On self-interacting dark matter: Current status and perspectives

Kai Schmidt-Hoberg

How to constrain the properties of dark matter?

> Our 'usual way' to search for dark matter

Indirect detection

Kai Schmidt-Hoberg | What can we learn from self-interacting dark matter? | 26 May 2017 | Page 2

How to constrain the properties of dark matter?

- > Our 'usual way' to search for dark matter
- > A fourth way...

Indirect detection

cf. Talks by H M Lee, C Spethmann, D Huang

Kai Schmidt-Hoberg | What can we learn from self-interacting dark matter? | 26 May 2017 | Page 3

Motivation: Cosmology

cf. talk by Pran Nath

- The collisionless cold dark matter paradigm fits perfectly at large scales
- There are however various discrepancies between N-body simulations of collisionless cold DM and astrophysical observations on galactic scales:

Cusp-vs-core problem

Motivation: Cosmology

cf. talk by Pran Nath

- The collisionless cold dark matter paradigm fits perfectly at large scales
- There are however various discrepancies between N-body simulations of collisionless cold DM and astrophysical observations on galactic scales:

- Cusp-vs-core problem
- Too-big-to-fail problem
- Missing-satellite problem

DM self-interactions may solve some (or all) of these problems

Spergel & Steinhard: astro-ph/9909386 Aarsen, Bringmann, Pfrommer, 1205.5809

Motivation: Cosmology

- The collisionless cold dark matter paradigm fits perfectly at large scales
- There are however various discrepancies between N-body simulations of collisionless cold DM and astrophysical observations on galactic scales:

- Cusp-vs-core problem
- Too-big-to-fail problem
- Missing-satellite problem

DM self-interactions may solve some (or all) of these problems

Spergel & Steinhard: astro-ph/9909386 Aarsen, Bringmann, Pfrommer, 1205.5809

Motivation: Particle physics

- Dark sector often assumed to be simple, mainly because we don't know much...
- Large self-interactions are natural in models with a more complex dark sector (e.g. with a new gauge group)

Strongly interacting DM

Carlson, Machacek, Hall (1992) Kusenko, Steinhardt: astro-ph/0106008

New light mediator in the dark sector

Feng, Kaplinghat, Yu: arXiv:0905.3039 Buckley & Fox: arXiv:0911.3898 Loeb & Weiner: arXiv:1011.6374

 Bonus: We can potentially study the dark sector even if DM has highly suppressed couplings to Standard Model particles.

• To be observable on astrophysical scales, self-interaction cross sections have to be large, typically

$$\sigma/m_{\chi} \sim 1 \text{ cm}^2/\text{g} \sim 2 \text{ barns/GeV}$$

- The nucleon nucleon scattering cross section ~20 barns at low energies
- The typical cross section of a WIMP is 20 orders of magnitude smaller!

 Potential impact: Evidence for DM self-interactions on astrophysical scales would rule out most popular models for DM, such as supersymmetric WIMPs, gravitinos, axions...

Constraints on self-interactions

Various astrophysical observations give constraints on SIDM:

- Bullet cluster

Randall et al 0704.0261

- Subhalo evaporation rate
- Halo ellipticity
- Core density in clusters and dwarfs

Gnedin, Ostriker: astro-ph/0010436

Miralda-Escude (2002)

Yoshida et al.: astro-ph/0006134 Dave at al.: astro-ph/0006218

SIDM probed at different velocities in different systems
 → a handle on the velocity dependence of the self scattering cross section!

Smoking gun?

 Smoking gun signal? Separation between dark matter halo and stars of a galaxy falling into a galaxy cluster

Smoking gun?

 Smoking gun signal? Separation between dark matter halo and stars of a galaxy falling into a galaxy cluster

Observed offset: 1.62+/-0.48kpc

Separation

Recently been observed in A3827

Massey et al., arXiv:1504.03388

Kai Schmidt-Hoberg | What can we learn from self-interacting dark matter? | 26 May 2017 | Page 11

Smoking gun?

