Conformal Extensions of the Standard Model

Manfred Lindner

Hierarchy Problems

- 1) why are scales vastly different
- 2) why do scales remain vastly different under quantum corrections

$SM + embedding at \Lambda$

$$\delta M_H^2 = \frac{\Lambda^2}{32\pi^2 V^2} \left(6M_W^2 + 3M_Z^2 + 3M_H^2 - 12M_t^2 \right) \sim \Lambda^2 >> M^2_H$$

SM + **Dirac neutrinos:** no problem – just like SM

SM + Majorana neutrinos:

- more than one scale: VEV and the Majorana mass(es) M
 - \rightarrow generates a HP problem for large M even if y_v is tiny

$$\delta m_H^2 \simeq \frac{y_\nu^2}{16\pi^2} M^2 \qquad y_\nu^2 = M m_\nu / v^2$$

$$\rightarrow M \lesssim 10^7 - 10^8 \text{ GeV}$$
 \longleftrightarrow see-saw, leptogenesis, ...

The Problem

There should be some new physics at $\Lambda = O(TeV)$

BUT: So far nothing!

Mass scale [TeV]

Nevertheless: Very interesting lessons

- → SM works perfectly
- → triumph (precision) of concepts (QFT, symmetries)
- **②** Higgs discovered ←→ SM particle masses
- quantum structure of SM
- **②** neutrino masses, DM, DE ... → very exciting, but...
- **nothing BSM connected to EWSB (so far...)**
 - → exp. facts require new ideas → bottom-up guided

Look again carefully at the SM as a QFT

- The SM itself (without embedding) is a 4d QFT like QED
 - infinities, renormalization $\leftarrow \rightarrow \delta * \delta \rightarrow$ only differences are calculable
 - SM itself is perfectly OK → many things unexplained...
- Has (like QED) a triviality problem (Landau poles ←→ infinite λ)
 - triviality = inconsistency \rightarrow requires some scale Λ where the SM is embedded
 - running $U(1)_{Y}$ coupling: pole well beyond Planck scale... like in QED
 - running Higgs / top coupling \rightarrow upper bounds on m_H and m_t
- Another potential problem is vacuum instability ($\leftarrow \rightarrow$ negative λ)
 - does occur in SM for large top mass > 79 GeV → lower bounds on m_H
- **\rightarrow** important detail: SM has only one single scale v=246 GeV

The SM as QFT (without an embedding) works perfectly:

- a hard cutoff Λ and the sensitivity towards Λ has no meaning
- renormalizable, calculable ... just like QED
- BUT: an embedding is required $\leftarrow \rightarrow$ triviality...

A remarkable Coincidence

- → SM is a renormalizable QFT like QED w/o hierarchy problem
- \rightarrow Cutoff "\Lambda" has no meaning \rightarrow triviality, vacuum stability

Is the Higgs Potential at M_{Planck} flat?

Experimental values indicate metastability. Is it fully established?

- → we need to include DM, neutrino masses, ...? are all errors (EX+TH) fully included?
- → be cautious about claiming that metastability is established
- **→** An important observation:
- remarkable relation between weak scale, m_t , couplings and $M_{Planck} \leftarrow \rightarrow$ precision
- remarkable interplay between gauge, Higgs and top loops (log divergences not Λ^2)

Is there a Message?

- $\lambda(M_{Planck}) \simeq 0$? \rightarrow remarkable log cancellations $\leftarrow \rightarrow$ CA $\sim \beta$ -fcts. $M_{planck}, M_{weak},$ gauge, Higgs & Yukawa couplings are unrelated
- remember: μ is the only single scale of the SM \rightarrow special role
 - \rightarrow if in addition $\mu^2 = 0 \rightarrow V(M_{Planck}) \simeq 0$
 - → flat Mexican hat (<1%) at the Planck scale!

