum trapping) 
  

- all of the LISA-sensitive points (colored points) have SFOEWPT: !c>1

GW from (S)FOEWPT in ‚CP in the Dark’

[Biermann,MM, 
 Santos,Viana]

PRELIMINARY

M. Mühlleitner (KIT), 14 Sept 2023                                  Scalars 2023, Warsaw                                                               25
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BSMPTv3

CP conservation at T=0


CP violation at the phase transition



PBH from 1st OEWPT

PBHs produced by first order EWPT

23

• Properties of PBH produced by EWPT discussed in the SMEFT
[Hashino, Kanemura and Takahashi, PLB 833 (2021)]

We discussed the PBH formation in the naHEFT instead of the SMEFT

MPBH ∼ 10−5M⊙

• PBH mass in the EWPT

[HSC, https://hsc.mtk.nao.ac.jp/ssp/]
[OGLE, http://ogle.astrouw.edu.pl]

• Microlensing observations

Subaru HSC, OGLE

• Future observations: PRIME, Roman

[PRIME: http://www-ir.ess.sci.osaka-u.ac.jp/prime/index.html]
[Roman: https://roman.gsfc.nasa.gov]

 is constrained by  fPBH 10−4

First order EWPT
can be tested by 
PBH observations

Mass of PBH from EWPT is determined by tPBH

PBHs produced by first order EWPT
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• Properties of PBH produced by EWPT discussed in the SMEFT
[Hashino, Kanemura and Takahashi, PLB 833 (2021)]

We discussed the PBH formation in the naHEFT instead of the SMEFT
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 is constrained by  fPBH 10−4

First order EWPT
can be tested by 
PBH observations

Microlensing observations
Subaru HSC
OGLE

Future observations
PRIME 2023~
Roman 2026~

PBHs produced by first order EWPT

23

• Properties of PBH produced by EWPT discussed in the SMEFT
[Hashino, Kanemura and Takahashi, PLB 833 (2021)]

We discussed the PBH formation in the naHEFT instead of the SMEFT

MPBH ∼ 10−5M⊙

• PBH mass in the EWPT

[HSC, https://hsc.mtk.nao.ac.jp/ssp/]
[OGLE, http://ogle.astrouw.edu.pl]

• Microlensing observations

Subaru HSC, OGLE

• Future observations: PRIME, Roman

[PRIME: http://www-ir.ess.sci.osaka-u.ac.jp/prime/index.html]
[Roman: https://roman.gsfc.nasa.gov]

 is constrained by  fPBH 10−4

First order EWPT
can be tested by 
PBH observations

http://ogle.astrouw.edu.pl/
https://hsc.mtk.nao.ac.jp/ssp
/

http://www-ir.ess.sci.osaka-u.ac.jp/prime/index.html 
https://roman.gsfc.nasa.gov

K. Hashino, SK, T. Takahashi, M. Tanaka 2023
K. Hashino, SK, T. Takahashi, 2021

Using far infrared rays:  
sensitive to the microlensing 
from center galaxy

Kanemura



Strongly 1st OPT

• PBH (red)
• GW  (LISA)
• GW (DECIGO)
• Only Δλhhh (HL-LHC, ILC, …)

Parameter region 
Sphaleron decoupling

Bubble nucleation 
completion

Tests of the first order EWPT

24

• hhh coupling measurement

• GW observations

• PBH observations

How we can test the first order EWPT?

[Hashino, Kanemura and Takahashi, PLB 833 (2021)]

[Grojean and Servant, PRD 75 (2007)]

[Kanemura et al.: PRD 70 (2004)]

PBH: Subaru HSC, OGLE, PRIME, Roman
GWs: LISA, DECIGO
Colliders: ILC, HL-LHC

• Current and future observations

First order EWPT can be explored by PBH
observations in addition to GW observations 
and collider experiments

[Kanemura et al., PLB606 (2005)]
[Grojean et al., PRD71 (2005)]

[Hashino, Kanemura, Takahashi and Tanaka, PLB 838 (2023)]

vn /Tn ≥ 1

[Hashino, Kanemura, Takahashi and Tanaka, PLB 838 (2023)]

← Non-decouplingness

Parameter Regions testable by PBH
1HSM

2HDM

3HDM

← D.o.F. of new particles

Scale of new particles →

Non-decouplingness r 
scanned 

0.3 < r < 1

Kanemura
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II. THE EFFECTIVE POTENTIAL AND THE TRILINEAR HIGGS COUPLING

A modification of the nature of the phase transition may be achieved by adding extra

terms to the Higgs potential [36–38]. These may appear through relevant temperature

dependent modifications of the Higgs potential, beyond those associated with the increase

of the e↵ective mass parameter, which lead to the symmetry restoration phenomenon (see,

for example, Refs. [39–52]).