 Smoking gun signal? Separation between dark matter halo and stars of a galaxy falling into a galaxy cluster

Observed offset: 1.62+/-0.48kpc

How large a cross section would be needed to achieve such a separation?

Could we learn anything else?

Separation

Recently been observed in A3827

Massey et al., arXiv:1504.03388

Kai Schmidt-Hoberg | What can we learn from self-interacting dark matter? | 26 May 2017 | Page 12

Frequent vs. rare scatters

The momentum transfer in a collision of two DM particles is completely fixed by the scattering angle. The effective momentum transfer is given by

$$\sigma_{\rm T} = 2\pi \int_{-1}^{1} \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} (1 - |\cos\theta|) \,\mathrm{d}\cos\theta$$

This is the quantity typically studied

However, this is not all that matters...

Kahlhoefer et al, 1308.3419

Can be obtained with **rare scatters and large momentum transfer** (e.g. isotropic scattering) or **frequent scatters with small momentum transfer** (e.g. long range interactions)

Infalling galaxy in A3827

Distinguishing different types of SIDM

- Effective drag force: the DM subhalo retains its shape, while the distribution of stars are both shifted and deformed.
- **Contact interactions**: the DM subhalo is deformed due to the scattered DM particles leaving the subhalo in the backward direction.
- Potentially distinguishable!

Velocity dependent self-interactions

- Idea: Relate core size of different systems to SIDM cross section
- DM self-interactions seem to depend on the typical relative velocity of DM particles.
- > Simplest realisation
 → light mediator!

Loeb & Weiner: arXiv:1011.6374

- Consider a mediator with mass $m_{\rm med} \sim m_{\rm DM} v_{\rm DM}$:
 - Scattering for small momentum transfer ($q < m_{med}$) proportional to $1/m_{med}$
 - Scattering for large momentum transfer ($q > m_{med}$) proportional to $1/q^4$

 10^{4}

 10^{3}

 10^{2}

10

10

 $(\text{cm}^2/\text{g} \times \text{km/s})$

 $\langle \sigma v \rangle / m$

100 cm² |2

10 cm

5000

Kaplinghat et al., arXiv:1508.03339

.0.01 cm²

(km/s)

500 1000

50

100

 $\langle v \rangle$

A new light mediator

The relic abundance is typically set by annihilations into pairs of mediators (socalled dark sector freeze-out):

A new light mediator

The relic abundance is typically set by annihilations into pairs of mediators (socalled dark sector freeze-out):

To avoid overclosing the Universe, the mediator should ultimately decay, so its couplings to SM states cannot be arbitrarily small

Enhancement of DM self-interactions

DM

DM

 $0.1 \\ 10^{-1}$

0.001

0.01

 m_{ϕ} (GeV)

0.1

DESY

erc

Enhancement of DM self-interactions

- DM self-interactions are enhanced also by nonperturbative effects due to multiple mediator exchange.
- Scalar and vector mediators particularly interesting
- In this case also Sommerfeld enhancement of annihilations
 - \rightarrow very strong reionisation bounds from the CMB for s-wave annihilation

DM-nucleon scattering cross section also strongly enhanced for light mediators

Vector mediators

Example: A new gauge boson from a spontaneously broken U(1)' gauge group that mixes with the neutral gauge bosons of the Standard Model.

$$\mathcal{L} \supset -g_{\chi}^{\mathcal{V}} \phi^{\mu} \bar{\chi} \gamma_{\mu} \chi - \frac{1}{2} \sin \epsilon B_{\mu\nu} \phi^{\mu\nu} - \delta m^2 \phi^{\mu} Z_{\mu}$$

Kinetic mixing: Mediator obtains photon-like couplings Mass mixing: Mediator obtains Zlike couplings

> Main difference:

- A gauge boson with kinetic mixing is effectively stable below the electron threshold.
- Mass mixing induces sizeable decay rates into neutrinos

Constraints on vector mediators

- > For vector mediators, DM annihilation proceeds via s-wave:
 - Large Sommerfeld enhancement for small velocities
 - g_x fixed by relic density essentially independent of coupling to SM

- Only assumption: The two sectors have the same temperature during freeze out.
- But even for different temperatures in the two sectors there are very strong constraints.