- → conformal (or shift) symmetry as solution to the HP
- → combined conformal & EW symmetry breaking
 - conceptual issues
 - minimal realizations ←→ SM seems to know about high scales → bottom-up

 ←→ many new d.o.f. (fields, big reps.) ~ UV-instabilities

The Problem: **EXPLICIT** Scales

- Renormalizable QFT with two scalars ϕ , Φ with masses m, M and a hierarchy m << M
- These scalars must interact since $\phi^+\phi$ and $\Phi^+\Phi$ are singlets
 - $\rightarrow \lambda_{mix}(\varphi^+\varphi)(\Phi^+\Phi)$ must exist (= portal) in addition to φ^4 and Φ^4
- Quantum corrections ~M² drives both masses to the (heavy) scale
 - **→** vastly different explicit scalar scales are generically unstable
- Since SM Higgs exists
 problem: embedding with a 2nd scalar
 - gauge extensions: LR, PS, GUTs → must be broken...
 - even for SUSY GUTS → doublet-triplet splitting...
 - also for fashinable Higgs-portal scenarios...

Ways out:

- no 2^{nd} Higgs \rightarrow just the SM \rightarrow triviality \rightarrow requires a new scale...
- symmetry: SUSY, ... → conformal symmetry = no explicit scales!
 - → all scales emerge from no-scale theories

Conformal Symmetry and the Hierarchy Problem

Theories without any scale in $\mathcal{L} \rightarrow CS$

Non-linear realizations of CS:

- **→** symmetry is classically preserved
- → naïve power counting invalid
- \rightarrow classically: no Λ^2 , log(Λ) divergences

Conformal Anomaly (CA = breaking by loops) anomaly \sim trace of energy momentum tensor $\longleftrightarrow \beta$ -functions $\longleftrightarrow \log(\Lambda)$

- **CA** does not fully restore naive power counting: $log(\Lambda)$, but no Λ^2
- avoids hierarchy problem
- **→** dimensional transmutation of conformal theories by log running of couplings like in chiral QCD

Conformal Symmetry and SM Extensions

Main idea:

- Do not introduce any fundamental (explicit) scales
 - **theories with conformal or shift symmetry**
- Dynamical breaking of CS \rightarrow Coleman Weinberg V_{eff}
 - → all scale(s) by dimensional transmutation
 - → non-linear realization of CS:
 - naïve power counting ($\sim \Lambda^2$) misleading
 - similar to gauge symmetry and vector boson masses
- An UV complete theory should have UV fixedpoints...

The SM parameters may point in that direction!

Generic Questions

- Isn't the Planck-scale spoiling things (explicit scale, cut-off, ...)?
 - **→** non-linear realization of conformal symmetry...
 - **→** conformal gravity...
 - → protected by conformal symmetry up to conformal anomaly
 - **→** generate M_{Planck} by dimensional transmutation
 - → for now assumption: M_{Planck} somehow generated in a conformal setting
- Are M_{planck} and M_{weak} connected?
 - → 1st part: assumed to be independently generated scales
 - **→** later more...
- UV: ultimate solution should be asymptotically safe → UV-FPs...
- Significant conceptual change for scale setting: Until now a rollover of scale generation: $SM \rightarrow BSM \rightarrow GUT \rightarrow gravit @M_{Planck}$ Requires a new concept $@M_{planck} \rightarrow strings, ...$
 - CS: Absolute scales meaningless, relative scales are calculable quantum effects Fully consistent realization

 now new concept for scale setting required

Realizing the Idea

Why the minimalistic SM does not work

Minimalistic version: \rightarrow "SM-"

SM + with μ = 0 \leftarrow > CS

Coleman Weinberg: effective potential

CS breaking (dimensional transmutation)

induces for $m_t < 79 \text{ GeV}$ a Higgs mass $m_H = 8.9 \text{ GeV}$

- DSB for weak coupling ←→ CS= phase boundary
 → scale set by running couplings → gap eqn: hierarchical!
- Reason for $m_H << v$: V_{eff} flat around minimum $\longleftrightarrow m_H \sim loop factor <math>\sim 1/16\pi^2$

AND: We need neutrino masses, dark matter, ... 50 100 150 200 250

Realizing the Idea via Higgs Portals

- SM scalar Φ plus some new scalar φ (or more scalars)
- $CS \rightarrow$ no scalar mass terms
- the scalar portal $\lambda_{mix}(\varphi^+\varphi)(\Phi^+\Phi)$ must exist
 - \Rightarrow a condensate of $\langle \varphi^+ \varphi \rangle$ produces $\lambda_{mix} \langle \varphi^+ \varphi \rangle (\Phi^+ \Phi) = \mu^2 (\Phi^+ \Phi)$
 - \rightarrow effective mass term for Φ
- CS anomalous ... \rightarrow breaking \rightarrow only $\ln(\Lambda)$
 - \rightarrow implies a TeV-ish condensate for φ to obtain $\langle \Phi \rangle = 246$ GeV
- Model building possibilities / phenomenological aspects:
 - φ could be an effective field of some hidden sector DSB
 - further particles could exist in hidden sector; e.g. confining...
 - extra hidden U(1) potentially problematic $\leftarrow \rightarrow$ U(1) mixing
 - avoid Yukawas which couple visible and hidden sector
 - → phenomenology safe due to Higgs portal, but there is TeV-ish new physics!