Alternatively, these e↵ects may be already present at zero temperature, through addi-

tional terms in the Higgs potential induced by integrating out new physics at the scales

above the weak scale. In this section we concentrate on the second possibility and illus-

trate the impact of such additional terms on the enhancement of �3 in minimally extended

models. Several simple extensions of the SM are capable of generating the required extra

terms in the potential and have been studied in the literature [6–13, 53–57]. In Sec. III, we

analyze one such example, where a gauge singlet is added to the SM. This can lead to a

relevant modification of the trilinear Higgs coupling with respect to the SM value �SM

3 , even

for values of the singlet mass much larger than the weak scale. In such a case, the singlet

decouples from physics processes at the LHC, allowing a comparison of these results with

the ones obtained in the e↵ective low energy field theory.

In this section, we take a general approach to the e↵ective field theory (EFT), where non-

renormalizable terms are added to the Higgs potential. We investigate whether these can

potentially generate considerably larger cross-sections for gg ! hh process compared to the

standard model. We also explore the possibility of these being compatible with a strongly

first order electroweak phase transition (SFOEPT). Such modifications to �SM

3 would make

for a viable probe to the new physics at the LHC and beyond.

A. Non-renormalizable terms in the low energy Higgs potential

The general formalism in this section is as follows. All the tree-level e↵ective operators

represented by powers of
�
�†�

�
are added to the usual Higgs potential at the temperature

T = 0 as follows

V (�, 0) =
m2

2
(�†�) +

�

4
(�†�)4 +

1X

n=1

c2n+4

2(n+2)⇤2n

�
�†�

�n+2
, (1)

5

where � = v + h and hence the VEV is given as h�i = 246 GeV. This leads to a correction

to the SM value of the triple Higgs coupling as shown in the Appendix A.

�3 =
3m2

h

v

 
1 +

8v2

3m2
h

1X

n=1

n(n+ 1)(n+ 2)c2n+4v2n

2n+2⇤2n

!
. (2)

The non-zero temperature e↵ects are approximately accounted for by adding a thermal

mass correction term to the Higgs potential. This term is generated in the high-T expansion

of the one loop thermal potential. At temperature T, we get m2(T ) = m2 + a0T 2. We

have ignored the small cubic term contributions as well as the logarithmic contributions

as they are suppressed compared to the contributions from higher order terms. Here we

have assumed that the heavy new physics is not present in the EFT at the weak scale and

therefore its contribution is Boltzmann suppressed at the EPT scale. In such a case a0 is a

constant proportional to the square of SM gauge and Yukawa coupling constants. Assuming

all c2n ' 1, the minimum value that ⇤ can achieve is 174 GeV in this formulation, at which

point the convergence of the series is lost for values of � close to its VEV. However, in any

consistent EFT, the cut-o↵ scale ⇤ will be considerably higher than 174 GeV.

Using Eq. (2), we define another quantity � which quantifies the deviations of the trilinear

Higgs coupling with respect to the SM value as

� =
�3

�SM

3

� 1 =
8v2

3m2
h

1X

n=1

n(n+ 1)(n+ 2)c2n+4v2n

2n+2⇤2n
, (3)

where we restrict |c2n+4|< 1.

The values of the enhancement of �3 for a given ⇤ for all potentials satisfying these

conditions are shown in Fig. 1. This maximal possible value, shown in the the upper-most

black (dashed) line in all the panels in Fig. 1, is obtained assuming all c2n = 1 and leads to

a large enhancement even at a relatively large value of ⇤. However, the only condition that

we have imposed on the potential so far is the existence of a local minimum with a second

derivative consistent with the measured Higgs mass mh ' 125 GeV. For this minimum

to represent the physical vacuum of the theory, however, it should be a global one. As

we shall show, the global minimum requirement imposes strong constraints on the possible

enhancement of the triple Higgs coupling.

In our further analysis, we choose not to consider the terms of the order higher than
�
�†�
�5

as they introduce negligible corrections for the cut-o↵s higher than v as shown in Fig. 1. We

Huang, Joglekar, Li, Wagner, arXiv:1512.00068



Conclusions

• Precision Higgs measurement show a good agreement of all couplings with 
respect to the SM expectations, including a single scalar Higgs boson.


• Extra Higgs Doublet/Singlet Models and extensions provide a good effective 
field theory to the study of LHC data.


• Light non-standard Higgs bosons demand alignment in field space of the mass 
eigenstates with the directions acquiring vev’s.  Some flavor alignment also 
required. 


• New scalars may have an impact on the Standard Higgs phenomenology, and 
open the window for a discovery at the LHC.


• They can also be relevant in cosmological phase transitions, which may be 
probed by the search for new physics, the analysis of the Higgs potential, the 
detection of gravitational waves and primordial black holes. 


• Overall, extra scalars provide a plethora of new phenomena that may be 
probed in the near future and remains as one of the most exciting 
phenomena in physics in the years to come. 



Apostolos did it first
Pilaftsis Theorem : No matter what you did,



Apostolos did it first.  And better.
Pilaftsis Theorem : No matter what you did,