Constraints on scalar mediators

- For fermionic DM and scalar mediators annihilation proceeds via p-wave
- > No constraints from indirect detection or the CMB.
- > Direct detection constraints are very strong for scalar mediators.
- Lifetime rather long due to Yukawa suppression
- Naive BBN bound: τ < 1 s</p>

Impossible to satisfy all requirements and have large self-interaction cross sections.

 $\delta_{\psi} = 0, \ \delta_{\rm SM} = 0, \ y_{\rm SM} = 10^{-5}$ 10^{4} $\tau_{\phi} = 1 \, \mathrm{s}$ LUX 10^{3} 10^{2} $m_\psi \; [{
m GeV}]$ 10^{1} irrelevant for DM self-scattering 10^{0} 1704.02149 10^{-1} 10 42 10^{-2} 10^{-3} 10^{-4} 10^{-3} 10^{-2} 10^{-1} 10^{0} 10^{1} m_{ϕ} [GeV]

erc

DESY

A mixed mediator (CP violation)

$$\mathcal{L}_{\rm DM} \supset y_{\psi} \cos \delta_{\psi} \ \bar{\psi} \psi \phi + y_{\psi} \sin \delta_{\psi} \ i \bar{\psi} \gamma^5 \psi \phi$$

- For $\delta_{w} \sim 0$ (like a scalar) DM self-interactions can be large.
- For $\delta_{\rm SM} \sim \pi/2$ (like a pseudoscalar) direct detection constraints are strongly suppressed.
- Large allowed parameter space!

 $\delta_{\psi} = 0, \ \delta_{\rm SM} = \pi/2$ 10^{4} 10^{3} 10^{2} $m_{\psi} \; [{\rm GeV}]$ 10^{1} indevant for DM self-scattering $(\sigma_T/m_\psi)_{\rm cluster}$ 10^{0} $1\,\mathrm{cm}^2\,\mathrm{g}^ 10^{-1}$ 10^{-2} 10^{-3} 10^{-3} 10^{-4} 10^{-2} 10^{-1} 10^{0} 10^{1} m_{ϕ} [GeV]

Kai Schmidt-Hoberg | What can we learn from self-interacting dark matter? | 26 May 2017 | Page 25

- Constraints on the CP-violating phase $\delta_{\rm SM}$ (e.g. from electron EDMs) can be satisfied even for very light mediators as long as y_{SM} is sufficiently small $(y_{\rm SM} \ll 10^{-2}).$

The return of CMB constraints

- Central problem: The fact that annihilation can only proceed via p-wave was a consequence of CP conservation.
- > As soon as δ_{ψ} is not exactly zero, s-wave annihilation is again possible and will receive large Sommerfeld enhancement.

Future directions for light mediators

- > There are a number of ways to evade the various constraints
 - Inert decays of the mediator, for example into (sterile) neutrinos
 - Thermalization via a different mechanism (possibly leading to different temperatures during freeze-out)
 - No thermalization (DM production via the freeze-in mechanism)

Bernal et al., arXiv:1510.08063

- Suppressed couplings to quarks (to evade direct detection constraints)
- Nevertheless, constraints from BBN, direct detection and the CMB are very generic and will generally be relevant to any model of DM interacting via a new light mediator.
- > Exciting phenomenology and interesting model-building challenges!

Summary

- Self interacting dark matter could solve some problems of the collisionless cold dark matter paradigm and can arise naturally in more complex dark sectors
- Orthogonal handle on properties of DM: We can potentially study the dark sector even if DM has highly suppressed couplings to Standard Model particles.
- Can potentially distinguish effective drag forces (from frequent selfinteractions) and rare self-interactions
- > Also could infer the velocity dependence of the cross section.
- The simplest possibilities (scalar or vector mediator coupling to fermionic dark matter with no additional new states) are in strong tension with direct and indirect detection experiments.
- > One simple way out is spontaneous CP violation in the dark sector
- > Huge possible impact, ruling out WIMPs, axions, gravitinos,...

Thank you!