Rather minimalistic: SM + QCD Scalar S

J. Kubo, K.S. Lim, ML New scalar representation $S \rightarrow QCD$ gap equation:

$$C_2(S) lpha(\Lambda) \gtrsim X$$

 $C_2(\Lambda)$ increases with larger representations

 $\leftarrow \rightarrow$ condensation for smaller values of running α

SM \otimes hidden SU(3)_H Gauge Sector

Holthausen, Kubo, Lim, ML

• hidden $SU(3)_H$:

$$\mathcal{L}_{\mathrm{H}} = -\frac{1}{2} \mathrm{Tr} \ F^2 + \mathrm{Tr} \ \bar{\psi} (i \gamma^{\mu} D_{\mu} - y S) \psi$$

gauge fields; $\psi = 3_H$ with $SU(3)_F$; S = real singlet scalar

• SM coupled by S via a Higgs portal:

$$V_{\text{SM}+S} = \lambda_H (H^{\dagger}H)^2 + \frac{1}{4}\lambda_S S^4 - \frac{1}{2}\lambda_{HS} S^2 (H^{\dagger}H)$$

- no scalar mass terms
- use similarity to QCD, use NJL approximation, ...
- χ -ral symmetry breaking in hidden sector: SU(3)_LxSU(3)_R \rightarrow SU(3)_V \rightarrow generation of TeV scale
- → transferred into the SM sector through the singlet S
- → dark pions are PGBs: naturally stable → DM

Realizing the Idea: Specific Models

SM + extra singlet or doublet: Φ , φ

Nicolai, Meissner Farzinnia, He, Ren, Foot, Kobakhidze, Volkas, Hill, ...

Minimal B-L extension if SM: $SU(3)c \times SU(2)_L \times U(1)_Y \times U(1)_{B-L}$ Iso, Okada, Orikasa

Minimal LR-model: $SU(3)c \times SU(2)_L \times SU(2)_R \times U(1)_{B-L}$ Holthausen, ML, Schmidt

SM \otimes SU(N)_H with new N-plet in a hidden sector

Ko, Carone, Ramos, Holthausen, Kubo, Lim, ML, Hambye, Strumia, ...

SM + QCD colored scalar which condenses at TeV scale Kubo, Lim, ML

 $SM \otimes [SU(2)_X \otimes U(1)_X]$

Altmannshofer, Bardeen, Bauer, Carena, Lykken

• • •

Since the SM-only version does not work \rightarrow observable effects:

- Higgs coupling to other scalars (singlet, hidden sector, ...)
- dark matter candidates ←→ hidden sectors & Higgs portals
- consequences for neutrino masses

Conformal Symmetry & Neutrino Masses

ML, S. Schmidt and J. Smirnov

- No explicit scale → no explicit (Dirac or Majorana) mass term
 → only Yukawa couplings ⊗ generic scales
- Enlarge the Standard Model field spectrum like in 0706.1829 R. Foot, A. Kobakhidze, K.L. McDonald, R. Volkas
- Consider direct product groups: SM ⊗ HS
- Two scales: CS breaking scale at O(TeV) + induced EW scale

Important consequence for fermion mass terms:

- → spectrum of Yukawa couplings ⊗ TeV or EW scale
- → interesting consequences ←→ Majorana mass terms are no longer expected at the generic L-breaking scale → anywhere

Examples

$$\mathcal{M} = egin{pmatrix} 0 & y_D\langle H
angle \ y_D^T\langle H
angle & y_M\langle \phi
angle \end{pmatrix}$$

Yukawa seesaw:

$$\overline{ ext{SM} + extstyle
olimits_R + ext{singlet}} \ \langle \phi
angle pprox ext{TeV} \ \langle H
angle pprox 1/4 ext{TeV}$$

