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Motivation

I PLANCK results: small tensor-to-scalar ratio, low scale of
inflation ⇒ plateau-like models or saddle-point inflation
preferred

I Plateau can be obtain in e.g. Starobinsky model, Brans-Dicke
gravity, Higgs inflation, α attractors. . .

I Higher order terms may violate the existence of the plateau,
for instance for R + R2

6M2 + α3
R3

M3 + . . . one obtains the
sufficiently long plateau only for fine tuning of all αi

constants.

I Let’s try to use higher order corrections to plateau-like
inflationary models as a source of the saddle-point inflation!

Convention: 8πG = M−2pl = 1, where Mpl ∼ 2× 1018GeV
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f (R) gravity

The gravitational part of the GR sction is following

S [gµν ] =
1

2

∫
d4x
√
−gR

Let us generalize this term into

1

2

∫
d4x
√
−g R → 1

2

∫
d4x
√
−g f (R) . (1)

Then the modified Einstein equation looks as follows

F (R)Rµν −
1

2
f (R)gµν + [gµν2−∇µ∇ν ]F (R) = Tµν , (2)

where F = f ′ = df
dR and Tµν is the energy-momentum tensor.
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f (R) as a Brans-Dicke theory

The action of f (R) can be rewritten as

S =

∫
d4x
√
−g
[

1

2
ϕR − U(ϕ) + Lm

]
, (3)

where

ϕ = F (R) , U(ϕ) =
1

2
(RF − f )

On the other hand the action of Brans-Dicke theory is

S =

∫
d4x
√
−g
[

1

2
ϕR − ωBD

2ϕ
(∇ϕ)2 − U(ϕ) + Lm

]
(4)

f (R) is a Brans-Dick theory with ωBD = 0
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From Brans-Dicke to Einstein frame

The gravitational part of the action may be canonical after
transformation to Einstein frame

g̃µν = ϕgµν (5)

which gives the action of the form of

S =

∫
d4x

√
−g̃

1

2
R̃ − β

4

(
∇̃ϕ
ϕ

)2

− U(ϕ)

ϕ2

 , (6)

where β = 2ωBD + 3.

We want kinetic term to be canonical

φ =

√
β

2
logϕ⇒ S =

∫
d4x

√
−g̃
[

1

2
R̃ − 1

2

(
∇̃φ
)2 − V (φ)

]
,

where V = U/ϕ2 (ϕ = ϕ(φ)). BD = GR + scalar field
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Higher order terms

What are the higher order terms?

I For f (R) terms with higher powers of R, like R3 in
Starobinsky

I For Brans-Dicke theory higher powers of the Jordan frame
potential, like e.g. (ϕ− 1)4 in B-D generalisation of
Starobinsky

I Plateau-like inflation can be also generated by the Higgs
inflation, with Jordan frame potential V = λϕ4 and
non-minimal coupling term ξϕ2R. Then the higher order
terms are non-renormalisible terms of the potential, like e.g.
λ6ϕ

6.
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The Starobinsky model and saddle-point inflation

The oldest and one of the most successful inflationary models

f (R) = R +
R2

6M2
⇒ V (ϕ) =

3

4
M2

(
1− 1

ϕ

)2

(7)

The model is great because of small r and non-gaussianities, which
are pefectly consistent with the data. Nevertheless higher order
corrections of the form

∞∑
n=3

αn
Rn

M2(n−1) (8)

may spoil the plateau. How to get inflation without the R2

domination? We need a small, but very flat part of the Einstein
frame potential, i.e. we need the saddle-point inflation.



The Starobinsky model and saddle-point inflation

The saddle-point of the Einstein frame potential is defined by

Vφ = Vφφ = 0 (9)

The other option - inflection-point inflation, for which

Vφ 6= 0 and Vφφ = 0 (10)

We denote both of those points as φs . The R = Rs is the Ricci
scalar for the Einstein frame saddle-point.

What is the problem? The saddle-point inflation predicts
ns ' 0.92, which is inconsistent with PLANCK data. This requires
significant influence of the R2 term in order to generate proper
form of the power spectrum.
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Saddle-point inflation with vanishing k derivatives

In general one can define the saddle point with first k derivatives
vanishing. In that case 1− ns ' 2k

N?(k−1) when freeze-out of
primordial inhomogeneities happens close to the saddle point.
Thus, for sufficiently big k one can fit the Planck data!

For

f (R) = R + α2
R2

M2
+

l∑
n=3

αn
Rn

M2(n−1) , (11)

We want first l − 2 derivatives to vanish, which gives

Rs =
√
pM2 , αn = (−1)n−1

2(l − 3)!

(l − n)!(n − 1)!
p

3−n
2 (12)

where p :=
√

(l − 1) (l/2− 1). You can sum it up and obtain the
analytical form of f (R).
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Saddle-point inflation with vanishing k derivatives

50 100 150 200 250
0.940

0.945

0.950

0.955

0.960

l

n
s

Numerical results for N? = 50 and N? = 60 (red and blue dots
respectively). All values of r obtained in this analysis are
consistent with PLANCK, but ns fits the PLANCK data only for
N? ' 60. No R2 term needed



The l →∞ limit

For l →∞ one finds

f (R) = R

(
e
−
√

2R

M2
o +

√
2 + α2

M2
o

R

)
. (13)

The α2 tell us about the contribution of R2 to f (R). Even for
α2 = 0 this guy fits the data perfectly well. What is the problem?

I The saddle point moves to infinity

I The GR vacuum in not stable and some contribution of the
Starobinsky term is needed in order to stabilise it.
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Einstein frame potential
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The GR minimum at R = 0 appears to be meta-stable, with a
possibility of tunnelling to anti de Sitter vacuum. In order to avoid
overshooting the minimum at R = 0 one requires α2 & 0.7.



Higher order corrections in Higgs inflation

For the non-minimal coupling to gravity ξϕ2 we introduce the
Jordan frame potential

V =
λ

4
ϕ4 +

λ6
6
ϕ6 +

λ8
8
ϕ8 + . . . (14)
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W and φ are Einstein frame potential and field respectively



Higher order corrections in Higgs inflation

Higher order terms open brand new possibilities for inflationary
scenarios, especially if λ6 < 0

I Topological inflation at the local maxima

I De-Sitter expansion in local minima

I Possible cyclic universe if our vacuum is meta-stable

I Saddle-point or inflection-point inflation if
λ6 ∼ 3 (λλ8/(4ξ))1/3
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Power spectra
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Conclusions

I Higher order terms - natural to appear, easy to spoil inflation
at the plateau

I They open brand new possibilities for the inflationary
scenarios in plateau-like potentials

I If the long plateau is not possible one can seek for a short, but
very flat part of the Einstein frame potential → saddle-point
inflation

I Pure saddle point needs the help of the plateau, but for
inflection-point inflation no Starobinsky is needed!
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