→ generically expect a TeV seesaw

BUT: y_M can be tiny

→ wide range of sterile masses **→** including pseudo-Dirac case

→ suppressed 0vββ

Radiative masses

The punch line: all usual neutrino mass terms can be generated

- → suitable scalars required
- → no explicit masses: all via Yukawa couplings
- → different numerical expectations ← → could easily explain keV masses

Phenomenological Impact

Conventional see-saw:

$$\begin{pmatrix} 0 & \mathbf{m_D} \\ \mathbf{m_D} & \mathbf{M_R} \end{pmatrix}$$

$$\simeq M_R$$

$$ightharpoonup$$
 ultra heavy $\simeq M_R$ $ightharpoonup$ ultra light $\simeq \frac{m_D^2}{M_R} << m_D$

- **Explains nicely known active neutrino masses**
- But what if intermediate sterile neutrino states were found?
 - keV sterile v's as warm dark matter
 - evidences for eV sterile
 - TeV-ish sterile neutrinos and improved EW precision fits (e.g. 1302.1872)
- → hard to explain in conventional see-saw and variants
- \rightarrow easy in conformal neutrino scenarios $\leftarrow \rightarrow M_R = g_V * < VEV >$

The Neutrino Option

An interesting possibility: Connection between EWSB and neutrinos

Neutrino option: Brivio

→ Veff from neutrino loops

Conformal Realization of the Neutrino Option: Brdar, Emonds, Helmboldt, ML

→ conformal symmetry + V_{eff} from neutrino loops (not from Higgs portal)

SM particle content

3x NR

2x scalar SM singlets: S, R

$$\mathcal{L} \supseteq \frac{1}{2} \partial_{\mu} S \partial^{\mu} S + \frac{1}{2} \partial_{\mu} R \partial^{\mu} R + i \bar{N}_{R} \partial N_{R}$$
$$- V(H, S, R) - \left(\frac{1}{2} y_{M} S \bar{N}_{R} N_{R}^{c} + y_{\nu} \bar{L} \tilde{H} N_{R} + \text{h.c.} \right)$$

→ consistent UV-complete realization of the idea

Conformal Symmetry & Dark Matter

Different natural and viable options:

- 1) eV, keV = DM, TeV, ... sterile neutrino mass easily possible ←→ not so easy in standard see-saw's
- 2) New particles which are fundamental or composite DM candidates:
 - hidden sector pseudo-Goldstone-bosons
 - stable color neutral bound states from new QCD representations
- → some look like WIMPs
- others are extremely weakly coupled (via Higgs portal)
- → or even coupled to QCD (threshold suppressed...)

Including the Planck Scale

The Planck Scale from CS Breaking

Conformal Gravity (CG):

- more symmetry CG claimed to be power counting renormalizable
- CG may have a ghost... → see later

Idea: Generate M_{Planck} in conformal gravity \otimes SU(N)

- → gauge assisted condensate via SU(N) field
- → M_{Planck} becomes an effective scale

Kubo, ML, Schmitz, Yamada similar ideas: Donoghue, Menezes, ...

$$S_{\rm C} = \int d^4 x \sqrt{-g} \left[-\hat{\beta} S^{\dagger} S R + \hat{\gamma} R^2 - \frac{1}{2} \operatorname{Tr} F^2 + g^{\mu\nu} (D_{\mu} S)^{\dagger} D_{\nu} S - \hat{\lambda} (S^{\dagger} S)^2 + a R_{\mu\nu} R^{\mu\nu} + b R_{\mu\nu\alpha\beta} R^{\mu\nu\alpha\beta} \right]$$

R = Ricci curvature scalar, $R_{\mu\nu}$ = Ricci tensor, $R_{\mu\nu\alpha\beta}$ = Riemann tensor

F = field-strength tensor of the $SU(N_c)$ gauge theory; S = complex scalar in fund. rep. $\rightarrow N_c$

→ most general diffeomorphism invariance, gauge invariance, and global scale invariance

Condensation in SU(N_c) gauge sector

 \rightarrow dimensional transmutation: $\langle S^+S \rangle \rightarrow$ effective Planck mass

$$M_{\text{planck}} = 2 \beta f_0 = \frac{N_c \beta}{16\pi^2} (2 \lambda f_0) \left(1 + 2 \ln \frac{2 \lambda f_0}{\Lambda^2} \right) \text{ with } f_0 = \langle S^+ S \rangle$$

→ Effectively normal GR

What about the ghost problem of CG?

- → go into broken phase after condensation:
 - normal gravity
 - + hidden CS nonlinearly realized + CA = β -functions
 - renormalizability should be preserved
 - ghost: should be absent like in normal GR $\leftarrow \rightarrow$ M_{Planck} is effective
- → May lead to viable QFT with dynamical CS breaking

Dilaton-Scalaron Inflation

Effective Jordan-frame Lagrangian:

$$\frac{\mathcal{L}_{\text{eff}}^{J}}{\sqrt{-g_{J}}} = -\frac{1}{2} B\left(\chi\right) M_{\text{Pl}}^{2} R_{J} + G\left(\chi\right) R_{J}^{2} + \frac{1}{2} g_{J}^{\mu\nu} \partial_{\mu} \chi \, \partial_{\nu} \chi - U\left(\chi\right) \quad \Rightarrow \text{ auxiliary field } \Psi \Rightarrow$$

$$\frac{\mathcal{L}_{\text{eff}}^{J}}{\sqrt{-g_{J}}} = -\left[\frac{1}{2}B\left(\chi\right)M_{\text{Pl}}^{2} - 2G\left(\chi\right)\psi\right]R_{J} + \frac{1}{2}g_{J}^{\mu\nu}\partial_{\mu}\chi\,\partial_{\nu}\chi - U\left(\chi\right) - G\left(\chi\right)\psi^{2}$$

Weyl rescaling: $g_{\mu\nu} = \Omega^2 g_{\mu\nu}^J$ $\Omega^2 = e^{\Phi(\phi)}$, $\Phi(\phi) = \frac{\sqrt{2}\phi}{\sqrt{3}M_{\rm Pl}}$

Einstein-frame scalar potential:

$$V\left(\chi,\phi\right) = e^{-2\Phi(\phi)} \left[U\left(\chi\right) + \frac{M_{\rm Pl}^4}{16\,G\left(\chi\right)} \left(B\left(\chi\right) - e^{\Phi(\phi)} \right)^2 \right]$$

- → Slow role inflation
- → fits data very well!

Scale Dependence: EW vs. Planck Scale

- Assume:
 - SM scale generated by some TeV-ish conformal extension
 - Planck scale generation by conformal gravity ⊗ gauge sector
- → Do we understand the hierarchy between EW and Planck scale?

$$\mathbf{V} = \lambda_1 (\mathbf{H}^{\dagger} \mathbf{H})^2 + \underbrace{\lambda_2 (\mathbf{H}^{\dagger} \mathbf{H}) (\mathbf{\Phi}^{\dagger} \mathbf{\Phi})}_{\text{portal coupling}} + \lambda_3 (\mathbf{\Phi}^{\dagger} \mathbf{\Phi})^2$$

- \rightarrow Does λ_2 portal lead to the usual hierarchy problem? \rightarrow ideas
 - sequential breaking by RG running \rightarrow `CW tumbling' $m^2 = 0$ is boundary broken/unbroken
 - → SSB for tiny attractive force
 - \rightarrow if $\langle \Phi^+ \Phi \rangle$ condenses first (stronger coupling)
 - → portal can induce m² >0 for H → shifts SSB boundary
 - → 2nd SSB by log running of couplings

Summary

- SM works (so far) perfectly
 - be a bit more patient: new physics may be around the corner...
 - or maybe it is time to re-consider some things...
- The old hierarchy problem(s)...? No new physics observed
 - $\lambda(M_{Planck}) = 0$? $\leftarrow \rightarrow$ precise value for $m_t \rightarrow$ is there a message?
 - → SM embedings into QFTs with conformal symmetry
 - → combined conformal & electro-weak symmetry breaking
 - → implications for BSM phenomenology
 - → implications for Higgs couplings, neutrino physics, dark matter, ...
 - → testable consequences: @LHC, dark matter, neutrinos
- Planck scale generation by gauge induced breaking of conformal GR
 - → very nice phenomenology: inflation...
 - → consistent quantum gravity: renormalizablity?, ghost?
 - ←→ normal GR from a theory with more symmetry
 - → stabilizing large scale hierarchies...
 - → trans-Planck: just be a different phase no new concept required